
SSRG International Journal of Electronics and Communication Engineering Volume 10 Issue 3, 15-22, March 2023

ISSN: 2348-8549 / https://doi.org/10.14445/23488549/IJECE-V10I3P103 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Research and Development of Omnidirectional Mobile

Robot Tracking Control Based on Artificial Intelligence

Chau Thanh Phuong

Faculty of Electronic Engineering Technology, University of Economics - Technology for Industries, Viet Nam.

Corresponding Author : ctphuong@uneti.edu.vn

Received: 04 February 2023 Revised: 07 March 2023 Accepted: 17 March 2023 Published: 28 March 2023

Abstract - This paper presents the research and construction of a motion tracing control system for omnidirectional mobile

robots based on reinforcement learning techniques in automatic control. The process of controlling a mobile robot in a flat

environment with definite and unknown obstacles, taking into account the nonlinear factor of interference. Research and

application of programming tools are operating systems for mobile robots (Robot Operating System - ROS). From updated

information on maps, operating environment, robot control position, and obstacle identification (SLAM) to calculate the

movement trajectory of a three-wheeled omnidirectional mobile robot. The positioning system calculates the orbital tracking

for the robot based on the Q-learning algorithm. The results of simulation research in the Gazebo environment and running

tests on real Turtlebot mobile robots have shown the practical effectiveness of the research problem of tracking motion tracking

and intelligent navigation for mobile robots.

Keywords - Three-wheeled mobile robot, Self-propelled robot, Automatic system, ROS, Artificial intelligence, Q-learning

algorithm, Reinforcement learning.

1. Introduction
Mobile robots have recently been used in mission-

critical tasks and various activities. Due to the intelligent

capabilities we humans have equipped them with: from new

control algorithms, more optimized drive systems, control

motors (servo motors), etc., making the operation of mobile

robots more and more accurate [1]. These robots can be used

as a stand-alone base or with rigid arms with multiple degrees

of freedom and flexibility based on the nature of the action

execution task [1-4]. In actual environmental conditions, the

robot always has uncertain non-snow factors, which is

undeniable; in this case, that factor is considered a nonlinear

factor in control; needs to be overcome [5, 6]. Therefore, the

research and development; of modeling the robot under ideal

conditions, when environmental factors are not considered:

noise factors, factors, wheel slip, obstacle course, etc., results

include insufficient precision and large errors. Different from

traditional wheeled robots (standard wheels), mobile robots

using omnidirectional wheels have additional advantages,

such as the ability to change position and orientation flexibly

because they have the ability to move forward and rotate

simultaneously or independently. Usually, the wheel is

arranged along the axis of the robot. However, for the

omnidirectional mobile robot, the wheels are arranged on the

sides, and one wheel guides the robot to take advantage of the

degrees of freedom of the omnidirectional wheel. In the

motion control technique of mobile robots, the problem of

orbital tracking and fast impact is the most necessary

requirement. Therefore, using a common controller such as

PID control, fuzzy control, PD control, linear control, PI

control, LQR control, etc., is unsuitable for the system.

Mobile robot systems always have these nonlinear factors

that cannot be overcome [4, 5, 6]. Therefore, this is a very

important issue that needs to be considered even when using

intelligent control algorithms, such as artificial intelligence,

sustainable adaptive optimal control, etc., for robots [7-9].

The study of the process of controlling mobile robots in

many different fields and tasks has clearly demonstrated the

importance of the robot transmission system model. From a

number of studies that have been done to model the control

system of mobile robots, as shown in document [7], some

models of transmission systems for industrial robots in

general and automatic robot models have been studied

operating mobile robots in particular. Document [8], the

study on programming control, navigation, tracing trajectory

in flat space, and problem space for self-propelled robots and

mobile robots does not consider nonlinear variable factors

such as those above. However, in these works, they only stop

at the design and simulation of the system without clearly

assessing the nonlinear factor of the drive system for the

robot. In general, the problem of controlling mobile robots

for industry, transportation, medicine, etc., is being studied

by domestic and international scientists [8-11].

In the fields of control engineering and information

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

16

technology, reinforcement learning is a subfield of machine

learning that studies how an agent in an environment should

choose which actions to take in order to maximize its

effectiveness and maximize a certain reward in the long run.

Reinforcement learning algorithms try to find a strategy that

maps states of the environment to the actions the agent should

take in those states [4, 5]. The working environment for robot

control is often represented as a finite state Markop decision

process (MDP), and reinforcement learning algorithms for

this context are heavily involved in engineering techniques

and dynamic planning. The transition probabilities and gain

probabilities in the MDP are usually random but static during

the robot control problem [12-17].

Based on the above analysis, the paper builds an orbital

tracking controller for a three-wheeled omnidirectional

mobile robot based on Q-learning reinforcement learning

techniques combined with the MPC model applied in

automatic control. In which the controller is designed when

affected by some nonlinear components of the model and

unknown perturbation factors, simulation results and egg

testing using Matlab Simulink software and other supporting

tools.

