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Abstract - In the agricultural industry, accurate and efficient monitoring of the state of crops during the harvest stage is essential 

to ensure the quality of fresh produce, so this work proposes a system for monitoring fruit at the harvest stage through the use 

of drones and the development of image processing algorithms to estimate the measures of the fruit by comparing stereo vision 

and ArUco Marker; in addition also develops an algorithm to specify the stage of maturity in which they are. The tests were 

carried out on avocado crops in the Majes valley, Arequipa. In the tests, the effectiveness of the algorithms was obtained, 

evaluating the data obtained by the system and the actual data, demonstrating a reliable detection and an accurate calculation 

of the size of the avocados. The results are visualized by means of maps highlighting the different stages of maturity. This 
innovative approach presents significant potential for improving crop monitoring and management, especially in regions such 

as fruit exporting in Arequipa, where quality and precision are crucial to consolidate its position in international markets. 
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1. Introduction  
As the demand for fresh, high-quality produce continues 

to grow, it is becoming increasingly important to have highly 

efficient and accurate monitoring methods to assess the 
condition of fruit orchards during the harvest stage. This 

period is crucial, as it largely determines the quality and 

quantity of the production that will reach the market. 

Traditional manual visual inspection approaches, while 

widely used, present a number of significant challenges. First, 

they are often costly, requiring the hiring of skilled labour, 

which increases operating expenses for growers. In addition, 

manual inspection can be a laborious and time-consuming 

process, limiting the ability to assess large areas of crops 

efficiently.  

Another aspect to consider is the limitation in terms of the 
range and accuracy of traditional methods. Humans, however 

trained, have physical and attention limitations that can lead 

to the omission of essential details or lack of consistency in 

fruit assessment. In the face of these challenges, the adoption 

of advanced technologies, such as computer vision and 

automation through drones and image processing systems, 

emerges as a promising solution. These technologies enable 

the rapid and accurate capture of data on crop conditions, 

including the detection of ripe and unripe fruit and their size. 

By reducing costs, increasing speed and improving accuracy, 

these innovations are revolutionizing the way fruit fields are 

monitored during harvest, providing growers with an 

invaluable tool to optimize their operations and meet the 

growing demand for high-quality agricultural products. For 

this reason, drones have emerged as a promising solution for 

agricultural monitoring, offering the ability to capture high-

resolution aerial images and provide detailed information on 

plant conditions and crop yields. The development and control 

of drones applied to fruit crop monitoring during the harvest 

stage presents significant challenges in the agricultural 
industry. According to the official SENASA report, the 

primary exportable fruit of the Arequipa region, Peru, is 

grapes, followed by avocado and pomegranate; these products 

have had significant growth in exports in recent years.  

Due to the quality of the production and the condition of 

the eradicated area of fruit flies, agro exports to crucial 

markets such as Holland, China, the United States, Spain, and 

other international destinations have been consolidated. 

Therefore, this article aims to explore and evaluate the 

feasibility and effectiveness of a system using controlled 

drones to patrol fruit orchards, perform image processing and 
issue sectoral alerts on fruit maturity. Through data collection 

and experimental tests, the aim is to demonstrate the 

effectiveness of this technology and its potential to improve 

the monitoring and management of fruit crops during the 

harvest stage. In addition, in order to support the farmer and 

thus avoid losses such as fruit spoilage due to lack of harvest. 

http://www.internationaljournalssrg.org/
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This document is divided as follows: The related works 

are presented in section 2, and the methodology is presented 

in section 3. section 4 describes the development of the system 

proposed; the drone stage subdivides this section, along with 

the algorithm developed and the control station. section 5 

presents the test and results obtained. Finally, section 6 
presents the conclusions of the research.  

2. Related Works  
In the existing literature review for the improvement of 

automated fruit harvesting, a method is presented in [1] that 

uses RGB images to estimate the position of citrus fruits. 

Using the FPENet model, high accuracy in navel point 

detection and fruit rotation vector prediction is achieved, with 
79.79% harvesting success. In [2], a bottom-up approach for 

2D position estimation of multiple tomatoes with peduncle is 

proposed, highlighting its high performance in crucial point 

and distal peduncle detection, which promises applications in 

robotic harvesting and harvesting priority determination. The 

evolution of autonomous navigation in agriculture is 

highlighted in [3], focusing on the importance of effective 

implementation of artificial intelligence, development of 

accurate and affordable sensors, and collaboration between 

agricultural machinery and agronomy to advance this sector.  

