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Abstract - The number of devices linked to the Internet is continuously rising along with the development of the Internet of 

Things (IoT). The IoT and the expanding volume of data it communicates place constraints on cloud-based data processing 

and storage. Both fog and cloud computing allow users to store apps and data, but Fog has a broader geographic reach and is 

closer to the end user. Managing rapidly changing resource provisioning and allocation of resources in fog computing will 

create new challenges when developing IoT applications and satisfying user requests. To control resource consumption and 

Service Level Agreements (SLA), flexible and often autonomous systems must choose the appropriate virtual resources. This 

work presents a Deep Reinforcement Learning (DRL) based structure for resource provisioning for improving resource 

management efficiency in IoT ecosystems. A Deep Neural Network (DNN) is used for assessing value functions, and it allows 

for better compliance to diverse conditions, learning from prior sensible approaches, and acting as a self-learning adaptive 

system. Using the DRL algorithm and the Proximal Policy Optimization (PPO), IoT services can be established by reducing 
average consumption of energy and latency, cutting expenses, and wisely utilising and allocating resources. Simulations with 

the iFogSim show that the PPO policy increases utilization, reduces delay rates, and maintains acceptable service quality 

while reducing energy consumption and increasing utilization under varying loading rates. 

Keywords - Deep learning, Energy utilization, Proximal policy optimization, Neural network, Resource provisioning, 

Reinforcement learning.  

1. Introduction  
Fog computing differs from classical computing in that 

it utilizes every online service. On the other hand, the 

traditional strategy depends on established infrastructure. 

The conventional method dictates that businesses spend 

money on hardware and software to provide services based 

on the demands of their clients. In short periods, predicting 

customer packages or dynamic workloads is challenging [1]. 

Quality of service may encourage potential clients to 

approach the organizations.  

Fog computing deployments involve various challenges 

such as scaling, load balancing, resource scheduling, energy 

consumption, service availability, security, and quality of 

service management. Fog resource management can provide 

several advantages, such as increased energy efficiency, 

decreased network load, increased revenue, load balancing, 

and fewer Service Level Agreement (SLA) breaches. A 

scheduling approach reduces the risk of SLA violation and 

optimizes revenue allocation [2]. After using Fog Computing 

(FC) and Cloud Computing (CC) for a while and 
accumulating data, Machine Learning (ML)-based 

approaches have gained popularity [3]. When applying 

predictive solutions, it is essential to consider the complexity 

of these methods. Resource provisioning, job offloading, 

resource scheduling, load balancing, and application 

placement are the six scopes of recourse management [4].  

The main objective of static problems is to discover or 

approximate the optimal points. For dynamic problems, it is 
essential to satisfy the static state’s main goal and determine 

the optimal point/points as soon as possible. As a result, 

these issues are considered complex issues because they 

present more difficulties than static issues [5].  

Therefore, the proposed algorithm should perform well 

in situations with uncertainty in the environment and track 

the optimum variable. The Algorithms that can adapt to the 

changing environmental conditions should be used in such 

cases. This study’s primary goal is to lower latency and 

service provisioning costs for IoT requests and boost 

adoption in the fog setting. The aim is to create a novel 

resource organization method that uses neural networks and 
DRL approaches [6] to manage IoT applications. Using 
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previous experiences, this method can automatically 

automate scheduling overtime. Considering IoT network’s 

dynamic nature and the complexity of their modelling, it is 

necessary to use a connected and flexible method for 

resource provisioning, which falls under the decision-making 

domain. This makes investigative and law-based approaches 
inapplicable. ML can use data without applying 

predetermined rules to estimate models with acceptable 

accuracy for complex systems. 

A reinforcement learning approach involves an agent 

learning to select the best possible actions to maximize their 

cumulative reward by continuously interacting with their 

surroundings. In addition to being an essential sub-area of 

ML, deep learning represents the fundamental relationships 
between inputs and outputs, which makes it a good choice 

for online learning [7, 8]. The DRL technique is, therefore, a 

reasonable and appropriate choice for resource provisioning 

at the IoT instance level of fog computing involving IoT 

applications.  

