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Abstract - Breast cancer is among the top causes of fatalities related to cancer in females. Radiologists commonly use 

mammogram images to detect breast tumors in their early stages. However, mammography can produce low-contrast images, 

making it difficult and time-consuming to segment abnormal regions. Deep convolutional neural networks (CNNs) are 

commonly used for image eval. This study used deep CNN models to develop a computer-aided diagnostic (CAD) system for 

feature extraction and classification. The proposed approach consists of three phases. In the first phase, a shallow, deep CNN 

model comprising five convolutional layers, five max-pooling layers, one batch normalization layer, and one dropout layer was 

developed and used to extract recombined images and novel features. In the second phase, the Inception-v3 model was used for 

label smoothing and classification due to its multiple filters with different sizes. In the third phase, features were extracted 

using shallow, deep CNN and Inception-v3 models. The Infallible Euclidean distance-based nonlinear dimensionality 

reduction approach was used to minimize dimensionality. Finally, the Gini-index-based C4.5 decision tree was used for the 

binary classification of mammogram images from the Digital Database for Screening Mammography (DDSM) + Curated 

Breast Imaging Subset of DDSM (CBIS-DDSM) and Mammographic Image Analysis Society (MIAS) datasets. The proposed 

hybrid shallow, deep CNN and Inception-v3 model achieved 99.52% accuracy, a 96% AUC on the DDSM + CBIS-DDSM 

dataset, and an accuracy of 97.53% and an AUC value of 97% on the MIAS dataset. Compared with other cutting-edge CAD 

systems, the proposed hybrid approach achieved higher accuracy by combining in-depth features across both datasets. 

Keywords - Mammogram, Deep learning, CNN, Pre-trained, Inception-V3.

1. Introduction  
Breast cancer is a cancer type that occurs commonly in 

women and can be life-threatening [1-5]. Therefore, early 

breast cancer screening and detection is crucial to provide 

timely and suitable treatment to minimize mortality rates [6]. 

Medical image analysis has proven efficient in diagnosing 

breast cancer [7]. Several imaging techniques, such as 

ultrasound, infrared thermography, magnetic resonance 

imaging, and digital mammography, have been employed for 

breast cancer prediction [8, 9]. Mammography images are 

used to view the breast's internal structure. [10-13], and 

different breast cancer indicators can be obtained from 

mammograms, such as architectural distortions, masses, and 

macrocalcifications. Among these indicators, masses and 

macrocalcifications are essential tumour indicators in the 

early stages, while architectural distortions have minimal 

significance [14]. Radiologists face difficulties performing 

manual assessments using mammogram images; therefore, 

CAD is employed to classify breast cancer and improve 

diagnostic accuracy [15, 16]. 

The above methods facilitate the diagnostic process and 

assist radiologists and physicians in decision-making. Image 

classification can be achieved by extracting various features 

from images, and machine learning (ML) has been utilized to 

classify breast mammogram images [14, 17, 18]. Various 

feature extraction techniques, such as histogram of gradients 

(HOG), histogram of oriented texture (HOT), grey-level co-

occurrence matrix (GLCM), and Gabor wavelet transform, 

are available [18]. These are manual feature extraction 

techniques. Therefore, as an alternative, neural networks 

have been developed for automated feature extraction [19].  

The analysis of medical images commonly employs 

deep learning (DL) methods [20]. DL learns features 

automatically from the input data and then performs image 

classification [21-25]. CNN are deep neural networks used 

for image evaluation and comprise multiple feature maps. To 

train CNNs from scratch, enormous computational power is 

required. 
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Moreover, the quantity of training data affects the 

model's efficiency. Thus, transfer learning (TL) by reusing a 

pre-trained model significantly saves time [26-28]. In TL 

networks, previous knowledge is utilized for learning new 

tasks, thus saving computational power and time. In TL 

models, there is no direct relationship between depth and 

model accuracy; however, accuracy depends on the dataset 

size (large datasets help improve the model accuracy) [29]. 

This work proposes a method that uses a shallow, deep CNN 

and a pre-trained Inception-v3 model. It performs 

computationally effective feature extraction and 

automatically identifies important features without human 

involvement. 

Additionally, an infallible Euclidean distance-based 

nonlinear dimensionality reduction (IE-NDR) approach is 

employed in the proposed system to perform dimensionality 

reduction. Finally, a Gini index-based C4.5 decision tree (GI-

CDT) is proposed for classifying mammogram images. GI-

CDT can operate on continuous and discrete data, handle 

incomplete data, and provide straightforward interpretation. 

The following are the significant challenges: 

1. The complexity of mammogram images makes it 

challenging to extract useful features for classification 

[30]. 

