FPGA Implementation of BCG Signal Filtering Scheme by using Weight Update Process

International Journal of VLSI & Signal Processing
© 2016 by SSRG - IJVSP Journal
Volume 3 Issue 3
Year of Publication : 2016
Authors : Ms.Manjula B.M and Dr.Chirag Sharma
pdf
How to Cite?

Ms.Manjula B.M and Dr.Chirag Sharma, "FPGA Implementation of BCG Signal Filtering Scheme by using Weight Update Process," SSRG International Journal of VLSI & Signal Processing, vol. 3,  no. 3, pp. 1-7, 2016. Crossref, https://doi.org/10.14445/23942584/IJVSP-V3I5P101

Abstract:

In this work, we propose an efficient architecture for BCG signal filtering using least means square adaptive filter. To achieve the less delay for adaption, less power consumption, we have used optimized pipelining based scheme across the combinational blocks. This scheme uses a new scheme to reduce the delay by updating the weights of the input sample. Updated weights and input samples are passed to the next stage of the filtering before arrival of the next sample. This scheme is implemented for , and filtering scheme using Xilinx ISE simulator performance of the model is evaluated in terms of power delay and frequency. Results shows the efficient performance of the architecture in terms of frequency, for 2-tap, 3-tap and 4-tap filtering scheme, operating frequency is achieved 528.513 MHz.

Keywords:

Results shows the efficient performance of the architecture in terms of frequency, for 2-tap, 3-tap and 4-tap filtering scheme, operating frequency is achieved 528.513 MHz.

References:

[1] W. Nakamura, K. Anami, T. Mori, O. Saitoh, A. Cichocki, and S. Amari, ―Removal of ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using independent component analysis, IEEE Trans. Biomed. Eng., vol. 53, no. 7, pp. 1294–1308, Jul. 2006.
[2] A. Hoffmann, L. J¨ager, K. Werhahn, M. Jaschke, S. Noachtar, and M. Reiser, ―Electroencephalography during functional echo-planar imaging: Detection of epileptic spikes using post-processing methods, Mag. Res. Med., vol. 44, no. 5, pp. 791–798, 2000.
[3] O. T. Inan , M. Etemadi , B. Widrow and G. Kovacs, "Adaptive cancellation of floor vibrations in standing BCG measurements using a seismic sensor as a noise reference", IEEE Trans. Biomed. Eng., vol. 57, no. 3, pp. 722-727, 2010
[4] G. Bonmassar, P. L. Purdon, I. P. J¨a¨askel¨ainen, K. Chiappa, V. Solo, E. N. Brown, and J. W. Belliveau, ―Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI, NeuroImage, vol. 16, no. 4, pp. 1127–1141, 2002.
[5] R. E. Wendt, R. Rokey, G. W. Vick, and D. L. Johnston, ―Electrocardiographic gating and monitoring inNMRimaging, Mag. Res. Imag., vol. 6, no. 1, pp. 89–95, 1988.
[6] J. Sijbers, J. V. Audekerke, M. Verhoye, A. V. der Linden, and D. V. Dyck, ―Reduction of ECG and gradient related artifacts in simultaneously recorded human EEG/MRI data, Mag. Res. Imag., vol. 18, no. 7, pp. 881– 886, 2000.
[7] R. I. Goldman, J. M. Stern, J. Engel, and M. S. Cohen, ―Acquiring simultaneous EEG and functional MRI, Clin. Neurophysiol., vol. 111, no. 11, pp. 1974–1980, 2000.
[8] M. Dyrholm, R. Goldman, P. Sajda, and T. Brown, ―Removal of BCG artifacts using a non-Kirchhoffian overcomplete representation, IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 200–204, Feb. 2009.
[9] X. Wan, K. Iwata, J. Riera, T. Ozaki, M. Kitamura, and R. Kawashima, ―Artifact reduction for EEG/fMRI recording: Nonlinear reduction of ballistocardiogram artifacts, Clin. Neurophysiol., vol. 117, no. 3, pp. 668– 680, 2006.
[10] K. H. Kim, H.W. Yoon, and H.W. Park, ―Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI, J. Neurosci. Methods, vol. 135, no. 1–2, pp. 193–203, 2004.
[11] D. Mantini, M. Perrucci, S. Cugini, A. Ferretti, G. Romani, and C. D. Gratta, ―Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis, NeuroImage, vol. 34, no. 2, pp. 598– 607, 2007.
[12] A. J. Bell and T. J. Sejnowski, ―An informationmaximization approach to blind separation and blind deconvolution, Neural Comput., vol. 7, no. 6, pp. 1129– 1159, 1995.
[13] A. Kosma, K. Nazarpour, and S. Sanei, ―Removal of ballistocardiogram artifact from electroencephalograms exploiting heart rate variability, in Proc. 16th Int. Conf. Digital Signal Process., Jul. 2009, pp. 1–4.
[14] G. Srivastava, S. Crottaz-Herbette, K. Lau, G. Glover, and V. Menon, ―ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner, NeuroImage, vol. 24, no. 1, pp. 50–60, 2005.
[15] J. K. A. Hyv¨arinen and E. Oja, Independent Component Analysis. New York: Wiley Interscience, 2001.
[16] A. Hyv¨arinen and E. Oja, ―A fast fixed-point algorithm for independent component analysis, Neur. Comput., vol. 9, pp. 1483–1492, 1997.
[17] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, ―A blind source separation technique using second-order statistics, IEEE Trans. Sig. Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.
[18] A. Hyv¨arinen, ―Complexity pursuit: Separating interesting components from time series, Neural Comput., vol. 13, no. 4, pp. 883–898, 2001.
[19] X. Li and X. Zhang, ―Sequential blind extraction adopting second-order statistics, IEEE Sig. Process. Lett., vol. 14, no. 1, pp. 58–61, Jan. 2007.
[20] S. Debener, K. J. Mullinger, R. K. Niazy, and R. W. Bowtell, ―Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength, Int. J. Psychophysiol., vol. 67, no. 3, pp. 189–199, 2008.
[21] O. T. Inan et al., "Ballistocardiography and Seismocardiography: A Review of Recent Advances," in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 4, pp. 1414-1427, July 2015.
[22] M. Dyrholm R. Goldman, P. Sajda and T. R. Brown, "Removal of BCG Artifacts Using a Non-Kirchhoffian Overcomplete Representation," in IEEE Transactions on Biomedical Engineering, vol. 56, no. 2, pp. 200-204, Feb. 2009.
[23] Mr. Chetan G. Thote,Mr.Abhay R. Kasetwar Adaptive Interference Canceller for ECG Signal Processing, SSRG International Journal of Medical Science (SSRG -IJMS)– volume1 issue1 August 2014
[24] P.S.Radhika, N.Porutchelvam Architecture Design for an Adaptive Equalizer using LMS 2Tap filters , SSRG International Journal of VLSI & Signal Processing (SSRGIJVSP)– olume2,Issue 1 Jan-Feb 2014.