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Abstract - The datasets were collected for the urban area of Salem, which is located in India. As part of the investigation, four 
different datasets were gathered. A machine learning process was applied to the satellite imagery, with seventy percent of the 

area designated as the training set data and the remaining thirty percent utilized as test data. Using the K-means Clustering 

method, the research primarily concentrated on evaluating the first stage of vegetation in Salem City. A visual representation 

of the results obtained can be found in pictures 1, 2, 3, and 4. The statistical analysis of the research region reveals that areas 

with limited vegetation are experiencing consistent annual growth, with an exceptionally substantial rise recorded between 

February 2019 and February 2024. 
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1. Introduction 
By exploiting location-based data obtained from 

Geographical Information Systems (GIS), spatial analytics 

examines the geographical properties of geospatial datasets. 

This is accomplished through the utilization of location data. 

Many of today’s human endeavours occur in the actual and 

virtual worlds.  

The research gap identified as a part of this study is that 

most of the research articles reviewed were focused on the 

supervised classification from the vector datasets that were 

analyzed using the machine learning approach, as in this 
study, the major focus is emphasized on the unsupervised 

classification of the raster imagery and found that it is a 

challenging task as there were only few studies exist till today 

in the aspects of handling Geospatial raster imagery.  

The changes have brought about a significant revolution 

in Geographic Information Science (GIScience) since the 

digital realm offers new perspectives on the functions of 

temporal and spatial elements, such as the challenges of losing 

one’s sense of place and the potential to do away with time 

constraints. The referred article explores the potential and 

threats at the nexus of cyberspace and physical space, focusing 
on data visualisation and analytics. Artificial intelligence, 

machine learning, and virtual reality could further improve 

these capabilities. To promote sustainability and address 

complex challenges associated with geospatial applications 

and other technological advancements in environmental and 
urban sciences, the method is proposed to integrate cyber and 

geographical data processing and analysis as a synergistic 

partnership (Chen et al., 2023).  

Dependability is essential for Landslide Susceptibility 

Mapping (LSM) to prevent and mitigate catastrophes (Wei et 

al., 2022). The author used machine-learning models to 

categorise unobserved fishing behaviours and provided set 

and trip-level descriptions (Suter et al., 2022). Researchers 

have employed numerous methodologies to examine the 

temporal and spatial distribution of Non-Polluting Petroleum 

(NPP) in the open ocean. Satellite data and the Vertically 

Generalized Production Model (VGPM) are examples.  

However, Estuaries and coastal waterways are often 

unsuitable for these algorithms (Xu et al., 2022). The data was 

used to create a leishmaniasis prediction map, build a model, 

and assess the outcomes using 70:30 ratios and the holdout 

approach, respectively (Shabanpour et al., 2022). A total of 

4345 agricultural subsoil samples and sixteen environmental 

parameters were used to create three machine learning models: 

http://www.internationaljournalssrg.org/
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Random Forest (RF), eXtreme Gradient Boosting (XGBoost), 

and Random Forest + Residuals Kriging (RFRK) (Zhang et 

al., 2022). Beyond the era of operational remote sensing and 

digital cartography, the authors showed how new approaches 

to quantitative analysis of long-term urbanization processes 

and landscape changes are made possible by integrating 
historical map series information with contemporary 

geospatial data (Uhl et al., 2022). The limited distribution of 

weather stations poses a challenge and obstacle, 

notwithstanding their capacity to deliver precise and 

temporally resolved surveillance of air temperature (Ta).  

Conversely, satellite data can furnish Land Surface 

Temperature (LST) measurements that are extraordinarily 

disseminated globally and exhibit a strong correlation with Ta; 

thus, they serve as an exceptional instrument for enhancing Ta 

estimation. A monthly average Ta dataset covering Taiwan 

from 2003 to 2020 with an accuracy of 1 km by using auxiliary 

and satellite-derived data. Three distinct Machine Learning 
(ML) approaches and seven datasets were used. The Land 

Surface Temperature (LST) derived from the MODIS was one 

of the twelve explanatory variables included in these datasets. 

The study aimed to identify the best dataset and method 

combination for Taiwan temperature (Ta) estimation (Tran 

and Liou, 2024).  

Recently, scientific investigations have benefited from 
the increasing accessibility of huge surveillance databases to 

increase our understanding of human movement patterns. This 

has been done to understand better how people move around. 

Meanwhile, the absence of standardization in data processing 

pipelines for the varied data-gathering methods restricts the 

transferability, comparability, and repeatability of findings 

and approaches in quantitative human mobility analysis. This 

work proposes Trackintel, an open-source Python toolkit for 

investigating human movement (Martin et al., 2023). SNCF 

Réseau must efficiently manage the vegetation on the network 

to ensure the consistency and security of train service and the 

condition of the railway infrastructure.  

To accomplish this, the administration of the French 

railway infrastructure must be aware of the diverse array of 

vegetation that grows adjacent to the network. A processing 

chain comprising satellite images with an exceptionally high 

spatial resolution has been constructed to compile a vegetation 

inventory. The vegetation inventory along the French railway 

network was industrialised by employing a machine learning 
methodology for supervised classification, streamlining the 

processing pipeline, and repurposing previously trained 

models.  