2. The Dynamic Model for Omnidirectional

Mobile Robot Robot
The study and analysis of robot dynamics is a complex

mechanical system with many masses and possibly many

degrees of freedom. Each degree of freedom performs one

motion and is controlled by an electric drive. Furthermore, a

robot is a control object containing many interrelated motors.

To build a control system model for the robot, we consider a

mobile robot, as shown in Figure 1, with three wheels, two

wheels on both sides: left rudder, right rudder and front wheel

(multi-wheel) direction) can make the mobile robot balance

and not cause any movement restrictions for the mobile robot

[3, 4], [6], [9, 10, 18].

Right rudder

ω

Left rudder

2r



yv
d

W

b

cx
cy



Multi-

directional

wheel

Y

X0



latf

lonf

Fig. 1 The kinetic model for controlling a mobile robot

In which figure 1 depicts a wheeled mobile robot with

two active wheels xc and yc is the robot's position in the plane,

ϑ is the robot orientation, φr is the angle of the right wheel, φl

is the angle of the wheeled vehicle on the left, b is half the

width of the robot, d is the distance from the center of gravity

to the wheel axle, and r is the wheel radius. For this robot, the

free motion of the movable wheel is not considered in the

kinematic model, as shown below.

Then we call the general coordinator of the system 𝑞 =
[𝑥𝑐 𝑦𝑐𝜗 𝜙𝑟 𝜙𝑙]

𝑇, the dynamic equation of the transmission

system, when taking into account the wheel slip phenomenon

is set up as follows [1], [4]:

𝑀(𝑞)𝑞̈ + 𝑐(𝑞, 𝑞̇) = 𝑁𝜏(𝑡) − 𝐴𝑇(𝑞)𝜆 + 𝐹(𝑞, 𝑞̇) (1)

Where, 5 5[()]M q 
is the inertial matrix, 5 1[(,)]c q q  is the

Coriolis and centrifugal force matrix, 2 1[]  is the input

vector of the system, 5 5[]N  is the matrix of the input

coefficients of the system, λ is the factor vector Lagrange and

5 1[(,)]F q q  are traction vectors.

The constraints of the system in the process of tracking

the robot's motion trajectory, which, when considering the

nonlinear factor, are written in the following form:

𝑥̇𝑐 𝑐𝑜𝑠(𝜗) + 𝑦̇𝑐 𝑠𝑖𝑛(𝜗) + 𝑏𝜗̇ = 𝑟𝜙̇𝑟 − 𝜁𝑟̇

𝑥̇𝑐 𝑐𝑜𝑠(𝜗) + 𝑦̇𝑐 𝑠𝑖𝑛(𝜗) − 𝑏𝜗̇ = 𝑟𝜙̇𝑙 − 𝜁𝑙̇

−𝑥̇𝑐 𝑠𝑖𝑛(𝜗) + 𝑦̇𝑐 𝑐𝑜𝑠(𝜗) − 𝑑𝜗̇ = 𝛾̇ (2)

where r
is the longitudinal slip of the right wheel, l is

the longitudinal slip of the left wheel, and 

is the lateral slip.

𝐴(𝑞) = [

𝑐𝑜𝑠(𝜗) 𝑠𝑖𝑛(𝜗) 𝑏 −𝑟 0
𝑐𝑜𝑠(𝜗) 𝑠𝑖𝑛(𝜗) −𝑏 0 −𝑟

− 𝑠𝑖𝑛(𝜗) 𝑐𝑜𝑠(𝜗) −𝑑 0 0
] (3)

 𝑆(𝑞) =

[

𝑟(𝑏 𝑐𝑜𝑠(𝜗)−𝑑 𝑠𝑖𝑛(𝜗))

2𝑏

𝑟(𝑏 𝑐𝑜𝑠(𝜗)+𝑑 𝑠𝑖𝑛(𝜗))

2𝑏
𝑟(𝑑 𝑐𝑜𝑠(𝜗)+𝑏 𝑠𝑖𝑛(𝜗))

2𝑏

𝑟(−𝑑 𝑐𝑜𝑠(𝜗)+𝑏 𝑠𝑖𝑛(𝜗))

2𝑏
1

2𝑏
−

1

2𝑏

1 0
0 1]

 (4)

The constraint matrix of the system 𝐴(𝑞) is inferred

based on 𝐴(𝑞)𝑞̇ = 0 the system constraints when taking into

account the nonlinear component, and the empty space matrix

of the constraints is obtained in the form shown in

equations (3) and (4).