A robust approach is presented in [4], where an apple 
harvesting robot with multiple arms is developed, facing 

labour reduction. A recognition and localization algorithm 

based on stereo vision and deep learning is proposed, with 

results in localization error reduction and improvements in 

harvesting efficiency. The creation of an autonomous 

localization and navigation system for agricultural robots is 

described in [5], with emphasis on creating and updating maps 

and localization accuracy in greenhouses, facilitating 

autonomous routes and meeting the required specifications. 

The challenge of accurate agricultural crop sensing is 

addressed in [6], employing Rand Augment (RA) to improve 

sensing performance through geometric and photometric 
transformations. The YOLOv3 model with transformations 

achieves significant improvements and is implemented in a 

robotic harvesting system. Rice seedling detection and 

classification by UAV is explored in [7], using a deep learning 

approach with adaptive filtering and recurrent neural network 

models, demonstrating improvements compared to other 

models. Apple detection in commercial orchards is addressed 

in [8] using two neural network models trained with deep 

learning. The SSD-Mobilenet and Faster R-CNN models 

achieve high accuracy rates, improving yield predictions for 

growers. For pitaya harvesting, [9] proposes an autonomous 

mobile robot system based on the Artificial Intelligence of 
Things (AIoT), combining 2D SLAM and AI object 

recognition for efficient navigation and harvesting. The 

accuracy of the recognition model reaches 96.7%. The 

Application of SLAM technology in agricultural 

environments is explored in [10], highlighting the theory, 

development and applications of this technology for map 

building and navigation of agricultural robots, as well as the 

challenges and future directions. The creation of the “Tomato 

Plant Factory Dataset” is presented in [11], benefiting 

automated sensing in control systems, robotic operation and 

performance estimation in plant factories.  

A two-stage deep learning-based approach for apple 
detection and classification is described in [12], using 

YOLOv7 and EfficientNet-B0 models to improve the 

effectiveness of autonomous harvesting and avoid damage. 

The efficiency and functionality of agricultural crop 

harvesting are addressed in [13] by kinematic and dynamic 

analysis of hybrid robots combining open and closed-loop 

manipulators. The use of 2D LIDAR SLAM in mobile 

agricultural robots is proposed in [14] as a positioning scheme 

in hidden environments, achieving autonomous navigation 

accuracy in static environments. Automation of traditional 

Japanese orchards is explored in [15] using a LIDAR-based 
spraying system and machine learning algorithms, 

demonstrating the ability to compute real-time routes and 

operate safely in pesticide spraying tasks. Taken together, 

these works represent significant advances in automated fruit 

harvesting and autonomous navigation in agriculture, 

addressing fundamental challenges and presenting innovative 

solutions to improve efficiency and accuracy in these 

processes. 

3. Methodology 
This article presents the development of a drone system 

for crop monitoring during the harvesting stage in the Majes 

valley, Arequipa. In order to control this system, it has been 

developed as follows, see Figure 1.  

 

 

 

 

Fig. 1 Block diagram of the proposed system 
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First, the drone is trained so that it can perform the route 

to be monitored automatically and autonomously; for this, it 

sets the route of the trees to be surveyed. This drone has a 

camera to obtain the images in real-time, and through an 

algorithm developed, the colour and size of the target, which 

is the avocado fruit, can be accepted. After finishing the task 
via WiFi communication, the data obtained is processed, and 

the areas where the fruits are ripe for harvesting are 

determined based on size and colour. 

4. System Development 
4.1. Drone Stage 

In this stage, the route that the drone will have to follow 

during its patrol in the neighbourhoods was established. The 
route was determined based on the distribution of the trees 

where the tests were conducted. The research was conducted 

with a Xiaomi FIMI X8 SE drone, which is a foldable 

aerodynamic drone equipped with intelligent control and 

wireless communication.  

In addition to having a camera capable of recording 4K 

video at 30fps and transmitting HD images in real-time. In 

order to establish the trajectory to be followed, the 

‘Waypoints’ function is used, where the different points of the 

route are established, along with the time that will be 

maintained in some positions, the flight speed, and the 
configuration of the height of elevation of the drone for the 

inspection of the fruit trees, as shown in Figure 2. 

