
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 6 

 

A Crtitical Approach for Intruder Detection in Mobile Devices 

(1) 
R.Surendiran, 

Research Scholar, 

Dept of MCA, Computer Center,
 

Madurai Kamaraj University, Madurai. 

 

(2)
 Dr.K.Alagarsamy, 
Associate Professor 

Dept of MCA, Computer Center,
 

Madurai Kamaraj University, Madurai. 

Abstract : 

The paper studies and proposed an new effective methodology for the security threats involved in using 

modern smart phone for accessing Internet related services and various sources. Different types of materialised 

mobile malware are discussed in our previous works in order to classify them for further analysis. This paper discuss  

growing interest of malicious codes and money making apps in mobile phone users. Security Threats of mobile 

phones are explored in order to compare the involved security risks in mobile envioronment. Analysing various 

security problems of mobile environment are discussed for predicting the type of attacks that may cause a substantial 

rise of the risk level in near future. This paper is closed with a effective solution for mobile virus and intruder 

attacks from the third party application and resources.  

Keywords:  Mobile Devices, Security threats , Detection Mechanism. 

 

I. Introduction:  

In recent years computer [1] and technology has developed from centralized  computing enviornment 

which supporting static applications into client server architecture that allow complex forms of distributed 

applications. In the Entire evolution certain forms of code have existed. Olden remote job program entry terminals 

used to submit programs to a centralized server and the latest versions like Java applets downloaded from web 

servers into web browsers. A new advanced architecture is now under way that goes one step further, allowing 

complete mobility of cooperating applications among supporting platforms to form a large scale, loosely coupled 

distributed system. 

 

The mobile is the most important social classes of teenagers, who favor SMS ,facebook,chats,messangers 

,etc. Mobile devices used as efficient and trendy form of personal communication.  During the year of 2007 to 2010 

, More than 95% of teenagers sends sms and messanger then  they talk on their mobile phones.  

 

In this research approach provides an efficient security mechanism for smart phones with usage of kernal 

environments because most of the core processing happening inside the kernal part . If we implement the security 

mechanism in kernal level we can reduce most of the vulnerability attacks.  

 

This paper contain following parts. At first we have given small introduction. In the second part we have 

discused about proposed approach ,overall architecture ,design of algorithm and basic working methodology. In the 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 7 

 

third section we have evaluated the methodlaogy and given the statistical analysis. In the fourth part discussing the 

conclusion and finally go for the references.  

 

 

Figure 1: Overall Android Platform 

II. Proposed Approach: 

This research focusing secutiry mechanism in two different category one is well known thread and another 

one is unknown thread. 

While designing efficient security algorithm we have to concentrate on three important security principles 

namely  

 Accuracy : 

It is a very important requirement for detect the fradulant application or apps from the android market. 

 Scalability :  

It is also very important requirement for efficient algorithm design. According to this scenario how far or 

ho much application will extent for this algorithm .  

 Efficiency :  

Efficiency always shows the performance of algorithm or design. According to this scenario how far it will 

detect the malicious application.  

In General every application conatins lot of features and functionalities . There are numerous applications 

available in the market for different purpose and different usages like official, entertainment, games,etc. if we take 

all the features to determaine the malicious app, It takes much time to pre process,scan and predict the malicious 

one. So we are taking only the important features in the application.  

Following diagram shows general architecture of our drivers and behaviour. 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: General architecture of drivers and behaviour. 

 

 

 

A simplified architecture depicting the role of a device driver 

User mode libraries 

applicatio

n 

libraries 

File sub system 

Buffer 
Cache 
Charact
er 
Drivers 
Block 
Drivers 
Device 
Drivers 
Hardwa
re 
Control
sub 
system 
Buffer 
Cache 
Charact
er 
Drivers 
Block 
Drivers 
Device 

Buffer Cache 

Character Drivers 
Block Drivers 

Device Drivers 

Hardware Control 

System Call Interface 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 9 

 

Overall Design Algorithm:  

 Collect the application from the Existing Markets from various vendors 

 Save into our local drives or specific location 

 Apply our Known threats methodology 

 Apply our unknown threats methodology  

 Predict the results 

Collection of application has been stored into the local repository from the various vendars like android, 

apple, symbion, windows ,etc. This process is fully automated otherwise it will take much time to collect the 

application. Since every application softwares and supporting files are stored in their official server due to that we 

have to store in our local repository like hard disk or any special embedded disk. Now we are ready to process the 

application first we will see the known malware detection and next we will discuss the unknown threats. 