2. Traditional feature extraction methods are manually 

dependent and prone to mistakes, time-consuming, and 

inaccurate results due to mammogram images' low 

contrast and wide range of breast tissue appearance [30-

33]. 

3. Developing a computationally efficient model is 

challenging due to the high training time [26, 34, 35] 

and sizeable computational power requirements of deep 

models [30, 33]. 

4. Accurately recognizing benign and malignant masses 

from mammogram images is another challenge [31, 36-

38]. 

The proposed system aims to address these challenges 

by combining in-depth features to reduce the limitations of 

current systems and aid radiologists and physicians in 

analyzing breast tissue structures and making decisions. 

This work focused on developing a deep learning (DL) 

based model for the classification of mammograms. To 

achieve this goal, the study made several vital contributions 

which are as under: 

1. A framework has been established based on DL 

architecture for categorising breast cancer. The DL 

model was trained to improve efficiency using data 

augmentation, normalization, and balancing. 

2. A shallow, deep CNN model was developed with fewer 

layers, using transfer learning (TL) to save 

computational power and time. This approach was 

critical as developing a computationally efficient model 

is challenging due to the significant number of 

parameters involved in DL models. 

3. Essential mammogram features were obtained using a 

deep CNN architecture through feature extraction and 

feature fusion processes. This helped to improve the 

accuracy of the model. 

4. The dimensionality was reduced using IE-NDR to 

enhance the model’s parameter interpretation and solve 

the overfitting problem. This approach helped in 

enhancing the model's generalization ability. 

5. The binary classification was performed using the GI-

CDT classifier to decrease impurity and uncertainty and 

perform better classification at each node. This approach 

helped to improve the accuracy of performing the 

classification. 

6. The model’s performance was evaluated on different 

datasets, namely the DDSM + CBIS-DDSM and MIAS 

datasets. It shows the approach's applicability and 

generalization. 

7. Finally, the study compared the accuracy of different DL 

architectures to identify the most efficient architecture 

for breast mass classification. 

 

Overall, the study made significant contributions to the 

development of a DL-based. The suggested model has the 

potential to aid radiologists and physicians in making more 

accurate and timely diagnoses, leading to better patient 

outcomes. 

The remaining sections of this article are arranged as 

follows. Section 2 presents a literature review of manual 

feature extraction methods, DL detection, and classification 

techniques. Section 3 describes the data preparation 

processes and the proposed architecture process. Section 4 

discusses the experimental classification results. Finally, in 

Section 5, the conclusions are presented. 

2. Related Work  
Identifying breast masses from digital mammogram 

images is an important research topic, and recently, ML and 

DL techniques have been applied in this field. Mammogram 

images can be processed using various algorithms to extract 

different features. For instance, Shastri et al. utilized a 

combination of HOG and HOT for feature extraction. They 

performed density-wise classification of mammogram 

patches retrieved from a medical application dataset, 

achieving an accuracy of over 92% [39].  

Mughal et al. classified breast masses using top-hat 

transformation and GLCM features, which improved the 

classification performance by reducing the false-positivity 

rate [40]. Ghasemzadeh et al. proposed a DDSM model, 

extracting textural features with the Gabor wavelet 

transform, applying different classification techniques, and 



Varsha Nemade et al. / IJEEE, 10(5), 102-119, 2023 

 

104 

achieving a mean accuracy of 0.939 [41]. Due to the 

variability in the size, shape, and texture of masses, there are 

similarities between benign and malignant masses, making 

diagnosis challenging [42, 43].  

Kaur et al. developed a DL-based approach using k-

means clustering for preprocessing and multiclass support 

vector machine (SVM) for classification, achieving 96.9%, 

93.8%, 89.7%, and 88.7% accuracy for SVM, KNN, LDA, 

and DT, respectively, on images obtained from the mini-

MIAS dataset [44]. Mohanty et al. designed a kernel extreme 

learning machine with a wrapper-based system to select 

essential features and predict mammogram outcomes, 

achieving 97.9% and 92.61% accuracy on the MIAS and 

DDSM datasets, respectively [45]. Yi et al. employed the 

GoogleNet system and an ensemble of 100 parallel networks 

to classify mammograms in the DDSM dataset, reporting 

85% accuracy and 0.91 AUC [46].  

Karthiga et al. proposed two approaches: transfer 

learning (TL) and a constructed CNN. They performed 

hyperparameter adjustments to decrease the number of 

parameters for training and layers, improve the feature 

extraction process, and increase classification performance. 

They achieved 95.95%, 99.39%, and 96.53% accuracy on the 

MIAS, DDSM, and INbreast datasets [32]. Ribli et al. 

introduced the Faster region-based convolutional neural 

networks (R-CNN) framework for object detection from 

mammogram images by adding a layer to create custom-

designed filters. They used a CNN with 16 layers to classify 

detected lesions as benign or malignant and achieved an 

AUC of 0.85 [47].  