A significant temporal frequency was attained through 

this (Onody et al., 2023). Deterioration models are utilised 

whenever possible to assist in prioritising and maintaining 

bridges. Two broad classifications may be applied to these 

models: stochastic and deterministic. There is a possibility that 

both physical models and mechanical models produced by 

Artificial Intelligence (AI) could display stochastic or 

deterministic properties (Srikanth and Arockiasamy, 2020). It 

is possible to ascribe the extensive use of hyperspectral 

imaging in intelligence and surveillance applications to the 

abundant spectral content that it possesses (Yadav et al., 
2019).  

The development of a specialized programme known as 

“Artificial Intelligence for Digital Forest (AID-FOREST)” is 

required to implement this concept. By utilizing point clouds 

obtained through Mobile Terrestrial Laser Scanning (MTLS), 

the technology generates a diverse range of precise and 

practical dendrometric and forest stand attributes (López 

Serrano et al., 2022). The Multivariate Adaptive Regression 

Spline (MARS), a novel data-driven non-linear approach, is 

presented as a forecasting tool that successfully clarifies the 

geochemical complexity present in regolith (Majeed et al., 

2022).  

2. Data and Digital Image Processing 
The research may use either raster or vector data, 

depending on the immediately available data. The method will 

be modified acceptably. The nature of vector data, which 
consists of borders, locations, and lines, makes it far simpler 

to manipulate than raster data. On the other hand, raster data 

is measured in pixels per square inch, and resolution is an 

extremely important factor.  

Furthermore, a high level of experience in data formats is 

required, as the visual data utilised in geospatial research and 

analysis must be in the Tagged Image File format (TIF) to 

guarantee the most efficient analysis possible. The primary 

goal of digital image processing was to convert the provided 

raster picture into numerical data. This would allow for the 

semi-automated or fully automatic extraction of features and 

the detection of edges. The purpose of this method was to 

disentangle the borders of the particular areas of research 
interest. By utilising sophisticated algorithms, it can expedite 

the workflow and accomplish the processing of such data. The 

vast majority of programmers make use of it as a foundation 

for conducting grid-based or pixel-based analysis on specific 

datasets. 

3. Information Retrieval and Spatial Statistics 
Programming expertise in Python makes it possible for 

academics worldwide to acquire information using a series of 

Python modules that are freely accessible to the public. These 

modules include Principal Component Analysis (PCA), 

TfidfVectorizer, CountVectorizer, NearestNeighbors, and 

others. When attempting to discover clustered data, spatial 

pattern analysis is frequently employed. This is accomplished 

by analyzing groups of pixel values. Utilizing spatial 

interpolation allows for the determination of values that were 

previously ignored at the locations that have been provided. 
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4. Terrain Analysis in Python 
Paleoclimate scientists use spectrum analysis methods 

extensively to look into cyclical events that might have 

affected past climate fluctuations. Climate time series data has 

become more widely available, and advances in 

computational technology have made it easier to consolidate 

this methodology. However, visual representations of spectral 

analysis results have been slow to emerge. Using two-

dimensional colour graphs, time-frequency analysis can detect 

periodic signals that change over time by plotting spectral 

bands that might be seen in the image background.  

The paleoclimate literature contains numerous examples 

of these depictions, including the evolutionary Fast Fourier 
Transform (FFT) spectrogram, continuous wavelet analysis, 

and the recently introduced synchrosqueezing transform. Our 

methodology is based on a stack of spectral analysis findings 

from thousands of fixed interval time series. These time series 

were derived from a lengthier paleoclimate time series with 

irregular sampling. We assume that the behaviour of these 

time series is stationary and non-evolutive. The time series of 

interest is obtained from the LR04 Global Pliocene-

Pleistocene Benthic 18O stack and summer insolation data for 

the previous 5.3 million years at 65 N. For this, the Lomb-

Scargle periodogram technique is utilised. The visualisation is 
improved and made more transparent by integrating state-of-

the-art terrain analysis tools such as hillshading, slope, and 

colour mapping.  

To accomplish a seamless transition, Python code is also 

employed to combine the various images. A more thorough 

and exact interpretation of the cyclical patterns is made 

possible, among other things, by the analysis’s output-a 

graphic depiction that is both visually accurate and complete. 

In addition, the algorithm can hide pixels with a value below 

a given threshold and uses confidence levels determined from 

the spectral approach (Sánchez-Morales, Pardo-Igúzquiza, 

and Rodríguez-Tovar 2023). 

5. Overview of Artificial Intelligence and Spatial 

Analytics with Case Studies 
Weakly-supervised learning has recently been popular for 

classification tasks, where the true classifications are 

frequently murky or unreliable. Nevertheless, this learning 

environment has not yet been thoroughly studied for 

regression difficulties despite its prevalence in macroecology. 

It also creates a new computational paradigm for structurally 

incomplete and chaotic target labels. This type of setup could 

be necessary for multi-output regression work that requires all 

outputs to add up to one.  