Finding Known Threats: 

In this methodolgy there will be a two step one is elimination round for reduce the unnecessary application 

from the large number of application in the locla repositiory which are collected from the various vendors and 

markets.  Elimination round is very important because to reduce the time of scanning from the large scanning.  

In every android application contain a manifest file which persists some basic information , permission, 

metadata for auhtentication purpose unlike the malicious application.  Malware application doesn’t contain these 

kind of information which are more useful for remove the unrelated applications from the collection and also it will 

more usefull for time consuming and increase the efficiency of algorithm.  

For example we use short message service (SMS) because everyone knows the SMS. For understanding 

purpose we take SMS for illustration purpose. While sending and receiveing the SMS there will be a some common 

communcation commands will get executed in kernel level like SEND_SMS,RECEIVE_SMS. Let us take one 

malware persist in our application related to SMS. Malware can send and receive the N number of SMS in the 

background process without knowledge of victim and also it will hide the financial related information and 

messages.  Probably 95% application get removed from this stage. In particular we have to concentrate few things in 

the elimination round , as per selection criteria we just choose only important permission ,system call, functionality. 

In our scenario we can select these commands like SEND_SMS,RECEIVE_SMS,INTERNET,BOOKMARKS. If 

we predict wrong commands it leads negative results.  

In the second stage we go for some depth analysis in the aspect of semantic approach. This can be done in 

the two ways one is automated and another one is traditional approach by manual because if the first stage we have 

eliminated many number of application  due to that we can allot much time to second stage. There are some 

important things has to be consider namely manifest file, byte code, structure of android.  

 Manifest file conatin the semantic information related to the application which will bevery useful for 

determine either applications are legitimate or fake one. Byte code contain well semantic information , which will be 

highly useful for understand the application since byte code understandability will come from the expert in the 

andriod field. Finally android app created based on some tree structure and it will be in compressed format. If we 

extract the archives we can get the original structure of application from that we can define what kind of mehtods 

system call’s,packages,etc has been used in the application 

Finding Unknown Threats: 

In our first method we have focused on known threats . here we are concentrate on unknown threats. There are two 

methodologies will be there we will see one by one. 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 10 

 

First one based on native code storage and appearnce. Every android app contained classes.dex file which 

contain dalvik byte code for execution. Dalvik virtual machine provides dex classs loader which is used to load 

external files by the application like java files and execution files. If app included dynamically loaded file from the 

server , It leads to the technical issue and security threats. If any application used DexClassLoader file more than 

30% , we should consider app itself suspicious.  

Most of the andriod application designed in java. Even though some of the application using native code 

for performance measurement. Each application will run in the separate user id and unix system calls can have 

ability to acess the native code directly. If any malicious app call the native code, it can droop the viruses in the root 

itself. There are some default location in android to place the native code based on that concept we can prdict the 

viruses. 

In the first step we were identified some unwanted codings running in the application and next step 

monitoring the dynamic execution of unwanted codings. From the application code it can inherit some other new 

codes. In our automated monitor scan maintain all the system calls and arguments. Arguments will list out all the 

semantic information. With the help of native code dynamic monitior collects all the system call probably system 

call will maintian by linux. We couldn’t insepct all the logs instead we can trace only important system call. From 

that collection we can find out suspiciopus runtime behaviours.  

III. Result Analysis and Discussion: 

 This research aproach implemented in andriod 2.2 simulater . we have taken nearly 50000 application from 

the various market especially we have focued andriod market for our implementation purpose. Collecting 

application itself tedious process which makes unsensible sometimes.  

Here the snap shot of mulitple application running in single andriod os 

 

Figure 3: Multiple Process Running Mode 
 

 

 

 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 11 

 

Applications are collected from the various markets like google play( Official site), mmoovv, eoemarket, gfan and 

alcateclub . 

Market Name google play mmoovv eoemarket gfan alcateclub . 

count of App 24725 6320 6227 6037 6709 

Table 1: Collection of Application 

 

Around 50,000 application were collected from the five different markets. 