Chougrad et al. performed multilabel image 

classification using a pre-trained CNN model on different 

mammogram datasets. They proposed a new fine-tuning 

strategy by applying different learning rates to each layer for 

learning specific features in the relevant layer. They achieved 

AUC values of 0.86, 0.89, 0.94, and 0.93 on the MIAS, 

DDSM, BCDR, and INBreast datasets [48].  

Yu et al. addressed the problem of overfitting 

encountered during the training of deep models by extracting 

small parts from the region of interest (ROI). They developed 

two fusion models based on TL models using VGG-16 and 

VGG-19 and obtained accuracies of 0.8906 and 0.875%, 

respectively [49]. Chakravarthy and Rajaguru performed 

breast cancer classification using an improved crow search 

algorithm to select optimized parameters for extreme ML. 

They achieved accuracies of 98.137%, 97.193%, and 

98.266% on the MIAS, DDSM, and INbreast datasets, 

respectively [50]. 

Yu et al. designed a low complexity lightweight deep 

CNN called DisepNet to extract features and classify breast 

abnormalities, achieving a mean accuracy of 95.60% [51]. 

Houby et al. proposed a malignant and nonmalignant 

classification of breast masses. They preprocessed the data 

by removing noise, enhancing images, determining the ROI, 

augmenting data to manage data imbalance, and resizing 

images. They used a CNN model with small filter sizes to 

save computational power and achieved an AUC of 0.945, 

0.924, and 0.946 on the MIAS, DDSM, and INbreast 

datasets, respectively [52].  

Saber et al. applied segmentation to extract affected 

patches, reducing training time. They used pre-trained CNN 

models such as VGG19, VGG16, Inception-v2, ResNet, 

Inception-v3, and ResNet50 for identifying breast cancer 

from images in the MIAS dataset and achieved 98.96% 

accuracy by applying the 80–20 method and 10-fold cross-

validation [53].  

Malebary and Hashmi employed boosting, CNNs, 

random forests, recurrent neural networks (RNNs), and K-

means clustering to increase accuracy. They addressed issues 

related to the semantic features of images and the extraction 

of patches in low-contrast images. The authors achieved 95% 

and 96% accuracies on the MIAS and DDSM datasets, 

respectively [54].  

Kulkarni et al. used various CNN architectures on 

different mammogram datasets. They evaluated the 

performance on smaller datasets and classified breast masses 

into malignant or benign using DenseNet with data 

augmentation, achieving 99.91% accuracy [55]. Oyetade et 

al. employed an improved deep CNN (DCNN) with fuzzy-

SVM (FSVM) to classify mammogram images into three 

classes (normal, benign, and malignant) and two classes 

(benign and malignant). They achieved 81.43% and 85% 

accuracy for the three-class classification on DDSM and 

CBIS-DDSM datasets, respectively, and 86.6% and 93% for 

the two-class classification on DDSM and CBIS-DDSM 

datasets, respectively [56].  

Haq et al. developed a DCNN using the feature fusion 

approach to identify mammogram abnormalities and classify 

them into regular and cancerous. They achieved an accuracy 

of 0.994 on the MIAS dataset [57, 58]. Mohapatra et al. 

utilized pre-trained weights and training from scratch to 

perform multi-class classification on the mini-DDSM dataset 

using CNN architectures, including VGG16, AlexNet, and 

ResNet50. They achieved 65%, 65%, and 61% accuracy for 

AlexNet, VGG16, and ResNet50, respectively [59].  

Houssein et al. employed a hybrid CNN with an 

improved marine predator’s algorithm (IMPA) optimization 

algorithm to detect abnormalities in breast masses. They used 

IMPA to get the best hyperparameters of the pre-trained 

model ResNet50 and achieved 98.32% and 98.88% 

accuracies on the CBIS-DDSM and MIAS datasets, 

respectively [60, 61]. Song et al. developed a CAD model for 
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mammogram classification on the DDSM datasets by 

extracting features using GoogleNet and Inception-v2 and 

manual feature extraction using GLCM and HOG. Features 

were classified using XGBoost and achieved an accuracy of 

92.8% [11]. Khan et al. used CNN architectures such as 

GoogleNet, VGGNet, and ResNet-50 to extract features and 

achieved an accuracy of 97.67% [62]. After reviewing the 

literature, it is evident that there is a demand for a model that 

can perform multiple tasks with automated feature extraction. 

Additionally, there is a necessity for a model that requires 

minimal computational power and avoids overfitting. 