The author suggests that an algorithmic approach can be 

used to improve predictions and reduce noise in the target 
labels. To put this assertion to the test, a case study from global 

vegetation modelling was studied. This modelling technique 

involves constructing a model that uses global remote sensing 

data to forecast probable changes in plant cover distribution as 

a result of different climates. Many imperfect target baselines 

are utilized to determine how well the suggested method 

performs.  

Based on the findings, the proposed partial imputation 
technique has the potential to reduce the number of errors that 

occur in the targets. In place of training with complete 

observations alone, it has been discovered that addressing 

structural incompleteness in the target labels improves the 

capacity to grasp global links between flora and climate. This 

contrasts training with full observations alone (Beigaitė, Read 

and Žliobaitė, 2022). Two approaches quickly rising to the top 

of environmental research and management are citizen science 

and Machine Learning (ML). Computer science and machine 

learning can potentially improve public engagement, which 

benefits other governance players. However, validity and 

other quality assurance considerations must be considered 
when using these technologies, especially in managerial 

situations.  

By demonstrating how machine learning can advance 

computer science by assuring compliance with California 

stormwater programme laws for quality assurance, this study 

investigates the prevalent problem of urban trash. This 

investigation aims to demonstrate how machine learning may 

enhance computer science. To examine the predictions that 

five machine learning models made regarding a multiclass 

“Litter Index” score, a crucial regulatory metric typically 

evaluated exclusively by qualified professionals and site-
specific, the use of quantitative data obtained from computing 

systems to train the models was studied.  

Regarding accuracy, precision, recall, and F-1 scores, 

XGBoost achieved the highest possible score of 0.98, proving 

that it achieved the most advantageous outcomes. The earlier 

persuasive findings demonstrate that machine learning can be 

efficiently integrated into computer science evaluations and 

enhanced quality assurance inside a controlled setting. To this 
day, computer science and machine learning continue to 

significantly contribute to implementing waste management 

strategies. These two domains can potentially discover 

significant synergies, which may affect other aspects of 

environmental management administration. In environmental 

research and management, two approaches quickly rising to 

the top are citizen science and Machine Learning (ML). Public 

engagement, local governments, and other players in 

governance can reap the benefits of AI and computer science.  

Considering validity and quality assurance concerns is 

necessary when applying these innovations to specific 

management situations. This study employs the pervasive 

problem of urban refuse to illustrate how ML could assist CS 

via quality assurance within the regulatory framework of 

California’s stormwater programme. The authors evaluated 
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the predictions of five ML models regarding a qualitative, 

multiclass, site-specific “Litter Index” score using quantitative 

data obtained from CS. Generally evaluated exclusively by 

professionals, this metric is critical for regulatory purposes. 

With scores of 0.98 for F-1, recall, accuracy, and precision, 

XGBoost demonstrated superior performance. These 
encouraging results indicate that ML can potentially improve 

the dependability of CS evaluations and regulatory quality 

assurance. It is discovered that the integration of ML and CS 

can yield significant synergies that lead to innovative 

applications in various domains of environmental 

management.  

This extends the existing contributions of each domain to 

the field of waste management (Yang et al., 2023). Since 

accurate crop predictions are critical to fostering social 

cohesion, guaranteeing food security, and attaining long-term 

sustainability, they are of utmost importance to farmers, 

researchers, governments, etc. In the past, data collection and 
analysis methods for yield estimation were typically costly, 

time-consuming, site-specific, and filled with many mistakes 

and uncertainties. This reviewed article presents a novel 

machine-learning approach that integrates topographical and 

environmental data with high-resolution satellite imagery to 

predict the variability of wheat production on a farm level.  

The approach is intended to enhance the accuracy of 

wheat production forecasts (Singh Boori et al., 2023). When 

landscapes are classified, it is much simpler to consider 

planning for the analysis. Current unsupervised clustering 

algorithms for landscape classification rely on categorical 
input data for pattern quantification and consider only a small 

selection of pattern metrics. This is despite landscape patterns 

being significant differentiators between different types of 

landscapes.  

Using a unique unsupervised deep learning technique 

called Deep Convolutional Embedded Clustering (DCEC), 

created a landscape typology for Switzerland to utilise 

continuous spatial data, including remote sensing photos, to 

its fullest potential. DCEC divides the input images into 

separate clusters while encoding lower-dimensional 

representations of the images in a hidden layer. 

Topographical, ecological, demographic, and visual modules 
generated from the satellite photography were also subjected 

to DCEC implementation. DCEC successfully separated 45 

different landscape types from the endless stream of input 

data. In conclusion, DCEC shows promise as a fresh approach 

to landscape and land-system study (van Strien and Grêt-

Regamey, 2022). 

6. Materials and Methods 
The management of geographic data is an essential 

component for a wide variety of sectors and applications, 

including urban development and transportation planning, to 

name a few. When handling geographic data, the first things 

businesses should be concerned about are the data’s accuracy, 

consistency, and interoperability. By adopting open data 

initiatives, one can enhance the dissemination of information 

and develop a unified comprehension of spatial patterns and 

trends. In essence, using analytical data provided by an adept 
geographic data system empowers decision-makers to 

optimize the allocation of resources and formulate strategic 

plans.  

