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Abstract - A multi modality biometric authentication system can combine information from various modalities and provides 

accurate results compared to biometric systems used individually. A novel ensemble classifier-based multimodal biometric 

authentication system has been proposed in this work. The performance of the proposed multimodal authentication system is 

measured using parameters such as Accuracy, Sensitivity and Specificity and compared with the SVM classifier, Decision tree 

classifier when fingerprint, Iris, and Face features are used. The results of the multimodal biometric system are also compared 

with the biometric authentication system when fingerprint features are used and combined with Fingerprint & Iris features. 

The proposed ensemble classifier-based multimodal biometric authentication system provides an accuracy of 96.75%, 

Sensitivity of 94.74%, Specificity of 98.95%, FAR of 1.04 and FRR of 5.26. The proposed ensemble classifier outperforms SVM 

and decision tree classifiers regarding performance measures. 

Keywords - Authentication, SVM classifier, Decision tree classifier, Ensemble classifier. 

1. Introduction  
Biometric authentication is a security process that allows 

only authorized users or persons to access the system or 

digital sources. It uses biometrics such as Fingerprints, Iris, 

Retina, Face, ECG, DNA, etc., to verify the authorized 

persons [1-3]. The biometric authentication system compares 

the features the designer stores to those claiming ownership 

or authentication. If both data match, it provides access to the 

users and will block them from accessing if the data does not 

match [4-6].  

Multimodal biometric authentication systems improve 

security by a certain margin. Unlike conventional biometric 

authentication systems, it uses multiple features from 

multiple modalities or sources of input; as a result, better 

accuracy can be expected [7-11]. Even though many 

researches were conducted on biometric authentication 

systems, few researchers focus on multimodal authentication 

systems. 

2. Literature Review 
The research conducted in biometric authentication using 

multimodal biometrics attempted to find the results in this 

area [12-16]. They used fingerprints, finger veins and retina 

as biometrics and fused using feature level fusion method. 

The modified MDRSA method was used for biometric 

authentication. The model acheived an actual acceptance rate 

of 95.3% and a False acceptance rate of 0.01%. [17, 18] 

The main drawback is that performance measures were 

insufficient to conclude the results, and the sample size was 

also shallow. The similar research using a Modified support 

vector machine classifier (MSVM), and the Convolution 

neural network method was used for extracting features [19-

22]. They used to fingerprint and ECG signals and fused 

those features using different level fusion methods. 

Accuracy, FAR, and FRR were calculated for the simulated 

model.  
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Fig. 1 Proposed ensemble classifier-based multimodal biometric 

authentication system 

It is found that the Authentication time takes only 0.123 

seconds, and the computational cost is relatively low, which 

is a significant advantage of this model. Accuracy loss due 

to poor data augmentation is the major concern of this 

model. Manju Dhanraj Pawar et al. designed an 

authentication system using face and fingerprint biometrics 

with a low classification error rate.  

SIFT biometric features such as entropy, average 

intensity, maximum intensity, contrast, and centroid were 

extracted for face and ridges, and minute extraction was 

done for fingerprint biometrics. 93% accuracy is obtained 

when face features or fingerprint features are used 

individually, but 98% accuracy is obtained when both 

features are used together [23-26]. The method's main 

drawback is less sample size; only 30 sample images were 

used for testing. A multimodal authentication system using 

deep learning was proposed. They used to fingerprint and 

palm print biometrics for the multimodal authentication 

system. Palm print features such as Edges, centre lines, and 

wrinkles are extracted and used for deep learning algorithms 

for authentication. The proposed system is not validated, 

which is a main drawback of the model [27-29]. 

3. Methodology 
A biometric authentication system using various 

machine learning classifiers has been proposed and 

developed in this work, and the methodology for achieving 

authenticity is shown in Figure 1. This proposed work will 

eliminate authentication accuracy loss and exposure to spoof 

attacks. Fingerprint, Iris and Face biometrics are considered, 

and multiple features from these three types of input images 

are extracted and given as input to the ensemble classifier 

[30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 2 Ensemble classification methodology 

Accuracy, Sensitivity, Specificity, FAR and FRR are 

the parameters which measure the classifier's performance. 