The new aspects of this work also include load balancing 

in various networks to improve service quality, choosing the 

best server with the fastest response time, and optimizing 

bandwidth usage to raise network proficiency and resource 

consumption. An outline for dynamic resource provisioning 

employing DRL is provided to process node resources 
effectively. The results of the simulation testing demonstrate 

that the suggested technique in this work outperformed the 

three primary algorithms related to average waiting and 

reaction times, job completion, and efficient use of resources 

through task allocation. 

The remaining part of this article is structured as 

follows: Review the connected studies about resource 

provisioning in fog computing in section 2. The proposed 

solution is explained in section 3. The performance 

evaluation is presented in Section 4, the simulation results 

are shown in Section 5, and the conclusion is presented in 

Section 6. 

2. Related Works 
Several factors influence the performance and behaviour 

of heterogeneous fog environments, according to Stavrinides 

et al. [9]. A balanced schedule was achieved by considering 

deadline limitations and scheduling challenges and balancing 

IoT workloads. Dynamic programming improves system 
performance by analyzing input data probability locations. 

Assigning virtual machines and selecting tasks are done in 

two stages. A ranking method was developed by Naha et al. 

[10] to allot resources dynamically to fulfil the requirements 

of QoS constraints in fog devices.  

The study examined various situations in fog devices, 

nodes, and cloud servers to determine their limitations and 

behaviours. A resource allocation algorithm automatically 

prioritizes resources based on user behaviours while 

minimizing processing duration, latency, and expenditure.  

Fog systems and system distributions are limited in 

terms of resources, so this article emphasizes time-sensitive 

applications in which every application needs assistance 

from the fog environment due to limited processing power in 
the cloud environment. It ranks resources according to their 

time limits to help users find the information they need more 

quickly. It also prioritizes applications that need processing 

to ensure they are found as quickly as possible. Combining 

fog-cloud servers and devices is possible if more than 

enough fog devices are required to process data. 

A model of a computation system developed by Dinh et 

al. [11] allows multiple fogs and cloud nodes to be leased. As 

part of this model, resources are allocated, edge processing 

costs and cloud leasing options are considered. It was 

suggested that their proposed offline algorithm would take 

advantage of future request information.  

Arkian et al. [12] established an effective resource 

provisioning model based on a mixed-integer linear 

programming framework. Integer Non-Linear Programming 

(INLP), from which Mixed Integer Linear Programming 

(MILP) is formed. A part of their proposed model for 

fulfilling the job included task distribution, data customer 

relationships, and virtual machine assignment.  

In the MILP formulation, cost minimization is defined as 

the distribution of activities and the location of virtual 

machines. Fog computing’s results demonstrate a better-

provisioned quality of services. This method should have 
considered Fog-layers sensitivity and privacy, making the 

plan less complete and practical. 

According to Bahreini et al. [13], resource allocation and 

provisioning should be optimized to minimize energy costs 

to maximize provider profitability. They use edge computing 

to implement their heuristic-based method for addressing the 

MILP issue, which is inherently NP-hard.  

Various issues with various sizes and configurations 

were examined to evaluate the method’s performance. Based 

on the study’s results, it is evident that the proposed 

algorithm is efficient regarding both execution time and 

solution quality. 

With flying fog, Madan et al. [14] have done work for 

smart cities that will provision mobile network resources 

based on demand. To accomplish this, fog units are used to 

allocate and provision resources. Based on the preventive 

resource provisioning model, lease periods for allocated 

resources are determined. A fog-based micro data centre 

autoscaling model was proposed by Abdullah et al. [15] to 

increase resource organization and accelerate response times. 
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 Their rule-based model preprocesses and postprocesses 

the training dataset to produce the relevant predictions. A 

decision tree regression model is then developed using the 

trained dataset. 