 

We have taken five known samples for known malware detection algorithm  

 

Malicious App Year Hash Code Functionality 

Bgserv 2012 

 

ea97576befac2b142144ce30c2326ed6 

1d696b87e665498b878bf92ce25440db 

 

Trojan with bot-like 

capabilities 

 

DroidDream 

 

2012 

 

63f26345ba76ef5e033ef6e5ccecd30d 

763a1ab4e4a21373a24a921227a6f7a4 

 

Root exploits with 

Exploid, 

Rageagainstthecage 

 

DroidDreamLight 

 

2012 

 

3ae28cbf5a92e8e7a06db4b9ab0a55ab 

5e4fd0a680ffc8d84d16b8c0e5404140 

 

Trojan with information 

stealing capabilities 

 

jSMSHider 

 

2012 a3c0aacb35c86b4468e85bfb9e226955 

389b416fb0f505d661716b8da02f92a2 

 

Trojan that targets 

custom firmware devices 

 

Zsone 

 

2012 d204007a13994cb1ad68d8d2b89cc9a8 

a673481ff15028e05f6fe778a773e0f9 

 

Trojan that sends 

premium-rate SMS 

messages 

 

Table 2: Existing Threats and functionality 
 

Let’s we discuss about the known malware detection performance. According to our study we have find the 

following facts  

 

 SEND_SMS RECEIVED_SMS BOTH 

Apps  1513 2230 828 

Percentage 3.03% 4.46% 1.65% 

Table 3: SMS command Utilization 

 

The above table shows SEND_SMS command eliminate 97.07% apps need not to be consider for further 

evaluation and RECEIVED_SMS command eliminate 96.54% application.  Combining both it is eliminate 98.35% . 

only remaining application has to forward the second step 

 

In the second step SEND_SMS command will follow some specific series but app will encode in some 

other series for example SEND_SMS series 1034567854, 1034578651, 1034554673, 1034533834, etc.. But 

malicious application will follow different series it will differ application to application.  

 

Next thing is unknown malware detection performance evaluation. First we will see the native code not present in 

the proper location 

 

 Application with Native 

code 

Native code in Asset 

Directory 

Native Code in RES 

directory  

Apps 2270 112 62 

Percentage 4.54% 0.22% 0.12% 

Table 4: Native Code Usage 
 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 12 

 

Essential commands used in the above malwares 

Malicious App Commands Count 

Bgserv INTERNET, RECEIVE SMS, 

SEND SMS 

 

553 

DroidDream 

 

CHANGE WIFI STATE 

 

1012 

DroidDreamLight 

 

INTERNET, READ PHONE 

STATE 

 

17517 

jSMSHider 

 

INSTALL PACKAGES 

 

311 

Zsone 

 

RECEIVE SMS, SEND SMS 

 

1016 

Table 5: Malwares & Permission 

 

The Number of infected application detected by our algorithm 

 

Malware google 

play 

mmoovv eoemarket gfan alcateclub Total Peculiarity 

Bgserv 0 0 0 0 2 2 2 

DroidDream 

 

0 5 3 6 0 14 12 

DroidDreamLight 

 

18 0 0 0 0 18 14 

jSMSHider 

 

0 3 0 4 4 11 10 

Zsone 

 

20 15 16 21 32 104 78 

Total 38 23 19 31 38 149 116 

Table 6: Infected application from known Threats 
 

Unknown Malware detected: 

 

 

Malware google 

play 

mmoovv eoemarket gfan alcateclub Total Peculiarity 

Plankton 

 

14 0 0 0 1 15 13 

DroidKungfu 

 

1 8 7 6 8 29 22 

Total 15 8 7 6 9 44 35 

Table 7: Infected application from Unknown Threats 
 

 

Total malware Detected:  

 

Malware google 

play 

mmoovv eoemarket gfan alcateclub Total Peculiarity 

Known 

 

38 23 19 31 38 149 116 

Unknown 

 

15 8 7 6 9 44 35 

Total 53 31 26 37 47 193 151 

Table 8: Total Infected application  



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 13 

 

 

 

IV. Conclusion  

 In this article we have discussed various methodology to detect the malicous application in the android 

market and some other third party market also. This research clearly discuss the malicious application behaviour and 

execution process and also it was classified into two major group namely known threats and unknown threats. We 

have discuss with various examples and given the exact out come of this research. In the result and analysis section 

describes the working procedure ,evaluated data, out come of the research and prediction. From that we can 

determined the effectiveness of the algorithm and procedure. It’s our belief , this research will be more useful for 

research scholar and research community for the next level of the advancement. 