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

17

The kinematics of a mobile robot in nonlinear tracing

control is written in the following form:

𝑥̇𝑐 = 𝛺 𝑐𝑜𝑠(𝜗) − 𝛥 𝑠𝑖𝑛(𝜗)

𝑦̇𝑐 = 𝛺 𝑠𝑖𝑛(𝜗) + 𝛥 𝑐𝑜𝑠(𝜗)

𝜗̇ = 𝜔 (5)

In there:

𝜔 =
𝑟𝜙̇𝑟 − 𝑟𝜙̇𝑙

2𝑏
−

𝑟𝜁𝑟̇ − 𝑟𝜁𝑙̇

2𝑏
;𝛺 =

𝑟𝜙̇𝑟 + 𝑟𝜙̇𝑙

2
−

𝑟𝜁𝑟̇ + 𝑟𝜁𝑙̇

2
;

𝛥 = 𝑑(
𝑟𝜙̇𝑟−𝑟𝜙̇𝑙

2𝑏
−

𝑟𝜁̇𝑟−𝑟𝜁̇𝑙

2𝑏
) + 𝛾̇ (6)

Here we rewrite (5) in matrix form, then

𝑞̇

 becomes

equation (7) as follows:

𝑞̇ = 𝐻(𝑞)(𝑅 − 𝜁̇) + 𝜓 (7)

In there: 𝑅 = [𝑣 𝜔]𝑇 (8)

 𝜓 = [−𝛾̇ 𝑠𝑖𝑛(𝜗) 𝛾̇ 𝑐𝑜𝑠(𝜗) 0 𝜁𝑟̇ 𝜁𝑙̇]
𝑇 (9)

𝜁̇ = [
𝑟(𝜁𝑟+𝜁𝑙)

2

𝑟(𝜁𝑟+𝜁𝑙)

2𝑏
]
𝑇

 (10)

𝐻(𝑞) =

[

𝑐𝑜𝑠(𝜗) −𝑑 𝑠𝑖𝑛(𝜗)
𝑠𝑖𝑛(𝜗) 𝑑 𝑐𝑜𝑠(𝜗)

0 0
1

𝑟

𝑏

𝑟
1

𝑟
−

𝑏

𝑟]

 (11)

Taking the derivative of (7) and substituting it into

expression (1), we get (12) as follows:

𝑀(𝑞)[𝐻̇(𝑞)(𝑅 − 𝜁̇) + 𝐻(𝑞)(𝑅̇ − 𝜁̈) + 𝜓̇] +

+𝑐(𝑞, 𝑞̇) = 𝑁𝜏 − 𝐴𝑇(𝑞)𝜆
 (12)

 From the equation 𝑆𝑇(𝑞)𝐴𝑇(𝑞) = 0, we work with

multiplying 𝑆𝑇(𝑞) into both sides of equation (12), and we

ignore the term 𝐴𝑇(𝑞)𝜆 , and then we get (13) as follows:

𝑅̇ = (𝑆𝑇(𝑞)𝑀(𝑞)𝐻(𝑞))(−1)

× [−𝑆𝑇(𝑞)𝑀(𝑞)𝐻̇(𝑞)(𝑅 − 𝜁̇) +

+𝑆𝑇(𝑞)𝑁𝜏 − 𝑆𝑇(𝑞)𝑀(𝑞)𝜓̇ − 𝑆𝑇𝑐(𝑞, 𝑞̇)] + 𝜁 ̈ (13)

Considering 𝑣 = [
𝜙̇𝑟

𝜙̇𝑙

], since the state space equation of

the system is written in terms of 𝑥̇ = [
𝑞̇
𝑣̇
], it needs to be

calculated and transformed, then we get equation (14) as

follows:

𝑅(𝑡) = [
𝑣
𝜔

] = 𝑃𝑣, 𝑃 =
𝑟

2
[
1 1
1

𝑏
−

1

𝑏

] (14)

𝑥̇ = [
𝑞̇
𝑣̇
]

= [
𝐻(𝑞)(𝑅 − 𝜁̇̇) + 𝜓(𝑞, 𝜂̇)

(𝑆𝑇𝑀𝐻𝑃)(−1)[−𝑆𝑇𝑀𝐻̇(𝑅 − 𝜁̇) − 𝑆𝑇𝑀𝜓̇ − 𝑆𝑇𝑐] + 𝑃(−1)𝜁̈
]

+

+[
0

(𝑆𝑇𝑀𝐻𝑃)(−1)𝑆𝑇𝑁𝜏
] (15)

Now we consider the problem of longitudinal and lateral

traction forces related to the robot drive system as follows [7,

20, 27]: the drag force is a function of the slip ratio (sr), and

the slip angle (sa) is determined under forms 𝑠𝑟 =

𝜁̇/𝑚𝑎𝑥(|𝑟𝜙̇|, |𝑟𝜙̇ − 𝜁̇|) and 𝑠𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝛾̇/|𝑟𝜙̇ − 𝜁̇|). By

considering that both components (sr) and (sa) are small in

this paper, then the longitudinal and transverse tensile forces

are estimated linearly in the form of equations (16) and (17),

where 𝛿 > 0 and 𝜍 < 0, according to [15], [27].