Bahreini et al. [13] sought to minimize energy 

consumption and resource allocation in edge computational 
structures to maximize the turnover of the service provider. 

A meta-heuristic algorithm [16] is used to evaluate the MILP 

problem using extensive experimental analysis of the 

samples.  

On-demand resource provisioning was proposed by Guo 

et al. [17]. Their load prediction solution utilized back 

propagation neural networks and an Auto-Regressive 

Integrated Moving Average (ARIMA) model to minimize 

assessed errors. In this model, user data must be transferred 

to further occupied nodes before liberating node resources to 

prevent data loss. As a result, they presented a method for 

migrating data by workload predictions. When the proposed 
method is applied, the service expenditures are reduced, and 

load balancing is improved. 

The perception of service performance chains in FC and 

CC nodes was studied by Siasi et al. [18] to provision a fog-

cloud hybrid architecture using SFC-based provisioning. 

Using a heuristic search method, they managed the basic 

parameters to meet the various latency requirements.  

Li et al.’s [19] method of cost-effective resource scaling 

was put out for edge-cloud situations with fluctuating load. 

They created a scaling policy based on reservations and on-

demand planning using deep belief networks and dual-phase 
planning. Integer programming is planned to solve the 

former, a stochastic problem turned deterministic. 

According to Tadakamalla and Menace [20], fog servers 

have a limited processing capacity compared to cloud 

servers. Additionally, they pointed out that cloud resources 

are more expensive than fog servers [21]. The researchers 

examined the modelling challenges associated with IoTs in 

fog computing. A queueing network-based technique, 

FogQN, was then presented to analyze the cost and 

effectiveness of Fog using the cloud.  

Based on the results, the controller may be handy when 

the arrival rate of requests varies widely. Using distributed 
computation, Faraji et al. [22] proposed a framework for 

managing resources autonomously using reinforcement 

learning and backup vector regression in a fog computing 

environment for time-varying workflows. 

Abdullah et al. [15] have created an autonomous 

predictive scaling solution that utilizes Fog MDC to fulfil the 

SLO turnaround time requirement for microservices. A 

reactive rule-based algorithm is used in the proposed 

approach to gather training data sets automatically. As a 

result, a predictive automatic scale model can be constructed 

by preprocessing and postprocessing. It uses tree regression 

to develop a predictive model for automated scalability by 

increasing artificial workloads.  

According to Mohammad Faraji et al. [23], As part of 

the planning phase, the proposed system uses learning 

automata, while in the analysis stage, a time series prediction 

model is used. Comparing the simulation results with other 

approaches, the simulation showed a minimum delay in 

service provisioning, lower overall costs, and lower SLA 

violations. As a result, fog computing can ensure Quality of 

Service (QoS). 

The study by Liu et al. [24] sought to manage elastic 

resources by using error-correction load forecasts in 

edge/cloud environments in response to user requests. Their 

approach centred around workload forecast (ARMA and 
ENN) and workload migration, combining error correction 

and workload migration models to advance prediction 

precision and reduce migration time [25].  

Al-Makhadmeh et al. [26] Developed an efficient and 

scalable resource provision model based on DL. 

Additionally, it devised a practical structure for balancing 

resource demands and user density. The result is high 

reliability and customer satisfaction with IoT services. 

A framework for managing cloud resources in intelligent 

homes, called ROUTER, was proposed by Gill et al. [27]. 

They focused on performance improvement for overloaded 
edge environments with high arrival rates. Examining the 

interaction between a fog data server and IoT devices, as 

well as between the particle’s optimization algorithm and the 

cloud data server, is part of the design model for a smart 

home. The toolkit iFogSim was used to test and evaluate the 

IoT-based innovative home automation approach they 

developed. Their analysis found that it reduced network 

bandwidth by as much as 12%, response time by as much as 

10%, latency by 14%, and energy consumption by 12.35%.  