3. Methodology  
We have developed a DL-based framework for 

classifying breast lesions from mammogram images. The 

proposed architecture uses a shallow, deep CNN and a 

pretrained Inception-v3 model. Figure 1 depicts the different 

architectures utilized in our framework. Specifically, Figure 

1a shows the shallow, deep CNN architecture, Figure 1b 

shows the architecture of the pretrained Inception-v3 model, 

and Figure 1c illustrates our proposed architecture for feature 

extraction using a combination of the shallow, deep CNN 

and Inception-v3 models, in addition to dimensionality 

reduction and classification. The major components of the 

proposed architecture are as follows: 

3.1. Datasets and Preprocessing 

We have used two mammogram datasets for the 

experiments. 

3.1.1. DDSM and CBIS-DDSM Datasets 

The DDSM and CBIS-DDSM (updated DDSM) 

mammography datasets were utilized in this study. Both 

datasets consist of both positive and negative images. 

Positive images correspond to individuals with cancer, while 

negative images represent healthy individuals. The CBIS-

DDSM dataset contains images of masses or calcifications 

and images from the DDSM dataset without any anomalies. 

CBIS-DBSM has 55,890 images containing patches of 

extracted ROI of size 299 × 299. The negative images from 

DDSM were tiled into 598 × 598 squares and then 

downsized to 299 × 299 squares.  

A small amount of padding and masks were used to 

extract ROIs from the positive (CBIS-DDSM) images. 

Subsequently, three 598 × 598 images were randomly 

generated by cropping each ROI, and those images were then 

randomly rotated and flipped. Two labels were used: 0 for 

negative and 1 for positive cases; 86% of the images are 

negative, whereas 14% are positive.  

This dataset is available on Kaggle [63] as TFRecords. 

The TensorFlow library was used to transform all images 

extracted from the TFRecords format to the .jpg format. 

Normalization was performed on the entire image to preserve 

a uniform range across all pixels and prevent bias. This 

dataset is highly unbalanced; thus, we oversampled the 

minority class. 

3.1.2. MIAS Dataset 

A UK research group organization created the MIAS 

dataset for the research purpose. MIAS has 322 digitized 

films with a truth mark by radiologists indicating the places 

of potential abnormalities; 208 of these images are 

considered normal, 68 are benign, and 54 are cancerous. 

These images were described by radiologists as follows: 

architectural distortion (19 cases), speculated masses (15 

cases), microcalcification (30 cases), circumscribed masses 

(25 cases), and bilateral asymmetry (15 cases). This study 

lowered this dataset to a 200-micron pixel, and clipping was 

performed so that every image was 1024 × 1024 pixels [64]. 

The labels used were 0 for benign and 1 for malignant. 

Flipping, rotation, and resize operations were applied to 

generate more images on the MIAS dataset. 

3.2. CNN Architecture 

3.2.1. Shallow Deep CNN 

We implemented a shallow, deep CNN comprising five 

convolutional, five max-pooling, a dropout and batch 

normalization layers. Figure 2 illustrates the architecture of 

shallow, deep CNN. The convolutional layers perform dot-

product operations between learnable parameters called 

kernels and the input image. The kernel size of every 

convolutional layer is 3 × 3 with different filters. The down-

sampling operation is done by the max-pooling layers on 

earlier layers to decrease the quantity of computing needed; 

the size of the max-pooling layers is 2 × 2.  

Fully connected (FC) layers display the complete links 

to all the neurons in the last layer. The previous layer output 

normalizes by the batch normalization layer. The dropout 

layer is used to minimize overfitting. Lastly, flattening and 

dense layers are used. We employed the rectified linear unit 

(ReLU) activation function to the middle layers, while for the 

output layer, we used the sigmoid function. We selected the 

Adam optimizer and binary cross-entropy as the loss 

function because the Adam optimizer offers a faster 

computational time and requires less parameter tuning than 

other optimization algorithms. 

3.2.2. Inception-V3 Architecture 

Compared to other architectures, the traditional 

Inception model has more layers but requires fewer 

parameters to be trained. It has a deep network with tunable 

blocks and convolutional filters ranging from 5×5 to 1×1n 

cascade. Inception-v3 has fewer parameters due to the 

factorization of more extensive convolution layers. Through 

changes in the original structure, Inception-v3 can also be 

used for small datasets [65]. The Inception-v3 [66] model 

can recognize 1000 classes due to its training on ImageNet 

datasets. 
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Fig. 2 Shallow, deep CNN architecture 

 

The error rate for the top-5 is 3.5%, whereas that for the 

top-1 is 17.3%. In this study, we added an FC layer to flatten 

the output of the previous layers and a dropout layer to 

reduce overfitting. We used the sigmoid function in the 

output layer, and the remaining ReLU function was used. In 

addition, the Adam optimizer with the binary cross-entropy 

loss function is used. 