The fingerprint minute is extracted using the following 

steps, image enhancement, binarization, thinning, or 

skeletonization. For face and iris biometrics, the SIFT 

features such as contrast, correlation, entropy, and energy 

are calculated using GLCM [31-36]. Then the features are 

applied to the proposed ensemble classifier and SVM, 

Decision tree classifiers for comparison.The methodology of 

the proposed ensemble classifier and the performance 

measures are explained in this section. 

3.1. Proposed Ensemble Classification (Boosted Tree) 
Ensemble classification is a method of generating a new 

base classifier that performs better than any constituent 

classifier. They use different training data sets and 

hyperparameters in classification [37-39]. The methodology 

of ensemble classification is shown in Figure 2.  

Ensemble classification can be done in four methods: 

stacking, blending, bagging and boosting. The way of 

training the models differs for all these four methods. 

Boosted tree method of classification is used in this 

proposed work. Boosting algorithm is a self-learning 

technique in which the same weights will be assigned 

initially to all the models involved. The weights will be 

adjusted later based on the performance [40-41]. In order to 

give more focus on misclassified data, it will be assigned. 
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The Equation defines the final model (1) using the 

weighted average method. 

  
(
∑     
∑  

)

 
     (1)                                                                            

Where, 

P1, P2….Pm = Base Classifier 

n1, n2…nm = Weights 

m = model number 

C = Final Classifier 

3.2. Performance Measures of Multimodal Authentica-tion 

System 

To analyze the performance of classifiers the, 

parameters like accuracy, Sensitivity, Specificity, FAR, and 

FRR can be very useful and are defined in this section with 

mathematical expression. 

3.2.1. Accuracy 

The amount of authorized persons correctly 

authenticated is called true positive (TP), and authorized 

persons wrongly authenticated is called False Positive (FP). 

The amount of unauthorized persons correctly authenticated 

is called True negative (TN), and unauthorized persons 

wrongly authenticated is known as False negative (FN) [42-

46]. The accuracy of the classifier is given in Equation (2). 

         
     

           
      (2)                                                                             

3.2.2. Sensitivity 

Sensitivity is the ratio of correctly authenticated 

authorized persons to the overall authorized persons defined 

in Equation (3). 

            
  

     
    (3)                                                                                                        

3.2.3. Specificity 

Sensitivity is the ratio of correctly authenticated 

unauthorized persons to the overall unauthorized persons 

defined in Equation (4). 

            
  

     
                                (4)  

                                                                                          

3.2.4. False Acceptance Rate (FAR) 

The number of unauthorized persons correctly accepted 

or authenticated is called the false acceptance rate, given in 

Equation (5). 

    
  

     
   (5) 

 

3.2.5 False Rejection Rate (FRR) 

The amount of unauthorized persons correctly accepted 

or authenticated is called the false acceptance rate in 

Equation (6). 

    
  

     
               (6)  

                                                             

4. Result and Discussion 
Two hundred samples of fingerprint, Iris & Face images 

are considered input images and features from those images 

are extracted. The results of minutia extraction from 

fingerprint images are shown in Figure 3(a) and Figure 3(b). 

Edge detection using the Hough circle for the iris image is 

shown in Figure 3(c) and Figure 3(d). Figure 3(e) and Figure 

3(f) show edge detection using Hough circle for the face 

image.  

           
      Fig. 3(a) Fingerprint image  3(b) Minutia detection after filtration 

       
       Fig. 3(c) Iris image            3(d) Edge detection using hough circle 

           
           Fig. 3(e) Face image    3(f) Edge detection using hough circle 
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Fig. 4(a) Confusion matrix for ensemble classifier (boosted tree) 

 

 

 

 

 

 

 

Fig. 5(a) Confusion matrix for SVM classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6(a) Confusion matrix for decision tree classifier

The features extracted from fingerprint, Iris, and Face 

images are given as input to the proposed boosted tree 

classifier, an ensemble classifier. Decision tree classifiers 

considered and implemented with these multi modal input 

features for comparison classifiers such as SVM. When these 

three classifiers are tested with sample testing images, the 

response of classifiers is given as a confusion matrix as 

below. The confusion matrix, ROC curve of the proposed 

ensemble classifier, SVM, and Decision tree are shown in 

Figure 4(a), Figure 4(b), Figure 5(a), Figure 5(b), Figure 6(a) 

and Figure 6(b) respectively.  