Yousefpour et al. [28] examined QoS in delay-sensitive 

requests. They devised the FOGPLAN structure as a solution 

and looked at how it would help Fog Service Providers (FSP) 
regarding cost-savings and QoS. To examine dynamic FSPs 

with QoS considerations, the researchers used two greedy 

methods, Min-Viol and Min-Cost, using an INLP 

formulation. According to our results, the Min-Viol 

algorithm performs better but is slower.  

Both algorithms are nearly equal in asymptotic 

complexity. Table 1 contrasts the study on resource supply in 

fog computing based on the suggested classification. 
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Table 1. Survey on various approaches to resource provisioning technique

Reference Techniques Performance Parameters Benefits 

Georgios L. 

Stavrinides et al. [9] 
Queuing Model Response Time 

For High-Priority Tasks, A 

Priority Policy is Available 

Ranesh Kumar Naha  

et al. [10] 
Heuristic Method 

Processing Time, Delay, 

Cost 
Low Cost and Processing Time 

Thinh Quang Dinh  

et al. [11] 
Polynomial Approximation Cost 

Excellent Mathematical 

Presentation for the Allocation 

Algorithms 

Hamid Reza Arkian 

et al. [12] 
Integer Linear Program 

Cost, Power Usage, and 

Operation Delay 

Reduced Power Usage and 

Service Latency, Support for 

Quick Responses at Various 

Levels 

Tayebeh Bahreini et 

al. [13] 
Integer Linear Program Energy Usage and Expense High scalability and fast execution 

Naman Madan  et al. 
[14] 

Heuristics (Distance-Based) Energy, Latency Appropriate system model 

Muhammad 

Abdullah  et al. [15] 

Decision Tree Algorithm 

(DTR) 

Response Time, SLO- 

Violations, 

Rejected Requests 

Enhanced Resource Provisioning 

and Prediction 

Tayebeh Bahreini  et 
al. [13] 

Heuristics (Iterative Based) Energy, Profit 
Simple System Model with 
Scaling 

Jingjing Guo et al. 

[17] 

ARIMA Model, BP Neural 

Network 
Relocation Time and Cost 

Reduced Service Costs and a 

Cluster that is Load-Balanced 

Nazli Siasi et al. 

[18] 
Heuristics (Graph-Based) Energy, Delay, Cost 

Effective Organization, In-depth 

Analysis 

Chunlin Li et al. 

[19] 

Integer Programming, 

Genetic Algorithm 
Cost 

Relevant Algorithms with a 

Suitable Level of Complexity 

Uma Tadakamalla, 
Daniel A. Menascé 

[20] 

Autonomic Computing, 

Queuing Model 
Response Time, Cost 

The Utility of this Method is High 
when Request Arrival Rates vary 

Widely 

Mohammad Faraji 

Mehmandar et al. 

[22] 

ML (RL, SVR) Cost, Delay Violation 
A Thorough Illustration of the 

MAPE-K Loop Model 

Muhammad 

Abdullah et al. [15] 
Machine Learning (DTR) Response Time Comprehensive Analysis 

Mohammad Faraji et 

al. [23] 
Autonomic Computing 

Cost, SLA Violation, Service 

Delay 

Formulating Problems Effectively 

for Cost and Delay a Thorough 

Self-Management Model 

Boyun Liu et al. [24] 
Machine Learning (ARMA, 

ENN) 

Prediction Precision and 

Migration Time. 

Improved Prediction Precision and 

Reduced Migration Time. 

Al-Makhadmeh et 

al. [26] 

Machine Learning 

(Deep Learning) 
Delay, Response Time 

Maximizes the Consistency of IoT 

Services and User Satisfaction 

Sukhpal Singh Gill  

et al. [27] 

Particle Swarm 

Optimization 

Response Time, Network 
Throughput, Power Usage, 

and Latency 

Reductions in Energy Use, 

Network Capacity, and Delay 

Ashkan Yousefpour 

et al. [28] 

Greedy Algorithms, 

Framework-Based, 

Optimization Problem 

Delay, QoS, Cost 
Improved QoS for Time-Sensitive 

Apps 
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3. Proposed Work  
This section will implement the proposed approach 

using a resource provisioning framework. Figure 1 shows the 

proposed fog computing model consisting of three layers. 