3.2.3. Feature Extraction 

For performing the classification of mammogram 

images, the features must be extracted. We extracted features 

using the proposed hybrid shallow, deep CNN and pre-

trained Inception-v3 CNN model. In the shallow, deep CNN 

model, removing the output layer and extracting features 

were performed. In the pre-trained Inception-v3 model, all 

the layers except the output layer were removed, and features 

were extracted. Finally, the features extracted using the 

shallow, deep CNN and pretrained Inception-v3 CNN model 

were combined. 

3.3. Dimensionality Reduction using Infallible Euclidean 

Distance-Based Nonlinear Dimensionality Reduction (IE-

NDR) 

The features extracted using the shallow, deep CNN and 

Inception-v3 architecture were combined. IE-NDR was used 

to convert high-dimensional data into lower-dimensional 

data for dimensionality reduction. The flowchart of the 

proposed IE-NDR algorithm is shown in Figure 3. 
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Fig. 3 IE-NDR working flow 

3.3.1. Infallible Euclidean Distance 

Due to its efficiency and simplicity, Euclidean distance 

is widely used in image recognition algorithms and for image 

distance measurement. Assume         as two images of 

size M × B, E = (E_11, E_12, ……, E_SB), R = (R_11, 

R_12, ……, R_SB), (I = 1, 2, …, S, j = 1, 2, … B)  

conventional Euclidean distance, 

     (   )  *∑ (       )
   

         

 
+

 

 
,  

and     and     representing        , respectively. 

The conventional Euclidean distance only measures the 

variance of the corresponding two image pixels; however, 

when the image is slightly distorted or shifted, a high 

Euclidean distance is obtained, and errors might occur when 

measuring the image similarity. The coefficient matrix for 

infallible Euclidean distance measurement can be expressed 

as follows (Equation 1): 

Coefficient Matrix Λ:Λ  

= [
                  
                   

                 
]        

                                           ,                                

                                                                   (1) 

where     represents the function (     (|     |) 

related to the distance between the pixels, and |     | is 

the relative distance among the coordinates of     and     

pixels. The infallible Euclidean distance can be obtained 

using Equations 2 and 3: 

     (   )   ∑    ( 
    )   

         
(     ) (2) 

                     =(   )    (   )  (3) 

 

It has been discussed in complete exploration through 

Algorithm 1. More compact feature representation reduces 

the computational complexity. As such, the combined feature 

dimension was reduced using IE-NDR (Algorithm 2). 

3.4. Classification of Breast Cancer by using GI-CDT 
3.4.1. Gini Index (GI)  

GI is a statistical inequality index used for fault 

diagnosis. It is more effective compared with kurtosis and 

correlation in detecting repetitive signals. GI values are in the 

range of [0, 1] and exhibit higher sensitivity in differentiating 

between lower and higher values. The GI value can be 

obtained as follows (Equation 4): 
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| [ ]|
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+          (4)

  

Where, x=[x(1),……x(B)] with its element reordered and 

represented by x[k]  

For                where    is the    norm of x and 

| [ ]|  | [ ]|        | [ ]| (5) 

3.4.2. C4.5 Decision Tree Classifier 

For effective classification, in this study, the C4.5 DT 

classification algorithm was used because DT can produce 

recognizable rules, implement classification without any 

need for computation, manage categorical and continuous 

variables, and afford a clear representation of the relevant 

essential areas for prediction and classification. C4.5 DT 

produces a DT by learning from the training set. 

 

For C4.5 DT, the gain ratio is measured as shown in 

Equations (6) and (7): 
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Algorithm 1: Infallible Euclidean distance 

Step 1: Measure the Euclidean distance for all features in each class. 

For                               is, 

    
    (  

    
 )  √∑(   

     
 )

 
 

   

 

  = no. of samples containing every class 

Step 2:   matrix of size (  
(   )

 
  )  generate by presenting a one-one rule for all features in each class.  

               E    Λ: Λ = [
                  
                   

                 
]  (  (W×((w-1))/2×T)                                            
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respectively. (  
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Step 3: Measure the Euclidean distance between every matrix          , 
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Step 4: Calculate the size of the vector and mean as (  
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The index vector is  ,      is an index among             feature  

Step 5: Arrange the vector  , from higher to lower mean value along with the index, 
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Step 7: Combine the feature                     , 
Arrange the feature index as per          
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Step 8: according to               , feature ranking (U) is, 
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Algorithm 2: IE-NDR 
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Algorithm 3: c4.5 Decision tree classifier 

1. Create a       , 

2. If S Tuples belong to the same single class(C), then B is returned as leaf-node been labelled as         

3. if          seems empty, then B is returned to be leaf-node, which is labelled with the primary class within S. 