𝑓𝑑𝑜𝑐 = 𝛿
𝜁̇

|𝑟𝜙̇−𝜁̇|
 (16)

𝑓𝑛𝑔𝑎𝑛𝑔 = 𝜍
𝛾̇

|𝑟𝜙̇−𝜁̇|
 (17)

In expressions (16), (17) and in figure 1, fdoc is flon; fngang

is flat, which clearly shows the nonlinear factor in the process

considering the kinematics and dynamics of the robot. The

process of automatic movement and navigation or avoiding

obstacles in the robot's path always follows the motion

trajectory and generates forces at the wheels; these forces are

usually generated when encountering obstacles, undulating

roads, etc.

3. Research and Application of Q - Learning

Algorithms for Robot
3.1. The Q - Learning Algorithms

The reinforcement learning method with a Q-learning

algorithm is a branch of machine learning developed to serve

intelligent computation for the field of science and

technology in general and in terms of cybernetics in

particular; Robot control techniques are being researched and

applied to develop algorithms. This is a model to study

reinforcement learning from offline to online control, which

is the enhanced dynamic programming method IDP

(Incremental Dynamic Programming), [3, 4], [22]. To design

optimal learning rules for precise traction control; Online

approximation of the nonlinear control problem.

With Q-learning in particular and reinforcement learning

in general, everything is divided into “state - st” and “action

– at” with time represented by a series of time steps (t = 0, 1,

2, 3 etc.). For a continuous working environment such as

controlling a self-propelled robot, the first thing to do is to

quantize the state space to update 𝑆 = {𝑆1, 𝑆2, . . . 𝑆𝑚} and

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

18

quantize the action space to set 𝐴 = {𝑎1, 𝑎2, . . . 𝑎𝑛}, resulting

in a The school generates rewards 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎) ∈ 𝑅, to

understand better we have the learning environment

interaction diagram as shown in Figure 2.

Fig. 2 The diagram of interaction with the learning environment of an

omnidirectional mobile robot

Then, the way Q-learning works is to compute and store

the value of Q on a particular action and state, Q(s, a). All

information and experience accumulated from previous

calculations will be coded into an evaluation table.

We calculate the total reward obtained after time t as Rt

returned as follows:

𝑅𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 (18)

where, 0 ≤ 𝛾 < 1 is the deduction factor for the rewards. The

smaller the value of γ, the more focused the reward is while

performing the action. Then, the action value function

(function Q) is defined as follows:

𝑄𝑛(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (19)

where, 𝐸𝜋{...} represents the expectation under the

stochastic policy in the action space. The function 𝑄𝑛(𝑠, 𝑎)

represents the total expected discount reward when we

choose action a under state s and then choose action under

policy π. The function Q is described as a recursive formula

as follows:

𝑄𝜋(𝑠, 𝑎) =
∑ 𝑃𝑟(𝑠′|𝑠, 𝑎)𝑠′∈𝑆 𝑟. ((𝑠, 𝑎, 𝑠′) +𝛾 ∑ 𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′)𝑎′∈𝐴)

 (20)

where S and A are the state and action set, respectively.

From this formula, we can determine that the function Q

according to the optimal policy π∗, that is, the optimal Q

function, satisfies the following equation, which is called the

Bellman optimal equation:

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′{𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′} (21)

In the Q-learning algorithm, by iteratively updating the

function Q used in expression (21) based on experimental

data, the function Q randomly converges to
*
(,)Q s a . Thus,

the optimal policy can be defined as an ambitious policy of

*
*: (,)

a
Q a argmax s a= . In practice, the robot's learning

agent on the move must explore the action environment

because the Q function is unreliable and needs to choose an

action to be used broadly as a stochastic policy; it is then

allowed to choose a probabilistic action for an input state s.

More specifically, policy μ will engage in choosing an action

that maximizes the function Q in state s with probability a of

1- μ, μ [0, 1] and allows a random action to be selected with

the remaining probability. When states and actions are

discrete and distinct, a simple way to represent the function

Q is to use as a table of values for all pairs of states, acting as

follows:

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼. ((𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠′, 𝑎′))

(22)

In which 0 1  is the learning rate and the larger the

learning rate, the faster the new data will be updated. With

this algorithm, the table Q converges to the optimal function

Q under the convergence condition of the random

approximation. On the other hand, since this is based on

random approximation, an appropriate amount of data is

required for all (s, a) pairs. In the tabular Q - Learning

method, when the number of elements in the state or action

space is very large or the state or action space is continuous,

we usually represent the function Q as a parameter function

Q (s, a; θ) using the parameters θ and then update the

parameters according to the gradient expression as follows:

 𝜃 ← 𝜃 + 𝛼(𝑡𝑎𝑟𝑔𝑒𝑡𝑄 − 𝑄(𝑠, 𝑎; 𝜃))𝛻𝜃𝑄(𝑠, 𝑎; 𝜃) (23)

Here, “targetQ” is the target value based on the optimal

Bellman equation (17), and it is calculated as follows:

𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑟(𝑠, 𝑎; 𝑠′) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃) (24)

Function Q is updated in its consistent sequence. The Q-

learning algorithm is a method based on value functions and

from the value function to give an optimal policy, in which

the approximate value of the function Q is regressed to the

target value, which depends on it is him. This means the true

value changes automatically when the learning rule is

updated. Therefore, when a non-linear function, such as a

neural network, is used to approximate p, this learning

becomes unstable due to kinetic changes in the target and in

the worst case, the Q function will diverge [2, 6, 8], [23-26].