Table 1. Data set information collected and utilized for the study 

Data 

Description 

Acquisition 

Date 
Data ID 

Machine 

Learning Tool 

LandSAT8 

Data 
17.01.2019 

LC08_L1T

P_143052_

20190117_

2012 

Python with 

Scikit-Learn 

LandSAT8 

Data 
06.03.2019 

LC08_L1T

P_143052_

20190306_

20200829 

LandSAT8 

Data 
22.03.2019 

LC08_L1T

P_143052_

20190322_

20 

LandSAT9 

Data 
08.02.2024 

LC09_L1T
P_143052_

20240208_

20240208 

In particular, this study uses four datasets, explicitly 

focusing on Landsat8 Band 5 data spanning January to 

December of 2019 and 2024. Three datasets originating from 

2019 are present, along with one dataset originating from 

2024.  The datasets were collected for the Salem study area in 

India. The research uses four datasets in total, applying 

machine learning to satellite imagery by reserving 70% of the 

region for training and 30% for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Vegetation analysis using Machine Learning for the landsat 

imagery acquired on 17.01.2019 
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Fig. 2 Vegetation analysis using Machine Learning for the landsat 

imagery acquired on 06.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Vegetation analysis using Machine Learning for the landsat 

imagery acquired on 22.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Vegetation analysis using Machine Learning for the landsat 

imagery acquired on 08.02.2024 

Figures 1, 2 and 3 make it clear that there is a decrease in 

the overall growth of vegetation in 2019. On the other hand, 

beginning in the year 2024, the imagery demonstrates a 

significant increase in the category of vegetation that includes 

both medium and low-level vegetation, such as grass, shrubs, 

mixed vegetation cover, and taller shrubs. Based on the 
study’s findings that compared the data collected at various 

times throughout the same year (2019), it was determined that 

the forest fire on February 25th, 2019, caused the vegetation 

in the forest areas of the Yercuad region to be low.  

According to the statistical plots given in Figures 5-12, it 

is abundantly obvious that the cluster 3 symbolises the scant 

vegetation. This is the case despite the fact that the vegetation 

cover has remained low since 2019, and it has improved based 

on the statistical plot for 2024. On the other hand, cluster 2 is 

characterised by almost the same kind of vegetation, which is 

known as mixed vegetation. Additionally, some shrubs are of 

a greater height and are spread out across the area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 5 Vegetation type of cluster - 2 representing moderate vegetation 

density on 17.01.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6 Vegetation type of cluster - 3 representing high vegetation density 

on 17.01.2019 
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Fig. 7 Vegetation type of cluster - 1 representing low vegetation density 

on 17.01.2019 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 8 Vegetation type of cluster - 2 representing moderate vegetation 

density on 06.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 9 Vegetation type of cluster - 3 representing high vegetation density 

on 06.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 10 Vegetation type of cluster - 1 representing low vegetation density 

on 06.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 Vegetation type of cluster - 2 representing moderate vegetation 

density on 08.02.2024 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 12 Vegetation type of cluster - 3 representing high vegetation 

density on 08.02.2024 
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Fig. 13 Vegetation type of cluster - 1 representing low vegetation density 

on 08.02.2024 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
Fig. 14 Vegetation type of cluster - 2 representing moderate vegetation 

density on 22.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 15 Vegetation type of cluster - 3 representing high vegetation 

density on 22.03.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 16 Vegetation type of cluster - 1 representing low vegetation density 

on 22.03.2019 

7. The Sample Python Code was Used to Do the 

Unsupervised Classification for the Landsat8 

Band 5 for the Vegetation Analysis 
Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 

32 bit (Intel)] on win32 

Type “copyright”, “credits”, or “license()” for more 

information. 

import rasterio 

from sklearn.model_selection import train_test_split 

import numpy as np 

from sklearn.cluster import KMeans 

import matplotlib.pyplot as plt 

# The file path is set to the satellite imagery location 
raster_file = 

r’C:\Users\ANAND\Desktop\IOT\Sybmolised.tif’ 

# The file is opened to read the file for further processing, 

with rasterio.open(raster_file) as src: 

# Read the raster data 

raster_data = src.read() 

# Reshape the raster data to a 2D array (rows x columns, 

bands) 

reshaped_data = raster_data.reshape((raster_data.shape[0], -

1)).T 

# Separating the imagery for training and testing sets 
train_data1, test_data1 = train_test_split(reshaped_data, 

test_size=0.3, random_state=42) 

# Reshape the training and testing data back to the original 

shape 

train_data1 = train_data.T.reshape((raster_data.shape[0], 

src.height, src.width)) 

test_data1 = test_data.T.reshape((raster_data.shape[0], 

src.height, src.width)) 