V. References  

[1] NIST Special Publication 800-19 – Mobile Agent Security Wayne Jansen, Tom Karygiannis National Institute of  

Standards and Technology Computer Security Division Gaithersburg, MD 20899. 

[2] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS: Detecting Repackaged Smartphone Applications in 

Third-Party AndroidMarketplaces. In Proceedings of the 2nd ACMConference on Data and Application Security 

and Privacy, CODASPY’ 12, 2012. 

[3] Amazon Appstore. http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011. 

[4] Android.Bgserv Found on Fake Google Security 

Patch.http://www.symantec.com/connect/blogs/androidbgservfound-fake-google-security-patch. 

[5] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile Phone Application Certification. In 

Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS ’09, 2009. 

[6] Android.Pjapps Technical Details. http://www.symantec.com/security response/writeup.jsp?docid=2011-

022303-3344-99&tabid=2. 

[7] Bo Li and Eul Gyu Im: Smartphone, promising battlefield for hackers, Journal of Security Engineering , vol: 8 

no: 1, 2011, pages 89-110  

[8] Exploid Root Exploit. http://c-skills.blogspot.com/2010/07/exploid-works-on-droid-x.html. 

[9] Mmoovv. http://android.mmoovv.com/web/index.html. 

[10] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.Wetherall.These Aren’t the Droids You’re Looking For: 

Retrofitting Android to Protect Data from Imperious Applications. In Proceedings of the 18th ACM Conference on 

Computer and Communications Security, CCS ’11, 2011. 

[11] Rageagainstthecage Root Exploit. http://c-skills.blogspot.com/2010/08/droid2.html. 

[12] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A Crawler-based Study of Spyware on the Web. In 

Proceedings of the 13th Annual Symposium on Network and Distributed System Security, NDSS ’06, 2006. 

[13] Security Alert: DroidDream Malware Found in Official Android Market. 

http://blog.mylookout.com/2011/03/securityalert-malware-found-in-official-android-marketdroiddream/. 

[14] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J. Nieh.Cells: A Virtual Mobile Smartphone Architecture. In 

Proceedings of the 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, 2011. 

[15] Security Alert: HongTouTou, New Android Trojan, Found in China. 

http://blog.mylookout.com/2011/02/security-alert-hongtoutou-new-android-trojan-found-in-china/. 

[16] Security Alert: Zsone Trojan found in Android Market. http://blog.mylookout.com/2011/05/security-alert-

zsonetrojan-found-in-android-market/. 

[17] Zimperlich sources. http://c-skills.blogspot.com/2011/02/zimperlich-sources.html. 

[18] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-Application Communication in Android. In 

Proceedings of the 9th Annual Symposium on Network and Distributed System Security, MobiSys 2011, 2011. 

[19] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mock-Droid: Trading Privacy for Application Functionality 

on Smartphones. In Proceedings of the 12th International Workshop on Mobile Computing System and 

Applications, HotMobile ’11, 2011. 

[20] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:Behavior-Based Malware Detection System for 

Android. In Proceedings of the 1st Workshop on Securityand Privacy in Smartphones and Mobile Devices, 

CCSSPSM’11, 2011. 

[21] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra. Location Based Power Analysis to Detect Malicious Code in 

Smartphones. In Proceedings of the 1st Workshop on Security and Privacy in Smartphones and Mobile Devices, 

CCSSPSM’ 11, 2011. 



SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume1 Issue4 - June 2014 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                   Page 14 

 

[22] Alcatelclub. http://www.alcatelclub.com/. 

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks in iOS Applications. In 

Proceedings of the 18th Annual Symposium on Network and Distributed System Security, NDSS ’11, 2011. 

[24] Security Alert: Malware Found Targeting Custom ROMs (jSMSHider). 

http://blog.mylookout.com/2011/06/securityalert-malware-found-targeting-custom-roms-jsmshider/. 