3.2. The Intelligent Tracking Control for Mobile Robots

using the Q-learning Algorithm

In the Q-learning algorithm, the values of the navigation

control positions for the robot are usually updated by the

instantaneous differential method, using the difference

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

19

between an iteration to estimate and calculate the Q-value

function according to the parameters expression (22) above.

When encountering navigational problems on the way, let the

robot move with many different states and move actions (left,

right), avoid obstacles (moving obstacles, fixed obstacles)),

etc. Then we choose α = 0.1; γ = 0.95; At this time, the robot

moves in many different situations; at this time, the process

of updating table Q is performed.

At the beginning of algorithm training, the subject will

go once or twice to the right. However, as soon as the action

to the left is selected, this action will continue to be selected

on subsequent moves because it always gets rewarded for

performing this left action. In this process, the robot always

follows the correct motion trajectory according to the

dynamics process. The goal of the model during navigation

for the robot is to keep it within an allowable limit, that is, ±5

degrees. At first, the robot model, Q matrix, and policy π will

be initialized—some important points to navigation during

migration, like non-finite states. In the limited range, there

can be hundreds and thousands of elevation angles, and

thousands of columns are impossible when updating the Q -

learning algorithm. So, we have sorted the state values into

20 state angles from -10 degrees to 10 degrees. For the action

value, we have chosen ten different velocities, and they are [-

250, - 100, - 50, - 25, - 10, 10, 25, 50, 100, 250] ms-1. The Q

matrix has 20 columns, each representing a state and ten rows

representing every action. Initially, Q values are assumed to

be 0, and some random action is assigned to every state in

policy π. We trained for 1550 episodes, each with 1000

repetitions. At the beginning of each training session, the

simulation is refreshed. Whenever the robot's state exceeds

the limit, it is penalized by assigning a reward of -100. Table

Q is updated at each step according to expression (22). From

there, we have the Q-learning algorithm to set up the

automatic trajectory tracking and navigation process for the

omnidirectional mobile robot, which is done as follows:

Algorithm: Q-learning algorithm.

1: Set all Q(s, a) randomly;

2: Repeat (for each episode):

3: Set s as one of the initial states;

4: Repeat (for each step of an episode)

5: Select action a according to state s using policy derived

from Q;

6: Take action a, observe r, next state st+1

() () ()1 1,

1

, , () ,t t t t t a t t t
s s

t

Q s a Q s a r max Q s a Q s a + +


+

= + + −  

7: Reward ← 1;

8: Update Q;

9: Update π sate ← sate new

10: Until s is terminal.

The Q-learning algorithm implements action agents for

intelligent automatic navigation for the self-propelled robot

to perform trajectories to avoid dynamic obstacles as well as

static obstacles during the robot's movement. Time to

calculate the shortest trajectory for the robot to move to the

destination with the fastest path. One of the most important

breakthroughs in reinforcement learning was the

development of Q-learning by Watkins in the literature [15].

The Q-learning algorithm performs the update process on the

action values. The best action of the following state is used

as the return expectation during the update. The Q-learning

update process is a step taken according to the proposed

algorithm. Then the identification and estimation of this

parameter is the process of optimizing the value function,

then from here, the value at this time will give the optimal

policy; at this time, the accumulated values are considered as

values correct update; Here (we do the recognition when the

speed is moving, the process of tracking the robot's trajectory

to perform intelligent navigation when there are nonlinear

factors appear) so that the robot moves without encountering

any problems an obstacle on the way.

4. Results and Discussion
From the research, calculation, and setting up of the

controller for the control system for the three-wheeled

omnidirectional mobile robot, combined with Q-learning

reinforcement learning algorithm. The author has conducted

research with real robots; combined with building simulation

models on Matlab Simulink 2021. The process of training and

implementing the algorithm runs with the ROS operating

system with the computer and the internet running on the

processor, high configuration Dell computer: Core i7 intel,

graphics card GTX 2022 TI Ram 8GB, with the following

parameters: The self-propelled robot used is the Turtlebot3

Buger robot with a maximum linear speed of 0.22 m/s and a

maximum angular velocity of 2.84 rad/s (162.72 degrees/s).

To implement intelligent navigation and traction for a

three-wheeled mobile robot. The author implemented based

on the Q-learning algorithm studied and proposed above to

conduct some simulations with the following results:

Episode

R
ew

ar
d

0
0

300 600 900 1200 1500 1800

50

100

200

150

250

Fig. 3 The average reward results of the learning process

From the simulation results, we can see that the process

of traction control and dynamic obstacle overcoming can be

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

20

randomly generated in the environment. The Q-learning

algorithm performs the task. The author has deployed 1550

learning batches; in the simulation, the first 1000 episodes are

for accessing a set of waypoints with a total optimal orbital

length of 125m. The last 1050 sets are for a set of waypoints

projection with a total path length of 155m. Figure 3 depicts

the total reward obtained after 1550 learning sessions.