Sensors and IoT devices make up the first layer. This layer 

supports intelligent devices like mobile phones, sensors, and 

tablets. As well as providing Ad Hoc services, Fog estimates 

resource consumption and allocates estimated resources. The 

Fog layers need to perform computation, storage, and 

processing operations in this layer. An access point receives 

a user’s request initially, after which it is sent to an 

admission control component. When a request exceeds the 

threshold value, it is sent to the gateway to be processed in 
the cloud and is neither real-time nor latency-sensitive. The 

data must be transferred to the fog layer for real-time 

processing [29]. Fog node allocation and resource 

provisioning are responsibilities of the fog layer.  

Virtual machines of cloud data centres are used to 

process massive data or non-time-sensitive requests in the 

cloud layer. There are three layers to the projected resource 
provisioning model, and the main component controls them 

all.  

Figure 1 shows the architectural diagram of the proposed 

work. Several components are included in the proposed 

controlling component to manage the fog layers 

automatically and efficiently. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 
Fig. 1 Architectural diagram of the proposed approach
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Supervision: Criteria associated with IoT devices and fog 

and cloud layers are collected by this component. The 

supervision component processes data by communicating 

with the IoT layer, which provides the necessary CPU, 

storage, and RAM—resource information, such as CPU 

efficacy storage spaces. Data centres and fog devices can 
gather Internet traffic and active/inactive services.  

Validation: Data from the supervision section is investigated 

by this unit. It comprises checking the data type unit, 

replicate and destructive requests. 

Knowledge Database: Input data, such as requests made by 

IoT devices, fog devices, and cloud data centres, is 

maintained by the DB unit. After reviewing this data, the 

validation component updates it. 

Admission Control: The admission manager unit uses 

database data to verify the location of IoT devices when 

processing requests. The cloud layer should be used if the 

deadline for the request exceeds a certain threshold.  

The execution unit receives the request and sends it to 

the data resources management unit for processing and 

storage in the cloud data centre. If not, the request must be 

forwarded to the fog layer’s Policy Maker component. 

Resource Manager: Using the DRL technique, this 

component manages and decides regarding fog layer 

resource provisioning and processes incoming requests 

through the Admission Manager Unit. In response to the 

request, it chooses how to deliver resources. 

Execute: It executes decisions made by Policy Makers. The 

segment specifies that the request should be managed 
through the admission manager in the fog or cloud layer. 

Additionally, the resource manager determines how many 

resources are required for fog layer requests. A final step in 

the process is to send the request to the destination for 

execution. 

3.1. Resource Provisioning using Deep Reinforcement 

Learning 

Learning agents in reinforcement learning receive 

rewards after each action is evaluated. The reinforcement 

learning algorithm and the environment are two decision-

making elements in the dynamic resource provisioning 

problem.  

An agent reacts to the environment according to 

knowledge by appropriately increasing, decreasing, or 

selecting resources. It determines the early number of 

resources for each service. The environment concurrently 

notifies the agent of its state and rewards it for its prior action 

[30].  

Decision makers update their knowledge based on the 

reward they received for their previous actions. The cycle 

lasts until the agent receives the last status from the 
environment.  

Analyzing the changes in reinforcement learning 

approaches results will allow us to see how our decisions 

will affect them. By better understanding the dynamics of the 

system or by trial and error, it can be determined what 

decisions work best. 

In a fog ecosystem, resources communicate through a 

graph G = (N, A), where N is the set of resources, and A is 

the set of communication links between them. 

Communication link delays (in milliseconds) are affected by 

propagation delays, bandwidth delays, queueing delays, and 

network traffic conditions. 