# Write the training and testing datasets to new raster files as 

per the data 

with rasterio.open(‘training_data1.tif’, ‘w’, **src.profile) as 

dst_train: 
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dst_train.write(train_data1) 

with rasterio.open(‘testing_data1.tif’, ‘w’, **src.profile) as 

dst_test: 

dst_test.write(test_data1) 

# Location to the Path of the Landsat 8 image data 

image_path = 
r’C:\Users\ANAND\Desktop\IOT\Sybmolised.tif’ 

# Landsat 8 image data for band 5 is loaded for the analysis 

with rasterio.open(image_path) as src: 

band5 = src.read(1) 

# The data band 5 is reshaped to 1D array 

X = band5.flatten().reshape(-1, 1) 

# Normalizing the feature vectors 

X_normalized = (X - X.min()) / (X.max() - X.min()) 

# K-means clustering is performed, 

k = 3  # Number of clusters 

kmeans = KMeans(n_clusters=k, random_state=42) 

kmeans.fit(X_normalized) 
# cluster labels is reshaped to the original image data 

cluster_labels = kmeans.labels_.reshape(band5.shape) 

# The classified image is visualised as a final plot 

plt.figure(figsize=(10, 8)) 

plt.imshow(cluster_labels, cmap=‘viridis’) 

plt.colorbar(label=‘Cluster’) 

plt.title(‘Unsupervised Classification Result (Vegetation 

Analysis)’) 

plt.xlabel(‘Column’) 

plt.ylabel(‘Row’) 

plt.show() 

The procedure follows: The programme performs 

unsupervised classification on satellite image data using K-

means clustering to identify various land cover categories, 

specifically vegetation. The software begins by importing the 

following libraries. The matplotlib.pyplot library is used for 

visualisation and imported as plt. The KMeans class from the 

sklearn.cluster module is used for K-means clustering. The 

train_test_split function is taken from the sklearn-

model_selection module. The numpy library is used for 

numerical computations and imported as np. The coordinates 

of the satellite imagery file (Sybmolised.tif) are provided. 

Using the rasterio.open() function, the application retrieves 
and stores the data from the raster file in the raster_data 

variable. In order to generate the “reshaped_data” two-

dimensional array, the raster data is transformed.  

Each column in this array corresponds to a band in the 

image, while each row represents a pixel. Using the 

train_test_split function, the reshaped data is divided into 

distinct training and testing sets. Seventy percent of the data 

consists of train_data1, while thirty percent comprises 

test_data1. Resizing the training and testing data to match the 
original dimensions of the raster data, which consists of 

multiple bands, src. width columns, and src. height rows, is 

achieved. Create the training and testing datasets: The training 

and testing datasets are written to new raster files 

(training_data1.tif and testing_data1.tif) using rasterio.open(). 

To load the Landsat 8 image data, the file path for both the 

satellite imagery file and the Landsat 8 image data file is 

specified.  

The band 5 variable is populated with the extracted data 

from the Landsat 8 image initiated by the software. During 
data preprocessing, the band 5 data undergoes compression, 

converting it into a column vector (X) from a one-dimensional 

array. By ensuring that all values lie within the range of [0, 1], 

min-max scaling normalises the feature vectors. The K-means 

Clustering: The normalised feature vectors (X_normalized) 

are subjected to the K-means clustering procedure with a 

predetermined number of clusters (k = 3). Once acquired, the 

cluster labels are adjusted to correspond with the dimensions 

of the original image data (band5.shape). Visualisation: The 

matplotlib.pyplot.imshow() function displays the image based 

on the cluster labels representing the classified image. The 

‘Viridis’ colormap is utilised to depict discrete clusters, while 
an accompanying color bar is a critical reference. To enhance 

clarity, the plot is enhanced by including a title, x-label, and 

y-label. Plotting can be accomplished by utilising the plt. 

show() function. 

8. The Statistical Plots are Generated for the 

Vegetation Analysis, and Three Plots are Made 

Based on the Three Clusters, 0, 1, and 2, and a 

Sample Code is Given below 
Three statistical plots are taken for the vegetation 

analysis, and three plots are made based on the three clusters, 

0, 1, and 2. 

import rasterio 

from sklearn.model_selection import train_test_split 

import numpy as np 

from sklearn.cluster import KMeans 
import matplotlib.pyplot as plt 

# New path set to the raster imagery 

raster_file = 

r’C:\Users\ANAND\Desktop\IOT\Sybmolised.tif’ 

# The raster file is opened for reading the file 

with rasterio.open(raster_file) as src: 

    # Reading the raster data 

    raster_data = src.read() 

    # Reshaping the raster data to a 2D array 

    reshaped_data = raster_data.reshape((raster_data.shape[0], 

-1)).T 
# Separating the raster data into training and testing sets 

train_data, test_data = train_test_split(reshaped_data, 

test_size=0.3, random_state=42) 

# Reshaping the training and testing data back to the original 

shape 

train_data = train_data.T.reshape((raster_data.shape[0], 

src.height, src.width)) 

test_data = test_data.T.reshape((raster_data.shape[0], 
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src.height, src.width)) 