Although there are many fluctuations due to the changing

complexity of the environment and the efficiency of current

navigation algorithms, the recognition process also tends to

show an increasing total reward of total reward over the

period study has yielded high results. Detailed parameters

used to train the robot: state size is 26, contains 24 values of

Laser distance sensor (LDS), distance to target and angle to

target. The size of the training sample pool we choose here is

64, and the optimizer is Adam [4, 8], with a learning rate of

0.0003, amortization factor γ = 0.999.

In the tests, the authors perform several tasks in the

sequence of the mobile robot's operations, such as the

Ubuntu-powered Raspberry Pi 3 Model B +. The Raspberry

Pi 3 Model B + embedded computer directly processes

information from a range of sensors, including the Astra

smart camera. The smart sensor then transmits commands to

a smart microcontroller.

3600 LiDAR for SLAM and Navigtion

Scalable structure

Single Board Computer

(Raspberry Pi)

OpenCR (ARM Cortex-M7)

DYNAMIXEL x 2 for Wheels

Sprocket Wheels for Tire and Caterpillar

Li-Po Battery 11,1V 1.800mAh

Fig. 4 Realistic image of TurtleBot omnidirectional mobile robot

Fig. 5 The structure Diagram of sensor 3D LiDAR terrain detection

To record images from the environment as well as

measure the distance between mobile robots and unknown

obstacles, mobile robots are equipped with cameras and smart

sensors, in which the smart camera can do 360 degrees of

laser scanning and ranges within 15m to generate map data to

be used for the mapping process.

Fig. 6 Build visual maps and robot models in the Gazebo environment

Figure 6 shows a map built on Gazebo; the generated map

has rectangular obstacles, a circular cylinder, and a mobile

robot (green) with a depth camera and other objects. The

obstacles are randomly placed in the Gazebo, as shown in

figure 6. The controlled and guided robot automatically

moves around the environment to obtain the necessary data

that will be used to build the map. The light brown line is the

laser scan signal generated from the RPLidar, and the robot's

current position is updated using geometric measurements.

Robot

Robot

Fig. 7 The interface to execute the Q-learning algorithm and SLAM on ROS with the area around the robot containing obstacle information

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

21

Robot

Fig. 8 The tracking control results for the omnidirectional mobile robot Turtlebot on a real map with fixed obstacles in Rviz

The results show that: Figure 7 shows the movement

process when the robot performs Q-learning and SLAM

algorithms on ROS, with the area around the robot containing

full information about obstacles. Figure 8 shows the

trajectories and automatic navigation results for the

omnidirectional mobile robot Turtlebot in a real map with

fixed obstacles in the Rviz environment.

Compared with other algorithms, the Q-learning deep

learning algorithm has more advantages; in value accuracy

and control strategy. Hierarchical reinforcement learning

technology is used to achieve more accurate mapping and

computational probabilities from states to actions and meet

mobile robots' mobility needs. The data has also

demonstrated that the deep reinforcement learning-based

robot path planning and tracking method is an optimal

method for mobile robots for efficient end-to-end travel. The

above results illustrate the feasibility of the proposed method

in planning the path and the control process of a three-

wheeled omnidirectional mobile robot.

5. Conclusion
This paper has presented the study of kinematics and

traction and motion control for the omnidirectional mobile

robot system both in simulation and experiment with the

omnidirectional mobile robot Turtlebot. The robot hardware

is also optimally built to facilitate the integration of ROS-

based peripherals. Furthermore, the robot's activity can be

tracked and monitored through the visualization tool. The

positioning system has calculated the robot's global and local

trajectory based on applying the Q-learning algorithm.

Research results show that: simulation and testing studies on

the ROS operating system and Rviz environment show the

robot's ability to automatically navigate to the desired target

locations and avoid static obstacles and obstacles motion at

the scene. Migrate in simple to complex environments safely

and efficiently without any crashes. These new researches are

completely applicable: self-propelled robots, industrial

robots, medical robots, and robots in public transport,

especially in tracking motion control and automatic

navigation of mobile robots in the field factories in Vietnam

as well as in the world.

Acknowledgments
This study was supported by the Faculty of Electronic

Engineering Technology, University of Economics -

Technology for Industries, Viet Nam;

http://www.uneti.edu.vn.

References
[1] Andrea Bacciotti, Stability and Control of Linear Systems, Publishing Ltd; Springer Nature Switzerland AG, 2019. [Publisher link]

[2] N. T. Tuan, Base Deep Learning, The Legrand Orange Book,Version 2, Last Update, 2020.

[3] Mohit Sewak, Deep Reinforcement Learning, Frontiers of Artificial Intelligence Springer Nature, 2019. [Publisher link]

[4] V. T. T. Nga, O. X. Loc, and T. H. Nam, Enhanced Learning in Automatic Control with Matlab Simulink, Hanoi Polytechnic Publishing

House, 2020.