3.2. Deep Neural Network  

A trained network (DNN) can approximate resource 

allocation policies that change over time. IoT service 

ecosystem status is used as input to approximate the DNN 

network. The output network is generated using policy 

parameters as weights and biases to generate the probability 

of selecting the necessary actions. This Figure 2 illustrates a 

basic model for the production of policies. 

Each request in the proposed algorithm is assigned an 

initial policy or action-practical relationship. DNNs sense the 

state of a system by interacting with its environment, and 
they analyze what may occur in the future. Parameters are set 

to maximize reward.  

Multi-iteration learning is used to learn the optimal 

policy for better provisioning resources. Resource 

provisioning expands by building a database, which is then 

utilized to advance the parameter policy parameters and give 

new requests. PPO uses a gradient approach to optimize the 

policy function that maps states to actions. A clipping 

operator ensures that policy updates fall within a specific 

range. 

Additionally, it prevents policies from becoming greedy 

and making unwise decisions. Therefore, the maximum 
cumulative reward is generated during resource provisioning 

by obtaining optimal weights and biases after several training 

repetitions. The following Figure 2 shows the basic DNN 

policy model. 
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Fig. 2 DNN-based policy model 

Overall, the procedure follows the Deep Q Network 

(DQN) framework by iteratively interacting with the 

environment, collecting experiences and using them to 

update the main DQN. By combining exploration and 

exploitation, the agent learns an optimal policy for exploiting 

collective rewards in the given environment. 

DRL algorithm for Resource Provisioning 

Initialization: 

Initialize experience playback memory; 

Initialise behaviour value function Q with random weight 

θ; 

Initialize the target behaviour value function Q with 

weight θw= θ’. 

Begin 

1. For episode i = 1, 2, . . ., I 

2: do the initial observation s1 is received and the   

preprocessing s1 is taken as the start state x1 

3: For t = 1, 2, . . ., T 

4: Using random probability α, select behaviour at 

random; 

5: Otherwise, select behavior: at = arg maxQ (x, a; θ); 

6: Obtain reward rt by Executing actions in the system, 

observe st+1 at the next moment, and update st+1 to 

xt+1; 

7: Playback memory is created by storing experience; 

8: Obtain samples from playback memory in small random   

batches; 

9: Calculate the target DQN Q value; 

10: Minimizing the loss function L(θ) and update the main 

DQN; 

11: Gradient descent is performed on L(θ) on network 

parameter θ, 

12: Update the target Q value of the network. 

13: End For 

14: End For 

15: End 

4. Performance Evaluation 
This section discusses the DRL-based Fog Resource 

Provisioning method for provisioning resources in a fog 

environment. The iFogSim [31] performs accurate and 

extensive fog simulation and helps evaluate resource 

provisioning and management policies in Edge, Fog, and CC. 

Using this tool, different situations can be handled for 

evaluating resource management and provisioning strategies 

in different computing environments. This simulation 

examines latency, energy consumption, operational cost, and 

utilization of resource management policies. In addition to 
supporting edge/ fog devices, network links and cloud 

computing, this tool also supports productivity evaluation. 

iFogSim supports the Sense-Process-Actuate model. Data 

generated by IoT is monitored in this model. Once the fog 

tools have executed and processed the programs, the closing 

decisions are moved to the data transfer space. 

4.1. Simulation Settings 

In stimulation, artificial workloads are changing rapidly. 

There are 250 requests to 1450 services in the varying 

workload. To create this load, several random peaks must 
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first be defined. A threshold is then determined based on the 

peak. A random procedure increases the number of services 

to a peak and decreases it to a certain amount similarly. 

There are 730 services on average in this workload. Table 2 

shows the details of the simulation settings. The following 

Table 2 Illustrate the details of simulation settings. 

Table 2. Simulation settings 

 
4.2. Simulation Parameters 

This evaluation uses four metrics: Average latency, cost, 

mean energy consumption and utilization. 