# Writing the training and testing datasets to new raster files 

with rasterio.open(‘training_data.tif’, ‘w’, **src.profile) as 

dst_train: 

    dst_train.write(train_data) 

with rasterio.open(‘testing_data.tif’, ‘w’, **src.profile) as 
dst_test: 

    dst_test.write(test_data) 

# New path is set to the Landsat 8 image file 

image_path = 

r’C:\Users\ANAND\Desktop\IOT\Sybmolised.tif’ 

# Load Landsat 8 image data for band 5 

with rasterio.open(image_path) as src: 

    band5 = src.read(1) 

# Reshape the band 5 data to 1D array 

X = band5.flatten().reshape(-1, 1) 

# Normalize the feature vectors 

X_normalized = (X - X.min()) / (X.max() - X.min()) 
# Perform K-means clustering 

k = 3  # Number of clusters 

kmeans = KMeans(n_clusters=k, random_state=42) 

kmeans.fit(X_normalized) 

 Reshaping the cluster labels to the original image shape 

cluster_labels = kmeans.labels_.reshape(band5.shape) 

# Plot the classified image with different colours for each 

cluster 

plt.figure(figsize=(10, 8)) 

plt.imshow(cluster_labels, cmap=‘viridis’, 

interpolation=‘none’, aspect=‘auto’) 
plt.colorbar(ticks=np.arrange(k), label=‘Cluster’) 

plt.title(‘Unsupervised Classification Result (Vegetation 

Analysis)’) 

plt.xlabel(‘Column’) 

plt.ylabel(‘Row’) 

# Calculating and plotting the statistical distribution for each 

cluster 

for i in range(k): 

    plt.figure(figsize=(8, 6)) 

    plt.hist(X[kmeans.labels_ == i], bins=50, color=‘skyblue’, 

alpha=0.7) 

    plt.title(f’Cluster {i+1} - Pixel Value Distribution’) 
    plt.xlabel(‘Pixel Value’) 

    plt.ylabel(‘Frequency’) 

    plt.grid(True) 

    plt.show() 

The above code is explained in detail as follows: The 

given code provides a thorough procedure for performing 

vegetation analysis using satellite imageries. The first step is 

to load essential libraries such as rasterio, scikit-learn, numpy, 

and matplotlib. The processing of raster data is, therefore, the 

primary emphasis of the code, beginning with loading a raster 

image file called “Sybmolised.tif” through rasterio. The data 
is reorganised into a two-dimensional array to make 

subsequent analysis easier. In the following step, the data is 

divided into training and testing sets using the train_test_split 

function available in scikit-learn. This function is crucial for 

both the training and assessment of the model. The training 

and testing data are then written to new raster files after being 

reshaped back to their initial shape at the beginning of the 

process.  

The next step is to load a different raster image file called 
“Sybmolised.tif” to read band 5 data. After that, the data is 

normalised and flattened into a one-dimensional array. The 

normalised data is then put through a K-means clustering 

process with k equal to three groups to categorise different 

types of vegetation based on their spectral properties. After the 

generated cluster labels are moulded to the shape of the initial 

image, a classed image is plotted, with each cluster 

represented by a distinct colour according to the classification. 

Furthermore, the algorithm goes beyond simple 

visualisation by calculating and presenting each cluster’s 

statistical distribution of pixel values using histograms. This 

provides insight into the properties of the vegetation captured 
by each cluster. This approach incorporates data preparation, 

machine learning, and visualisation techniques to gain useful 

insights from satellite imagery for vegetation analysis. 

9. Geospatial Solutions that are Based on the 

Cloud Computing 
The management and analysis of geographic data can be 

strengthened using cloud-based geospatial solutions, which 

take advantage of the cloud’s scale and adaptability. The 

provision of computing resources on demand is made possible 

by these technologies, which makes it possible for users to 

tailor their resource utilization to their specific requirements. 

Security and scalability aspects included in these apps are 

provided to enhance the efficiency and dependability of cloud-
based geospatial applications. As a consequence of this, 

businesses that are dependent on data analysis and geographic 

information systems increasingly regard these solutions to be 

indispensable. 

10. Combining Artificial Intelligence with 

Geographical Information Systems 
It is feasible to improve the capabilities of both systems 

by merging Geographical Information System (GIS) and 

Artificial Intelligence (AI). This is accomplished by 

maximizing the benefits that each system has to offer. AI will 

be able to provide more advanced geographic analysis and 

predictive modelling opportunities due to the intelligent 

automation of GIS.  

Assigning resources, responding to catastrophes and 

building cities are just a few examples of real-world 

applications that might considerably benefit from merging 

GIS and AI. In recent years, the coronavirus disease outbreak 

(COVID-19) has emerged as one of the most complex 

international problems.  
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This previous literature study uses a multilayer 

perceptron artificial neural network topology to evaluate the 

relative significance of putative explanatory variables (n = 75) 

in relation to COVID-19 prevalence and mortality, given the 

absence of global studies on the spatiotemporal modelling of 

the virus. Ten variable importance analysis methodologies 
were used to determine the relative importance of the 

explanatory factors.  

The primary conclusions showed that a small handful of 

variables remained the most critical variables during all time. 