4.                           (        )  is applied to determine the best and most effective splitting -criterion; 

5.  Node B is labelled with that splitting criterion; 

6. if the attribute (splitting one) seems to be discrete-valued and permits multi-day splits, then define         

7. If utilised C4.5 classification algorithm, then the gain ratio ought to be calculated, 

8.           ( )  
    ( )

          ( )
  With            ( )  ∑

|  |

| |

 
     (

|  |

 
) 

9. For every outcome b of the above splitting criteria, let the set of data tuples in S is represented by   that satisfies 

node b outcome. 

10. if   depicted as empty then labelled lead is attached with high majority-class within S to B node. 

11. else the node is attached, which is obtained through generate-decision-tree(         ) to node B; 

12. return B; 
 

The C4.5 DT classifier algorithm is described in 

Algorithm 3. GI-CDT considers all possible outcomes of a 

decision and traces each path to a conclusion. It performs a 

comprehensive analysis of the results along each branch and 

identifies decision nodes that need further analysis. GI-CDT 

builds several trees from a single dataset and selects the best 

decision among the forest of trees. It improves the ID3 

algorithm by dealing with continuous and discrete attributes 

and pruning trees after construction. The workflow of GI-

CDT is shown in Figure 4. 

4. Results 
We conducted experiments on two mammography 

datasets, DDSM + CBIS-DDSM and MIAS. Our 

experiments involved binary classification of positive or 

negative cases on both datasets, with 80% of images used for 

training and 20% for testing. We used five-fold cross-

validation for evaluation, running 100 epochs with a batch 

size 32. The experiments used Python 3.7 in Google Colab 

Pro, utilizing an online GPU and 16-GB RAM. TensorFlow 

and Keras were used as backend libraries. To measure the 
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performance of the models, we evaluated accuracy, 

sensitivity, specificity, precision, recall, and ROC curve, 

enabling us to conduct a comparative analysis. 

Accuracy: It quantifies the rate of accurate classification and 

is expressed as follows: 

          
                           

                                                         
 (8) 

Sensitivity: It is the ratio of positive segments recognized 

correctly and is expressed as follows: 

             
             

                            
 (9) 

Specificity: It is the ratio of negative segments recognized 

correctly and is expressed as: 

             
             

                            
 (10) 

Precision: Precision is a measure of the number of correct 

classifications, and it is written as  

           
             

                            
 (11) 

Recall: It is the proportion of relevant and retrieved images 

to the number of relevant images, and it is represented as. 

        
                     

         
 (12) 

Where, "rel" stands for "relevant," "ret" stands for 

"retrieved,".  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Workflow of GI-CDT 

ROC: It represents receiver operating characteristics. It is 

measured by putting the number of actual favourable rates 

against the number of false favourable rates for the 

individual classifiers at different thresholds. The following 

part describes the experiments' results for the DDSM + 

CBIS-DDSM and MIAS datasets. 
 

4.1. DDSM + CBIS-DDSM Dataset 

In our experimentation, we utilized the DDSM + CBIS-

DDSM dataset, which includes two views (craniocaudal and 

mediolateral-oblique) and already-segmented images. Figure 

5 and Figure 6 illustrate the performance metrics achieved on 

the DDSM + CBIS-DDSM dataset. In the first experiment, 

we employed an end-to-end shallow, deep CNN model on 

unseen data from the dataset, achieving an accuracy, 

sensitivity, and specificity of 97.99%, 97.59%, and 98.4%, 

respectively. We used a pre-trained Inception-v3 model in 

the second experiment, modifying the output layer. On the 

dataset's unseen data, this model achieved an accuracy, 

sensitivity, and specificity of 96.07%, 95.52%, and 99.63%, 

respectively.  

The shallow, deep CNN model required less training 

time than the pre-trained Inception-v3 model (Table 1) and 

achieved higher accuracy. In the third experiment, a feature 

set was created. These features combined the features 

generated using our shallow, deep CNN and the pre-trained 

Inception-v3 model. The shallow, deep CNN model and 

Inception -v3 produced 128 and 1000 features, respectively. 

A single feature vector with 1128 features was created by 

combining these features. We used IE-NDR to minimize the 

feature space and the classification process complexity. 

Finally, for classification, GI-CDT was used. Figure 7 shows 

the feature space classification results. We minimized the 

number of features to 30, 40, 50, 60, 70, 80, 90, and 100 and 

achieved an accuracy of 99.41%, 99.52%, 99.51%, 99.46%, 

99.41%, 99.42%, 99.40%, and 99.39%, respectively. For 40 

features, we achieved the highest accuracy for the proposed 

architecture. 