4.2.1. Latency 

During deployment, the propagation and transmission 

times are added together. This results in the mean 

implementation period (processing delay) and the service 

time (response time). 

L = Uploading_ Delay (L1) + Transfer_ Delay (L2) +          

Processing_ Delay (L3)  (1) 

Where L1+ L2 is the deployment time, and L3 
represents the execution time. 

4.2.2. Cost 

According to Eq. 2, a service’s cost is assigned to the 

node based on interval. The total cost can be calculated using 

the communication, computation, deployment and penalty 

cost. 

 C = Communication Cost (CC1) + Computation Cost (CC2) 

+ Deployment Cost (DC3) + Penalty Cost (PC4)  (2) 

CC1 is communication cost, CC2 is Computation cost, 

DC3 is Deployment cost, and PC4 is Penalty cost. 

4.2.3. Energy Consumption 

A combination of service latency and geographical 

location is estimated to determine the energy consumed by 

communication between fog nodes. Additionally, a linear 

equation determines how much computational energy a fog 

node consumes. Fog node CPU usage and maximum 
dynamic energy consumption are used for this calculation. 

E = Communication_ Energy (E1) + Computation_ Energy 

(E2)  (3) 

4.2.4. Utilization 

In fog nodes, utilization is derived by dividing the 

allocated MIPs by the available MIPs in the nodes. 

Utilization = 
Allocated MIPS

Available MIPS
  (4) 

   

5. Result and Discussions 
The proposed method is evaluated using the base 

algorithms Fog Resource Provisioning Learning Automata 

Parameter Description Latency 

T
i
 The maximum time required for processing in a fog environment 10ms 

QoS
i
 The Quality of Service (Desired) U (90, 99.99) % 

U
ai

 CPU demand (ai) U (50, 200) MI/ req 

M
ai
 Memory demand (ai) U (2, 400) MB 

S
ai
 Storage demand of the AI U (50, 500) MB 

U
fj
 Processing power (fog node j) U (800, 1400) MIPS 

M
fj
 Memory size (fog node j) U (2, 400) MB 

S
fj
 Storage size (fog node j) ≥ 25MB 

C
U

FN
 The price per unit of process (fog node j) 0.002 /MI 

C
S

FN
 The price per unit of storage (fog node j) 0.003 Gb/sec 

C
M

FN
 The price per unit of the main memory (fog node j) 0.004 Gb/sec 

Core, Edge link --- 10 Gbps,1 Gbps 

Pd (j, k) Propagation delay of link (j,k) U (15, 35) ms 

Pd 
(IoT, k)

 Propagation delay among IoT and fog nodes U (1, 2) ms 

Size
i

req

 Average service request length of i U (10, 25) KB 

Sizei

res

 Average service reply length of i U (10, 20) KB 
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(FRP_LA), Fog plan and Fog Resource Provisioning 

Reinforcement Learning (FRP_RL) methods. 

A Learning Automata approach is combined with the 

framework for provisioning resources proposed in this study, 

FRP_LA. Analyses are conducted using time series 

prediction methods, followed by planning in which learning 
automation methods are used. As one of the reinforcement 

algorithms, this method was chosen. Convergence times are 

excellent and are used in situations with variable requests. 

As part of FRP_RL [32], the fog environment uses 

reinforcement learning to plan service allocation. The 

choices are made at random in the policy exploration section. 

A comparison of this algorithm to the proposed method will 

help to evaluate its performance. Performance depends on 

determining the agent’s intellect and the effects of learning 

from prior experiences. 

An analysis of the proposed approach is undertaken by 

contrasting the suggested method with the FogPlan method, 

which employs a greedy algorithm, and the Router method, 

which employs an optimization algorithm. These approaches 

are all container-based technologies that enable scalable 

service deployment by presenting a variety of applications 
and services. 