Population density and unemployment were two of the most 

important characteristics with the highest relevance ratings to 

COVID-19 prevalence. Health-related factors, such as the 

availability of hospital beds and the incidence of diabetes, are 

significant predictors of COVID-19-related mortality. The 

results of this study may offer insightful information to public 

health policymakers that will help them track the spread of 

disease and make more informed decisions (Kianfar et al., 
2022). 

11. Geographical Analytics: The Latest 

Developments  

Lakes characterized by low water mobility are especially 

vulnerable to Bisphenol A (BPA) accumulation, which 

threatens aquatic life in numerous human-polluted 

watersheds. While prior research has examined the 

detrimental impacts of BPA concentrations on marine 

organisms, the absence of comprehensive data prevents us 

from assessing the ecological peril in watersheds. 164 BPA 

data points were collected from Taihu Lake to determine the 

spatiotemporal distribution and associated hazards of BPA. 

Following that, machine learning models were constructed 
utilising Support Vector Machines (SVM), Random Forests 

(RF), and Least Square Regression (LSR). Following this, 

monthly watershed projection maps for temperate lakes were 

generated.  

By virtue of its enhanced robustness against chaotic data, 

the RF model exhibits superior performance compared to the 

other two methodologies. The RF model demonstrated 

respectable predictive capability on the modelling dataset, as 

evidenced by its RMS errors of 17,499 and 39,645 on the 

training set and 0.607 and 0.927, respectively, on the 

validation set. The cartographic representations indicated that 
regions prone to human intervention contained the most 

elevated concentrations of BPA pollution.  

Moreover, an increase in precipitation could potentially 

facilitate the migration of BPA into aquatic ecosystems. In 

addition, 42 BPA data points were obtained from Dianchi 

Lake and projected by the model. Despite a decline in the 

accuracy of the model’s predictions, the findings indicated 

that most predicted data points were within a tenth of the 

measured data. Upon assessing the ecological hazards in both 

lakes, our attention can be directed towards the most perilous 

regions.  

By conducting a thorough examination of the 

spatiotemporal distribution of an innovative trace pollutant 

that disrupts endocrine systems in aquatic habitats, the 

previous research proposed a novel approach to evaluate the 
ecological hazard posed by bisphenol A impartially (Wang et 

al., 2024). Agricultural nutrient runoff significantly 

contributes to river and coastal water system degradation. If 

issues with water quality can be better understood by water 

quality modelling, then suitable measures to improve water 

quality can be implemented. Nutrient model calibration based 

on complicated processes necessitates a plethora of input 

parameters and incurs high computing costs. 

In comparison to process-based models, ML approaches 

have lately demonstrated comparable levels of accuracy and 

may even surpass them when describing non-linear 

interactions. From 2016 to 2020, observations from 242 
catchments in Estonia were utilized to train Random Forest 

(RF) models that can estimate yearly N and P concentrations. 

The data set included 469 TN observations and 470 TP 

observations. Soil, terrain, land cover, and climatic variables 

were among the eighty-two considered. The amount of 

dependent features in the models was reduced using a feature 

selection technique.  

Using the SHAP method, the authors could extract the 

most valuable predictors. The TN model’s R2 value of 0.83 

and the TP model’s R2 value of 0.52 show they are just as 

practical as the previous process-based models utilized in the 
Baltic region. But our models make getting this kind of data 

more accessible, so they’re more useful in domains where 

process-based approaches can’t work due to insufficient input 

data. Thus, the models facilitate decision-making assistance 

for regional water management plans by precisely estimating 

national nutrient losses and representing the spatial diversity 

of nutrient discharge (Virro et al., 2022). 

12. Analytics for Prediction within the 

Framework of Geospatial Data with Case 

Studies 
Socioeconomic evaluation requires a deep understanding 

of population distribution. Dasymetric mapping, frequently 

used, estimates populations at fine-grid scales using primitive 

administrative models. Due to the diverse data distribution, 

the training area and estimation domain are different sizes.  

Artificial neural networks effectively attenuated scale 
heterogeneity by detecting gridded components such as digital 

terrain models, road networks, building footprints, and land 

use as dependent variables. This was achieved by considering 

population density as an independent variable. Hong Kong 

studies from 2016 to 2021 showed many benefits of the 
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suggested methodology. The root mean square error was 

reduced by 19.4% compared to existing approaches.  Our 

technique worked better for larger census units, while the pre-

trained model accurately projected population at other times. 

Land usage was helpful in population estimation. When land 

use data was replaced with random values, measurement 
accuracy plummeted by almost 89.0%.  

Some attributes lost 2.7% to 13.9% of their measurement 

accuracy. Traditional cities had the highest population 

decreases between 2016 and 2021, while newly developed 

regions had the most significant population rise. Median 

population density decreased while average population 

density increased as the study progressed, indicating 

population concentration (Lu and Weng, 2024). 