 
Fig. 2 Setting the drone flight 

4.2.  Algorithm Developed 

To perform the avocado detection process, the collection 
of video and images is initiated using the cameras built into 

the drone. These real-time images aid in the identification and 

analysis of avocados concerning size and maturity.  

The determination of size and maturity is accomplished 

through the Application of an algorithm developed in the 

Python language. Before processing the images provided by 

the drone, a pre-processing stage is undertaken, wherein the 

resolution is reduced from 3840x2160 (4k) to 858x480 (480p) 

to enhance processing speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Algorithm developed 

To develop the image processing, two Foxeer Razer Mini 

cameras were utilized, with the objective of estimating the 

required measurements using triangulation methods, 

Camshift, and ArUco marker. The Kalman filter was 

employed to enhance the algorithm, and the procedure for 

analyzing the maturity of the fruit is detailed in Figure 3. 

4.2.1. Sizing with Stereo Vision 

The CAMSHIFT tracking method uses the position of the 

centroid and the zeroth order moment of the search window in 

the previous frame to determine both the location and 
dimensions of the search window in the next frame. (See 

Figure 4) [17]. Considering the computational load of a 

tracking algorithm and the distance evaluation, the centroid of 

the CAMSHIFT algorithm is used as the pixel position in both 

cameras to perform the triangulation.  

Figure 5 shows the distance estimation based on stereo 

vision; CO1 and CO2 are the optical centres of each camera, f 

is the focal length of each lens, D is the distance between the 

centres of the cameras, and W is the distance between the 

object (in this case the fruits) and the stereo cameras. Both 

images obtained from the stereo camera are processed at the 

same time. 
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Fig. 4  Camshift 

 

 

 

 

 

 

 

Fig. 5 Triangulation method for measurement estimation 

The data obtained from the information about the analysis 

object in both pictures is used to calculate the size and estimate 

the distance.  The disparity value, or X in pixels, between the 

analysis object in the two images is used to estimate the 

distance. The disparity is defined as the difference in pixels 

between the two center lines of the width of the analysis object 

as the camera is oriented parallel. The following formula can 

be used to determine the object distance or X:  

 X = ß x -1      Where         ß = b f (1) 

It is determined that f is the focal length of the cameras, 

and b is the distance between the two cameras.  The disparity 

value in pixels “x”, the pixel value of the width “w”, and the 
height “h” of the spot were used in the calculations for the size 

estimation, which is composed of the width and height.  The 

ratio of the width per pixel (λw) to the height per pixel (λh) 

with the disparity is used to calculate the actual width (W) and 

height (H) of the analyzed object. Our investigation revealed 

that the values of the width per pixel and height per pixel of 

an object are linear and are inversely proportional to the 

disparity. With the following equation, we can calculate the 

width, W, and height, H: 

 W = λ w w          H = λ h h (2) 

From a linear equation of a plot of λw and λh versus x, 

λw and λh are found as follows: 

 λ w = m w x + c w       λ h = m h x + c h (3) 

Where c is the value of λ at x = 0 and m is the slope of the 

graph. Plotting the graphs of λw and λh versus x involves 

performing experiments with multiple samples whose width 

and height are known in reality. A different disparity value can 

be obtained by changing the distance from the object to the 

camera. 

4.2.2. Sizing with ArUco Marker 

To calculate the size of the avocados and to classify them 

as ripe or unripe, the ArUco library was used, which uses 

square markers for the estimation of the camera pose, 
reference point or measuring point. A 5x5 ARC measuring 4 

cm on each side is used (see Figure 6). First, detect and find 

its perimeter (16 cm). Then, a simple rule of three is performed 

to determine how many pixels each centimetre is equivalent 

to. Once obtained, the equivalence in centimeters is all the 

lengths in pixels that can be divided by this value to get the 

measurement in centimeters. 

 
Fig. 6 ArUco is used as a reference point 
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This marker is placed on each avocado tree so that when 

the drone passes, it stops to make the calculations. Manual 

measurements are made with a ruler to compare them with the 

measurements provided by the program to validate the 

accuracy of the code. (See Figure 7) 

 
Fig. 7 Comparison of avocado measurements obtained manually vs 

Values obtained with ArUco marker 

4.2.3. Calculation of Fruit Ripening Stage 

Definition of Colour Ranges 

When working in the HSV space, ranges of colours that 

correspond to ripe avocados are defined. These ranges are 

established by manipulating the hue, saturation and value 

values in the developed algorithm. These values were 

described as a maximum range and a minimum range; in the 

first one, the hue is close to an orange colour, and the second 

one is a totally light green.  