[5] N. T. Luy, Textbook of Machine Learning and Intelligent Control Application, Publishing House of Industrial University of Ho Chi Minh

City, Ho Chi Minh, 2019.

[6] Xiaogang Ruan et al., “Mobile Robot Navigation Based on Deep Reinforcement Learning,” Chinese Control and Decision Conference,

pp. 6174-6178, 2019. [CrossRef] [Google Scholar] [Publiser link]

https://link.springer.com/book/10.1007/978-3-030-02405-5
https://link.springer.com/book/10.1007/978-981-13-8285-7
https://doi.org/10.1109/CCDC.2019.8832393
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Robot+Navigation+Based+on+Deep+Reinforcement+Learning&btnG=
https://ieeexplore.ieee.org/document/8832393

Chau Thanh Phuong / IJECE, 10(3), 15-22, 2023

22

[7] Rajesh Kannan Megalingam et al., “ROS Based Autonomous Indoor Navigation Simulation Using SLAM Algorithm”, International

Journal of Pure and Applied Mathematics, vol. 118, no. 7, pp. 199-205, 2018. [Google Scholar] [Publisher link]

[8] Charu C. Aggarwal, Neural Networks and Deep Learning, Springer International Publishing AG, Part of Springer Nature, 2018. [Publisher

link]

[9] Thanh Tung Pham, Minh Thanh, and Chi-Ngon Nguyen, “Omnidirectional Mobile Robot Trajectory Tracking Control with Diversity of

Inputs,” International Journal of Mechanical Engineering and Robotics Research, vol. 10, no. 11, 2021. [CrossRef] [Google Scholar]

[Publisher link]

[10] Hiep Do Quang et al., “Design a Nonlinear MPC Controller for Autonomous Mobile Robot Navigation System Based on ROS,”

International Journal of Mechanical Engineering and Robotics Research, vol. 11, no. 6, pp. 379 - 388, 2022. [Google Scholar] [Publisher

link]

[11] Hiep Do Quang et al., “Mapping and Navigation With Four-Wheeled Omnidirectional Mobile Robot Based on Robot Operating System,”

2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), pp. 54–59, 2019. [CrossRef] [Google

Scholar] [Publisher link]

[12] Yuankai Wu et al., “Deep Reinforcement Learning of Energy Management with Continuous Control Strategy and Traffic Information for

a Series-Parallel Plug-in Hybrid Electric Bus,” Applied Energy, vol. 247, pp. 454-466, 2019. [CrossRef] [Google Scholar] [Publisher link]

[13] Shixiang Gu et al., “Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates,” 2017 IEEE

International Conference on Robotics and Automation, pp. 3389–3396, 2017. [CrossRef] [Google Scholar] [Publisher link]

[14] L. T. T. Nga, and L. H. Lan, “Controlling the Swarm Robot to Avoid Obstacles and Search for Targets,” 2015.

[15] Evan Prianto et al., “Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor–Critic with Hindsight

Experience Replay,” Sensors, vol. 20, no. 20, pp. 1-22, 2020. [CrossRef] [Google Scholar] [Publisher link]

[16] H. T. K. Duyen et al., “Controlling Self-Propelled Robot Object Tracking by Exponential Sliding Control Algorithm,” Research Journal

Military Science and Technology, ACME Special Issue, 2017.

[17] Van Nguyen Thi Thanh et al., “Autonomous Navigation for Omnidirectional Robot Based on Deep Reinforcement Learning”,

International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 8, pp. 1134-1139, 2020. 10.18178/Ijmerr.9.8.1134-

1139. [CrossRef] [Google Scholar] [Publisher link]

[18] D. N. Thang, P. T. Dung, and N. Q. Hung, “Research on Obstacle Avoidance Problems for Self-Propelled Robots on the Basis of Enhanced

Deep Learning DQN,” Journal of Military Science and Technology Research, Special Issue of FEE National Conference , p. 48-56, 2020.

[19] Wen-Kung Tseng, and Hou-Yu Chen, "The Study of Tracking Control for Autonomous Vehicle," SSRG International Journal of

Mechanical Engineering, vol. 7, no. 11, pp. 57-62, 2020. [CrossRef] [Publisher link]

[20] Avi Singh et al., “End-to-End Robotic Rein-Forcement Learning without Reward Engineering,” University of California, Berkeley 2019.

[CrossRef] [Google Scholar] [Publisher link]

[21] Yuda Irawan, Hendry Fonda, and Yulisman, Mardeni, "Garbage Collecting Ship Robot Using Arduino Uno Microcontroller Based on

Android Smartphone," International Journal of Engineering Trends and Technology, vol. 69, no. 6, pp. 25-30, 2021. [CrossRef] [Google

Scholar] [Publisher link]

[22] Rajesh Kannan Megalingam, Jeeba M Varghese, and Aarsha Anil S, “Distance Estimation and Direction Finding Using I2C Protocol for

an Auto-Navigation Platform,” International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), pp.