4.2. MIAS Datasets 

In the MIAS dataset, image augmentation was 

performed to generate more images, and then binary 

classification (benign and malignant) was performed. In 

addition, three experiments were performed on this dataset, 

and the results were evaluated. Figure 8 and Figure 9 

compare different performance indicators on the MIAS 

dataset. In the first experiment on the MIAS dataset, an end-

to-end shallow, deep CNN was applied. This model was used 

on the dataset’s unseen data, and accuracy, sensitivity, and 

specificity of 95.53%, 98.19%, and 96.9%, respectively, 

were achieved. In the second experiment, a pre-trained 

Inception-v3 model was used by changing the output layer. 

This model was used on the dataset’s unseen data, and 

accuracy, sensitivity, and specificity of 89.32%, 87.91%, and 

90.6%, respectively, were achieved.  

Input Data 

Calculate Entropy (Total) 

Calculate Entropy and Gain Ratio of Each 

Attribute  (Using Gini Index) 

Compute Highest Gain 

Create Node 

Return the Node 
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The designed shallow, deep CNN model achieved higher 

accuracy than the pre-trained Inveption-v3 model; moreover, 

the training time of the shallow, deep CNN model was less 

than that of the pre-trained Inveption-v3 model (Table 2). In 

the third experiment, we constructed a feature set for the 

MIAS dataset using the same approach as that used for the 

DDSM + CBIS-DDSM dataset. We then utilized IE-NDR to 

reduce the large dimensions of the generated feature set and 

classified the reduced set using GI-CDT. Figure 10 presents 

the classification results based on the feature space. We 

reduced the number of features to 30, 40, 50, 60, 70, 80, 90, 

and 100, achieving accuracies of 97.33%, 97.53%, 97.00%, 

97.00%, 99.31%, 97.40%, 97.31%, and 99.37%, 

respectively. The proposed architecture achieved the highest 

accuracy on the MIAS dataset with 40 features. 

The figures in Figure 11 and Figure 12 depict the ROC 

curves for all three experiments conducted on both datasets. 

On the DDSM + CBIS-DDSM dataset, the AUC values for 

the three experiments were 0.98, 0.95, and 1.00, respectively. 

The proposed architecture that combined features had a 

higher AUC value than other DDSM + CBIS-DDSM dataset 

architectures. On the other hand, the AUC values for the 

three experiments conducted on the MIAS dataset were 0.98, 

0.89, and 0.97, respectively. The shallow, deep CNN 

designed in this study had a higher AUC value than other 

architectures on the MIAS dataset. The effectiveness of the 

proposed system was compared with existing systems, and 

the results are shown in Table 3.  

The comparison demonstrated that our system 

outperformed the competing systems. For example, 

Gnanasekaran et al. designed a CNN model that achieved an 

accuracy of 92.54% on the MIAS dataset, whereas our 

shallow, deep CNN achieved an accuracy of 97.53%. Our 

system's accuracy on the MIAS dataset was also higher than 

the models developed by Houby et al. [52] and Karthiga et 

al. [32]. Ragab et al. [67] used AlexNet, GoogleNet, ResNet-

18, ResNet-50, and ResNet-101 to extract and classify in-

depth features, achieving 97.40% accuracy on the MIAS 

dataset. Our system yielded slightly higher accuracy on the 

MIAS dataset, but the AUC value obtained using our system 

was slightly lower than that obtained by Ragab et al. 

Furthermore, the system proposed in this study achieved 

higher accuracy on the DDSM + CBIS-DDSM dataset than 

the improved CNN model developed for end-to-end training 

by Kumar et al. [68-70]. 

Table 1. Training time on the DDSM + CBIS-DDSM dataset 

Model Training Time(min) 

Shallow deep CNN Approx. 13-14 min for each fold 

Pre-trained InceptionV3 Approx. 18-19 min for each fold 

 
Table 2. Training time on the MIAS dataset 

Model Training Time(min) 

Shallow deep CNN Approx. 3-4 min for each fold 

Pre-trained InceptionV3 Approx. 5-6 min for each fold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Accuracy analysis for the DDSM + CBIS-DDSM dataset 
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Fig. 6 Class-wise performance measurement for different experiments on the DDSM + CBIS-DDSM dataset 

 
Fig. 7 Comparison of combined features accuracy on the DDSM+ CBIS-DDSM dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Accuracy analysis for the experiments on the MIAS dataset 
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Fig. 9 Class-wise performance indicators for different experiments on the MIAS dataset 

 
Fig. 10 Comparison of combined features accuracy on the MIAS dataset 

 