Color Thresholding and Contour Detection  

Using the cv2.in Range () function, a binary mask is 

generated to highlight pixels that fall within the defined colour 
range. This mask effectively separates the ripe avocados from 

the background and other unwanted elements, such as 

branches or leaves. The contours in the obtained mask are then 

identified. Using the function cv2.findContours(), the 

boundaries of the objects present in the image that match the 

colours defined for the ripe avocados are detected. 

4.3. Control Station 

A control station was developed that consists of a 

Raspberry Pi 4 8GB, which is responsible for processing the 

algorithm developed with the images provided by the drone, 

in addition, a second algorithm was developed, which is 
responsible for making a comparison between the values 

measured by our first algorithm with the standard average 

values of length and width of maturity of an avocado.  

This algorithm is based on python code with conditional 

which values that meet or exceed these nominal data, the map 

will draw a green colour indicating to the user that in that area 

is ready for harvesting; otherwise it proceeds to display a 

reddish colour indicating that the fruit is not yet ripe for 

harvesting. (See Figures 8 and 9) 

 
Fig. 8 Measurements estimated with the algorithm in the first stage 

Figure 8 shows the data collected in the avocado ripening 

process; in this stage, most of the avocados are just beginning 

their development; therefore, our system shows the red colour 

as predominant.  

On the contrary, Figure 9 shows the next stage of the 

crops, in which the green colour starts to be noticeable, which 

indicates that according to the comparison of our average 

values of the size of an avocado, there are units to proceed 
with the harvest stage, this is a good indication for our farmers 

since they can start with the harvest of the crops and thus avoid 

losses. 

 
Fig. 9 Measurements estimated with the algorithm in the second stage 

5. Test and Results  
Both methods were tested, both for fruit size estimation 

with stereo vision (see Figure 10) and with ArUco Marker (see 

Figure 11). Twenty fruits were measured to determine which 

method had the best accuracy.  

When analyzing the results of the comparison of the width 

and height measurements (See Figure 12), It was found that 

the ARC Marker method is more accurate than the stereo 

vision method. Therefore, the ArUco Marker method is used 
to test the complete system. 
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Fig. 10 Measurements estimated with the algorithm stereo vision 

 
Fig. 11 Measurements estimated with the algorithm ArUco Marker 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Comparison of estimated measurements with real measurements 

In order to validate the proposed system, 500 samples of 

avocado height and width measurements were tested. In this 

case, the error in measurements was considered, i.e., the 

human error when taking the samples; Figure 13 and Figure 

14 show the comparative values we measured manually with 

the measurements obtained by our developed system. 

 

 

 

 

 

 

 

 

Fig. 13 Fruit width comparison 

The main objective was to demonstrate the efficiency and 

accuracy of the algorithm in the identification of ripe and 

unripe avocados, as well as in the determination of avocado 
size. The results showed a detection rate of 93.5% for ripe and 

unripe avocados, with a false positive rate of less than 5%. 

 

 

 

 

 

 

 

 

Fig. 14 Fruit height comparison 

According to the data obtained, when comparing the 

accuracy of the developed algorithms, a 96% accuracy was 

achieved. This value is considered relevant and feasible to 

continue with the research. In addition, stable communication 

was established between the control station and the drone to 

obtain and process images in real-time, with no loss of 

information. 
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6. Conclusion  
This paper focuses on the monitoring and evaluation of 

avocado maturity during the harvest stage using advanced 

computer vision technologies and drones. The results obtained 

demonstrate the feasibility and effectiveness of the proposed 

system, both in the detection of avocados with 93.5% and in 

the estimation of their measurements with 96%.  

The generation of a map based on the collected data 

provided a more intuitive visual representation of the spatial 

distribution of avocados at different stages of maturity for 

users. This tool could prove invaluable to growers in making 

informed decisions about harvesting and management of their 

orchards. All the developments that have been obtained 

inspire future work, which will consist of adapting a robotic 

arm for the automatic harvesting of ripe fruits. The user 

interface will be improved to be more intuitive and accurate in 
displaying data to the user. 
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