In all three classifiers, the ROC curve approaches 

towards which indicate better classification. The area under 

the curve for the ensemble classifier is higher than the other 

two classifiers, which shows the superior performance of the 

ensemble over other classifiers. 

TP, TN, FP, and FN values obtained from the confusion 

matrix are used for calculating performance measures, and 

the results are tabulated. Classifier results when fingerprint 

features alone are used are tabulated in Table 1.  
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Fig. 4(b) ROC for ensemble classifier (boosted tree) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 5(b) ROC for SVM classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6(b) ROC for decision tree classifier 

 Classifier results when Fingerprint & Iris features 

combined are tabulated in Table 2. Classifier results and 

multimodal Fingerprint, Iris, & Face features are tabulated in 

Table 3. Based on the simulation results and results from 

Table 1, it is found that the ensemble classifier-based 

multimodal biometric authentication system performs better 

than the decision tree and SVM classifier when fingerprint 

features alone are given as input to classifiers. It achieves the 

highest accuracy of 94%, Sensitivity of 91.51%, Specificity 

of 96.8%, lowest FAR of 3.19%, and FRR of 3.49%. 

Ensemble classifier outperforms the other two classifiers 

when fingerprint & Iris features are jointly given, shown in 

Table 2 and Figure 7 and Figure 8. When three modalities, 

namely fingerprint, Iris and face features combined and 

given as input to classifiers, the ensemble classifier performs 

excellently, which is evident from Table 3. 

Table 1. Performance measures of SVM, decision tree, ensemble classifiers  (finger print) 

S.No Classifiers Used TP FP TN FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

FAR 

(%) 

FRR 

(%) 

1. SVM Classifier 191 9 192 8 92.75 90.57 95.52 4.48 4.02 

2. 
Decision Tree 

Classifier 
181 19 180 20 90.25 90.05 90.45 9.55 9.95 

3. Ensemble Classifier 194 6 182 18 94 91.51 96.80 3.19 3.49 

Table 2. Performance measures of SVM, decision tree, ensemble classifiers (finger print + iris) 

S.No Classifiers Used TP FP TN FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

FAR 

(%) 

FRR 

(%) 

1. SVM Classifier 194 6 193 7 94.75 91.51 96.98 3.02 3.48 

2. 
Decision Tree 

Classifier 
182 18 184 16 91.50 91.92 91.08 8.91 8.08 

3. Ensemble Classifier 196 4 185 15 95.25 92.89 97.88 2.11 3.41 
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Table 3. Performance measures of SVM, decision tree, ensemble classifiers (finger print + iris + face) 

S.No Classifiers Used TP FP TN FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

FAR 

(%) 

FRR 

(%) 

1. 
SVM 

Classifier 
196 4 195 5 94.75 93.51 97.98 2.01 2.48 

2. 
Decision Tree 

Classifier 
184 16 189 11 93.25 94.36 92.19 7.80 5.64 

3. 
Ensemble 

Classifier 
198 2 189 11 96.75 94.74 98.95 1.04 2.26 

 

 
Fig. 7 Accuracy, sensitivity, specificity comparison of SVM, decision tree, ensemble classifiers on biometric authentication system 

(fingerprint+iris+face) 

 
Fig. 8 Performance measures (FAR, FRR) of biometric authentication system using ensemble classifier 
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5. Conclusion 
This work proposes a multimodal biometric 

authentication system using various biometrics using 

machine learning classifiers. Features from Fingerprints, Iris 

and Face are considered multimodal features and given as 

input to the proposed ensemble classifier and for comparison 

given to SVM, Decision tree classifier. The effect of 

multimodal fusion was analyzed by comparing various 

combinations of features and individually. The proposed 

ensemble classifier-based multimodal biometric 

authentication system provides better results, with high 

accuracy of 96.75%, Sensitivity of 94.74%, Specificity of 

98.95% and low FAR of 1.04% and FRR of 2.26%.  
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