1-4, 2016. [CrossRef] [Google Scholar] [Publisher link]

[23] Sandeep B.S., and Supriya P, “Analysis of Fuzzy Rules for Robot Path Planning,” Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 309-314, 2016. [CrossRef] [Google Scholar] [Publisher link]

[24] Giada Giorgi, Guglielmo Frigo, and Claudio Narduzzi, “Dead Reckoning in Structured Environments for Human Indoor Navigation,”

IEEE Sensors Journal, vol. 17, no. 23, pp. 7794-7802, 2017. [CrossRef] [Google Scholar] [Publisher link]

[25] [Online]. Available: http://wiki.ros.org/ros/tutorials, 2-2023

[26] [Online]. Available: https://emanual.robotis.com/

[27] Justin Fu et al., “Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition,” 32nd Conference

on Neural Information Processing Systems, 2018. [CrossRef] [Google Scholar] [Publisher link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ROS+Based+Autonomous+Indoor+Navigation+Simulation+Using+SLAM+Algorithm&btnG=https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Robot+Navigation+Based+on+Deep+Reinforcement+Learning&btnG=
https://acadpubl.eu/jsi/2018-118-7-9/articles/7/27.pdf
https://link.springer.com/book/10.1007/978-3-319-94463-0
https://link.springer.com/book/10.1007/978-3-319-94463-0
https://doi.org/10.18178/ijmerr.10.11.639-644
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Omnidirectional+Mobile+Robot+Trajectory+Tracking+Control+with+Diversity+of+Inputs&btnG=
http://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=200&id=1670
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+a+Nonlinear+MPC+Controller+for+Autonomous+Mobile+Robot+Navigation+System+Based+on+ROS&btnG=
http://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=211&id=1746
http://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=211&id=1746
https://doi.org/10.1109/MoRSE48060.2019.8998714
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mapping+and+Navigation+With+Four-Wheeled+Omnidirectional+Mobile+Robot+Based+on+Robot+Operating+System&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mapping+and+Navigation+With+Four-Wheeled+Omnidirectional+Mobile+Robot+Based+on+Robot+Operating+System&btnG=
https://ieeexplore.ieee.org/document/8998714
https://doi.org/10.1016/j.apenergy.2019.04.021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+of+Energy+Management+with+Continuous+Control+Strategy+and+Tra%EF%AC%83c+Information+for+a+Series-Parallel+Plug-in+Hybrid+Electric+Bus&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S030626191930652X
https://doi.org/10.1109/ICRA.2017.7989385
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+Robotic+Manipulation+With+Asynchronous+O%EF%AC%80-Policy+Updates&btnG
https://dl.acm.org/doi/abs/10.1109/icra.2017.7989385
https://doi.org/10.3390/s20205911
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Path+Planning+for+Multi-Arm+Manipulators+Using+Deep+Reinforcement+Learning%3A+Soft+Actor%E2%80%93Critic+with+Hindsight+Experience+Replay&btnG=
https://www.mdpi.com/1424-8220/20/20/5911
https://doi.org/10.18178/Ijmerr.9.8.1134-1139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Navigation+for+Omnidirectional+Robot+Based+on+Deep+Reinforcement+Learning&btnG=
http://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=181&id=1463
https://doi.org/10.14445/23488360/IJME-V7I11P108
http://www.internationaljournalssrg.org/IJME/paper-details?Id=351
https://doi.org/10.48550/arXiv.1904.07854
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=End-to-End+Robotic+Rein-Forcement+Learning+without+Reward+Engineering&btnG=
https://arxiv.org/abs/1904.07854
https://doi.org/10.14445/22315381/IJETT-V69I6P204
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Garbage+Collecting+Ship+Robot+Using+Arduino+Uno+Microcontroller+Based+on+Android+Smartphone&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Garbage+Collecting+Ship+Robot+Using+Arduino+Uno+Microcontroller+Based+on+Android+Smartphone&btnG=
https://ijettjournal.org/archive/ijett-v69i6p204
https://doi.org/10.1109/VLSI-SATA.2016.7593061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distance+Estimation+and+Direction+Finding+Using+I2C+Protocol+for+An+Auto-Navigation+Platform&btnG=
https://ieeexplore.ieee.org/document/7593061
https://doi.org/10.1109/ICACCI.2016.7732065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+Fuzzy+Rules+for+Robot+Path+Planning&btnG=
https://ieeexplore.ieee.org/document/7732065
https://doi.org/10.1109/JSEN.2017.2725446
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dead+Reckoning+in+Structured+Environments+for+Human+Indoor+Navigation&btnG=
https://ieeexplore.ieee.org/document/7973143
https://emanual.robotis.com/
https://doi.org/10.48550/arXiv.1805.11686
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Variational+Inverse+Control+with+Events%3A+A+General+Framework+for+Data-Driven+Reward+Definition&btnG=
https://arxiv.org/abs/1805.11686