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-Daniel, and A. N. Sheth. TaintDroid: An 

Information-Flow Tracking System for Realtime PrivacyMonitoring on Smartphones.In Proceedings of the 9th 

USENIX Symposium onOperating Systems Design and Implementation, USENIXOSDI ’10, 2010. 

[26] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral Detection  of Malware on Mobile Handsets. In Proceeding 

of the 6th International Conference on Mobile Systems, Applications, and Services, MobiSys ’08, 2008. 

[27] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of Android Application Security. In Proceedings 

of the 20th USENIX Security Symposium, USENIX Security’11, 2011. 

[28] Security Alert: zHash, A Binary that can Root Android Phones, Found in Chinese App Markets and Android 

Market. http://blog.mylookout.com/2011/03/security-alertzhash- a-binary-that-can-root-android-phones-found-

inchinese-app-markets-and-android-market/. 

[29] A. Fuchs, A. Chaudhuri, and J. Foster. SCanDroid: Automated Security Certification of Android Applications. 

http://www.cs.umd.edu/ avik/projects/scandroidascaa. 

[30] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions Demystied. In Proceedings of the 

18thACM Conference on Computer and Communications Security,CCS ’11, 2011. 

[31] L. Liu, G. Yan, X. Zhang, and S. Chen. VirusMeter: Preventing Your Cellphone from Spies. In Proceedings of 

the 12th International Symposium on Recent Advances in Intrusion Detection, RAID’09, 2009. 

[32] A. P. Felt, H. J.Wang, A. Moshchuk, S. Hanna, and E. Chin.Permission Re-Delegation: Attacks and Defenses. 

In Proceedingsof the 20th USENIX Security Symposium, USENIX Security ’11, 2011. 

[33] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection of Capability Leaks in Stock Android 

Smartphones. In Proceedings of the 19th Annual Symposium on Network and Distributed System Security, NDSS 

’12, 2012. 

[34] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.Wallach. QUIRE: Lightweight Provenance for Smart 

Phone Operating Systems. In Proceedings of the 20th USENIX Security Symposium, USENIX Security ’11, 2011. 

[35] H. Kim, J. Smith, and K. G. Shin. Detecting Energy-Greedy Anomalies and Mobile Malware Variants. In 

Proceeding of the 6th International Conference on Mobile Systems, Applications,and Services, MobiSys ’08, 2008. 

[36] M. Ongtang, S.McLaughlin,W. Enck, and P.McDaniel. Semantically Rich Application-Centric Security in 

Android. In Proceedings of the 2009 Annual Computer Security Applications Conference, ACSAC ’09, 2009. 

[37] Android.Basebridge Technical Details. http://www.symantec.com/security response/writeup.jsp?docid=2011-

060915-4938-99&tabid=2. 

[38] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pBMDS: A Behavior-based Malware Detection System for 

Cellphone Devices. In Proceedings of the 3rd ACM conference on Wireless Network Security, WiSec ’10, 2010. 

[39] Security Alert: Geinimi, Sophisticated New Android Trojan Found in Wild. 

http://blog.mylookout.com/2010/12/geinimitrojan/. 

[40] AdTOUCH. http://www.adtouchnetwork.com/adtouch/sdk/SDK.html. 

[41] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming Information-Stealing Smartphone Applications (on 

Android). In Proceeding of the 4th International Conference on Trust and Trustworthy Computing, TRUST ’11, 

2011. 

[42] Update: Security Alert: DroidDreamLight, New Malware from the Developers of DroidDream. 

http://blog.mylookout.com/2011/05/security-alert-droiddreamlight-new-malwarefrom-the-developers-of-

droiddream/. 

[43] S. Coorporation, “Symantec Internet Security Threat Report Volume XVI,” Whitepaper, vol. 16, Apr 2011. 

[44] Kasperksy Lab, “Popular Porn Sites Distribute a New Trojan Targeting Android Smartphones,” 2010. [Online]. 

Available: http://www.kaspersky.com/news?id=207576175 

[45] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “Survey of Mobile Malware in the Wild,” 2011. 

[Online]. Available: http://www.eecs.berkeley.edu/∼afelt/malware.html 

[46] McAfee Labs, “2011 Threats Predictions,” 2010. [Online]. Available: http://www.mcafee.com/ 

us/resources/reports/rp-threat-predictions-2011.pdf 