An attempt is made to forecast the Vertical Total Electron 

Content (VTEC) in central Anatolia, Turkey, utilizing 

artificial neural networks. The VTEC dataset was supplied 

with 19 permanent GPS stations by the International Global 

Navigation Satellite System (IGS) and the Turkish National 

Permanent GPS Network Active (TUSAGA-Aktif). The 

coordinates for the research region are as follows: 36.0 
degrees north, 42.0 degrees north, 32.6 degrees east, and 37.5 

degrees east.  

A perceptron Neural Network (NN) that consists of seven 

input neurons and an extra layer is created to account for 

oscillations in the ionosphere’s Voltage-Transmission-

Averaged Current (VTEC). Within the neural network model 

framework, the TUSAGA-Aktif GPS stations ANMU and 

KURU are employed. The neural network model’s hidden 

layer, comprised of 41 neurons, demonstrated the lowest Root 

Mean Square Error (RMSE) across 50 simulation 

experiments.  

The superior performance of NN VTEC is apparent when 
considering the correlation coefficients, absolute and relative 

errors, hourly and quarterly GPS VTEC forecasts, and other 

relevant factors. This article also shows that NN VTEC is 

higher than the global IRI 2016. When comparing the Total 

Electron Content (TEC) forecast with the geographical 

contribution of the station-based GPS network, it is clear that 

the KURU station aligns more strongly with the proposed 

Neural Network (NN) model than the ANMU station (Özkan, 

2023). 

Surface-wave tomography can image Earth’s crustal 

velocity structure and upper mantle. This study proposed 

utilizing CNN-based Deep Learning (DL) SfNet to generate 

the vS model from group velocity dispersion curves and the 

Rayleigh wave phase. Visible surface-wave tomography can 

assess Earth’s crust and upper mantle velocity structure. This 

article shows how to build the vS model using SfNet, a CNN-

based Deep Learning (DL) technique, group velocity 

dispersion curves, and Rayleigh wave phase. Visible surface-

wave tomography can show Earth’s upper mantle and crust 

velocity structure. The Rayleigh wave phase and group 

velocity dispersion curves illustrate that SfNet, a deep learning 

method based on Convolutional Neural Networks (CNNs), 

can generate the vS model. After applying the approaches to a 

dataset on the Chinese mainland,  ChinaVs-DL1.0, a reference 
velocity model with fewer dispersion anomalies, was created. 

The DL technique can invert vS models with enormous 

surface-wave dispersion data due to its accuracy and 

efficiency (Wang, Song and Li, 2023). 

13. Results and Discussion 
For the study, resources were gathered from four different 

datasets related to the municipal region of Salem, India. It was 

determined that using these datasets, in conjunction with 

applying machine learning techniques to satellite imageries, 

was useful. Following data partitioning into a training set 

comprising 70% of the total and a test set comprising 30% of 

the data, the machine learning model was trained using the 

training data. Examining the early stage of vegetation in Salem 

City using K-means clustering was the primary objective of 

the research.  

The study’s findings, represented in Images 1 through 4, 

indicated that arid regions saw annual expansion, with a 

particularly noticeable increase between February 2019 and 

February 2024. Beginning in 2024, vegetation cover increased 

considerably, coinciding with the drop in vegetation 

development 2019.  

Many different kinds of vegetation were present in this 

development, including grass, bushes, mixed vegetation, and 

higher shrubbery. This growth occurred at both medium and 

low elevations. The amount of vegetation in the Yercuad 

forest regions was reduced due to a forest fire that broke out 

on February 25, 2019, according to an examination of data 

from 2019. The statistical graphs in Figures 5–12 demonstrate 

that Cluster 3 is related to the regions with the least vegetation 

cover. This was discovered through the analysis of the data. It 
has been observed that the level of vegetation cover has been 

consistently low since 2019, although there is evidence to 

suggest that it may begin to increase by 2024. Cluster 2, on the 

other hand, was characterised by a diverse assortment of plant 

life, with similar plant species dispersed over the landscape 

among the higher-elevation shrubs. 

14. Conclusion 
In conclusion, the research that was conducted in Salem, 

India, utilised techniques from the field of machine learning 

as well as satellite data analysis to analyse the vegetation 

dynamics that were present in the metropolitan area. During 

the research, K-means clustering was utilised to identify 

patterns and temporal changes in the distribution of 

vegetation. Based on the findings, it was seen that the number 
of bare areas rose on an annual basis, with a significant rise 

occurring between February 2019 and February 2024.  
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Beginning in 2024, there was a significant increase in the 

coverage of various plant types, including mixed grassland 

and shrubby vegetation. This was the case even though 

vegetable growth had slowed down in 2019. In addition, the 

analysis highlighted the effects of a forest fire that broke out 

in February 2019 on particular regions of the Yercuad forest, 
including the reduction in vegetation. In addition, the 

statistical analysis revealed that each cluster was defined by 

its distinct vegetation pattern, with Cluster 3 representing 

places that were distinguished by the least amount of 

vegetation coverage.  

In conclusion, these findings contribute to the extensive 

body of information that is already accessible on the dynamics 

of Salem City’s vegetation and highlight the relevance of 

ongoing management and monitoring programmes to 

maintain and improve the area’s vegetative resources. 
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