Fig. 11 AUC-ROC comparison for the DDSM + CBIS-DDSM dataset 
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Fig. 12 AUC-ROC comparisons for the MIAS dataset 

Table 3. Accuracy-based comparative analysis of the proposed hybrid architecture with traditional approaches 

Work Dataset Techniques Class Category 
Accuracy 

(%) 
AUC 

Gnanasekaran et 

al. [10] (2020) 

MIAS 

DDSM 
CNN 

3-class (Normal, Benign, 

Malignant) 

92.54 

96.47 

0.85 

0.96 

Houby et al. [52] 

(2021) 

INbreast 

MIAS 
CNN 

2- class (Malignant, 

Nonmalignant) 

96.52 

95.30 

0.98 

0.974 

Ragab et al. [67] 

(2021) 

CBIS-DDSM 

MIAS 
Deep features fusion 

2-class (Benign, Malignant) 

2-class (Normal, Abnormal) 

97.90 

97.40 

1 

1 

Karthiga et al. 

[32] (2022) 

MIAS 

DDSM 

Deep CNN and Pre-

strained model 
2- class (Benign, Malignant) 

95.95 

99.39 
 

Kumar et al. [70] 

2022 

DDSM+CBIS-

DDSM 
End-to-end CNN 2-class (Normal, Malignant) 97.20  

Proposed hybrid 

architecture 

MIAS DDSM+ 

CBIS-DDSM 

DeepCNN+InceptionV

3+ IE-NDR +GI-CDT 

2- class (Benign, Malignant) 

2-class (Positive, Negative) 

97.53 

99.52 

0.97 

1 

 

5. Discussion 
We implemented a hybrid CNN architecture to classify 

breast cancer using mammogram images. The architecture 

included a shallow, deep CNN, transfer learning, 

dimensionality reduction, and classification algorithms 

applied to the DDSM + CBIS-DDSM and MIAS datasets to 

achieve superior specificity, sensitivity, and accuracy 

performance. The findings are listed as follows: 

1. In the first experiment, we designed a shallow, deep CNN 

with five convolutional layers, five max-pooling layers, 

one batch normalization layer, and one dropout layer, 

which achieved an accuracy of 97% on the DDSM + 

CBIS-DDSM and MIAS datasets. 

2. In the second experiment, we used TL by replacing the 

last FC layer of the pre-trained Inception-v3 architecture 

with a new one for performing binary classification, 

which resulted in an accuracy of 96% and 89% on the 

DDSM + CBIS-DDSM and MIAS datasets, respectively. 

3. The designed shallow, deep CNN model achieved higher 

accuracy and required less training time than the pre-

trained InceptionV3 model. 

4. In the third experiment, we combined the features 

obtained using the first two experiments and applied IE-

NDR to minimize the feature space and complexity of the 

classification process. 

5. We used GI-CDT, which considers all possible outcomes, 

in the classification process. 

6. The combination of features using IE-NDR resulted in 

accuracy, sensitivity, and specificity of 99.52%, 98%, and 

99.63%, respectively, on the DDSM + CBIS-DDSM 
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dataset and 97.53%, 97%, and 98.05%, on the MIAS 

dataset. 

7. The proposed architecture, which utilized the designed 

shallow, deep CNN and combined features, achieved 

higher accuracy on the MIAS dataset than the traditional 

deep CNN model [10]. 

8. The proposed architecture yielded an AUC value 1.0 on 

the DDSM + CBIS-DDSM dataset. 

Further research can be conducted to explore different 

feature extraction techniques in combination with deep 

learning architectures. Different feature reduction techniques 

could also be investigated to enhance classification accuracy 

and feature selection. 

6. Conclusion 
In this study, we conducted three experiments to classify 

mammogram images and assess the efficiency of the 

proposed model using two different mammogram datasets. In 

the first experiment, we designed a shallow, deep CNN with 

lower complexity, followed by using a pre-trained 

Inceptionv3 model in the second experiment, which proved 

to be faster. In the third experiment, we combined the 

features extracted by the hybrid shallow, deep CNN and pre-

trained Inception-v3 model, using dimensionality reduction 

IE-NDR. The results indicate that the proposed model 

attained a high level of accuracy. Specifically, it yielded 

99.52% accuracy and 96% AUC on the DDSM + CBIS-

DDSM dataset and 97.53% accuracy and 97% AUC on the 

MIAS dataset. Our system is easy to construct, inexpensive, 

effective, and automated, and can assist medical 

professionals, especially radiologists, in analyzing breast 

cancer from mammograms. The proposed system is expected 

to reduce the time and energy required for testing and the 

number of diagnostic errors caused by human exhaustion. 
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