5.1. Latency vs Workload 

The provisioning of resources is primarily based on 

response time, which is one of the most effective service 

objectives. Resource provisioning must be done again if the 

requested response time cannot be completed. According to 

Figure 3, the variable workload method has a shorter average 

response time than FRP_RL, FRP_LA and FogPlan 

algorithms. As a result of the projected method, the desired 

response time is achieved because the response time equals 

the time between the request’s arrival and its exit. 

 
Fig. 3 Average latency of different workloads 
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A comparison will be made between FRP_RL and 

FRP_LA—moreover, FogPlan algorithms to assess the cost 

of the new algorithm. Resource provisioning algorithms are 

primarily measured by their costs. Compared with FRP_RL, 

FRP_LA and FogPlan algorithms,  

Figure 4 illustrates the cost of the new technique in 
different workloads. According to the results, setting 

appropriate resource provisioning limits and using deep 

reinforcement learning for decision-making will increase 

precision. However, using an efficient monitoring system for 

node information is the main reason for cost reduction. Fog 

resource provisioning becomes more precise as a result. 

5.3. Energy Consumption vs Workload 

Comparing the proposed method with FRP_RL, 

FRP_LA and FogPlan in a variable workload structure, 
Figure 5. It shows its average energy consumption. The 

provider determines how to provide the resources based on 

user requests. 

 

Fig. 5 Average energy consumption of different workloads 
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Nodes consume energy proportionally to their 

operational cost, which is determined by CPU, memory, and 

disk consumption. In this case, operational costs are the 

target function for calculating energy consumption. The 

method developed in this work effectively distributes 

requests and services across virtual computers, reducing idle 
time, boosting resource usage, and determining the service 

location with the shortest latency.  

In addition, the proposed method consumes less energy 

than the other three methods since it uses a machine with a 

lesser energy consumption. At the same time, timely 

identification and migration of virtual machines from 

physical machines prevent excessive overloading of these 

servers, lowering their energy consumption. 

Figure 6 compares the new method with FRP_RL, 

FRP_LA and FogPlan for average utilization in a variable 

workload structure. In the study, the proposed method meets 

the desired productivity level. Detecting workloads 

continuously and monitoring fog node performance is 

essential for controlling fog cells. Provisioning is done 

correctly due to monitoring node status and using deep 

reinforcement learning decision-makers. It has always been 

possible to migrate virtual machines with less than three 
migrations at all times since overloaded physical machines 

have been identified and appropriate servers with a high free 

processor capacity have been selected to locate them. 

6. Conclusion 
There has been significant growth in IoT devices in 

recent years; they are so large data, and IoT applications need 

rapid responses to their requests. These types of data are 

increasingly being processed using edge computing. IoT 

devices fluctuate in foggy situations. Therefore, defining the 

load condition of physical equipment and, inevitably, scale 

resources might be helpful. It is feasible to prevent concerns 

with over- and under-provisioning by determining the load 

circumstances. We need a technique that handles more 

requests quickly and without delay because fog environments 
change and user’s requests alter over time. This type of 

environment can be adapted to by reinforcement learning, 

which can provide the most accurate mapping of services to 

resources as a result of learning. In addition, it is capable of 

managing IoT services efficiently.  

The study suggests a framework for resource 

provisioning and communications between units for IoT 

devices, nodes connected to the Fog, and cloud servers. It is 

based on deep reinforcement learning techniques and 

algorithms. iFogSim simulator was used to assess and 

compare the proposed method with three other provision 

methods (Fogplan, FRP_RL, and FRP_LA). Enhance 
efficiency and reduce response time, cost, and energy 

consumption. Further research can be done by using 

prediction techniques like neural networks to improve 

accuracy in the future.  

Moreover, they can be combined to identify optimal 

physical machines and estimate input workloads. Combining 

deep reinforcement learning and proximal policy 

optimization enables the policy to be learned and optimized 

directly by mapping states to actions. Integration of 

reinforcement learning with fuzzy logic and correlation 

learning, automatic resource scaling with service relocation 
between fog nodes, and integration of automatic resource 

scaling with resource placement can all considerably enhance 

the suggested system. 
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