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Abstract - Mobile Ad Hoc Networks (MANETs) permit wireless communication terminals that establish communication 

networks at any time and from any location because they do not require any established infrastructure. As a result, MANETs 

have a high application potential and have become a popular study area in recent years. However, MANETs continue to 

confront many hard issues that significantly impact their performance and use in real-world scenarios. The two problems 

involved in handling MANET topology are scalability and energy limitation. In this proposed system, clustering and routing 

mechanism are employed to resolve these issues. The novel clustering algorithm based on Cascaded Artificial Neural Network 

and routing path selection uses hydridized Ant Colony Optimization (ACO), and Salp Swarm Optimization (SSO) is proposed 

to support massive mobile ad hoc networks. A novel clustering technique assists in solving routing protocol issues and 

improving scalability. Clustering in MANETs offers a robust technique that optimally deploys resources while ensuring 

network architectural integrity. To examine the proposed system, MATLAB software is used to run simulations. According to 

the simulation results, the MANET network performance factors such as throughput, Packet delivery ratio, delay, and Average 

energy have improved. 

Keywords - Cascaded Artificial Neural Network (CANN), Ant Colony Optimization (ACO) and Salp Swarm Optimization 

(SSO). 

1. Introduction 
MANET is one of the confidential network topologies 

that enable a collection of wireless devices to communicate 

without any supporting facilities. Due to its quick expansion, 

this technique is frequently utilised in many sectors, 

including the industrial and education sectors. Moreover, it is 

also used in the field of military and civil. The nodes in 

MANET are portable, and the connections are made in a 

wireless topology. Nonetheless, there are several restrictions 

on the network, such as the nodes’ transmission capabilities, 

limited energy, erratic node connections, bandwidth, and so 

many others. To boost the data transmission capacity of 

MANET and extend its lifespan, it is essential to choose an 

optimal routing and node for information processing and 

transmission. Commonly, MANET structures are classified 

into two categories, distributed and cluster network 

structures. Each node’s obligations are fair in a distributed 

network structure, and the network layout can be flexibly 

altered based on node mobility. However, in a clustering 

network, choosing the cluster-head node is a critical issue as 

cluster-head nodes perform superior to regular nodes, which 

calls for more powerful processing power and greater energy. 

Therefore, choosing cluster-head nodes are crucial in a 

clustering network. Clustering can solve issues with routing 

protocols, enhance the calibre of data transmission, and 

increase network scalability [1], [2]. In a MANET, clusters 

offer a dependable way to link mobile nodes and effectively 

distribute resources, as well as a network-layered basis to 

ensure the integrity of the MANET structure. A MANET’s 

primary characteristic is that it may be joined using a cluster-

based hierarchy and the division of a more extensive network 

into smaller subgroups. 

Clusters are the divisions of nodes into separate 

groupings. Data collection from one cluster’s members and 

transmission to another cluster are the responsibility of a 

cluster leader. In network administration as well as control, 

cluster heads are crucial. By performing clustering, the 

essential three issues are solved (a) network expansion, (b) 

communication staying within the cluster such that other 
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neighbouring clusters are oblivious of the communication, 

and (c) routing maintenance becoming much more 

straightforward, are all solved by clustering of mobile nodes 

[3]. To attain this, different algorithms are employed. One 

among the technique is Artificial intelligence. The benefits of 

this strategy include minimum time consumption in the re-

selection of cluster heads, which minimizes communication 

overhead and better cluster head node selection. However, 

the downfall involved is more energy consumption [4], [5]. 

Hence, the fuzzy logic system is used while choosing a 

cluster head for a wireless sensor network. It optimizes 

routing efficiently, whereas it limits the effective 

communication range of the sensor nodes [6], [7]. 

Hence, in this proposed system, an effective clustering 

technique is employed, which sorts out these issues and helps 

in efficient transmission, which in turn, to perform routing, 

an influential novel hybridized technique is used after 

performing the clustering approach. Routing is vital in 

different sorts of networks [8]. There are two primary 

methods for routing packets. The first is unicast, whereas the 

second is multicast. One-to-one communication between a 

source and a destination is referred to as unicast. Multicast is 

a one-to-many communication method in which the same 

source delivers the same packets to several destinations. 

Finding the shortest path between two network nodes is often 

the goal of the unicast routing issue, while the multicast 

routing problem entails finding the best tree that connects the 

source and all destinations [9]. Currently, both these routing 

approaches are addressed using intelligent optimization 

techniques. 

The SP routing problem seeks to minimize the overall 

cost of the path while determining the shortest route 

connecting two nodes at different points in a network. 

Several deterministic search algorithms exist to find the 

shortest path, such as the bellman Ford algorithm, Dijkstra’s 

algorithm, etc. They function well in wireless or wired 

networks with fixed infrastructure. However, they have an 

unacceptably high computational complexity for 

instantaneous communication with rapidly changing network 

topologies [10, 11]. Hence, in a dynamic network context, 

numerous effective methods were utilised to tackle the 

dynamic shortest path routing issue, including Particle 

Swarm Optimization (PSO), Salp Swarm Optimization 

Genetic Algorithm (GA), Ant Colony Optimization (ACO), 

[12].  

PSO determines the optimum solution; however, dealing 

with conditions such as boundaries is exceedingly difficult 

[13-15]. As a result, GA is utilized, which has the finest 

routing solution, but it operates on its own rules and is 

inapplicable to dynamic data sets [16-18]. To address all of 

these issues, ACO is established. ACO stores numerous 

travel paths in the routing table based on pheromone 

information and has minimal communication costs in wired 

and wireless networks [19-23]. However, in a network 

outage, the planned path becomes unsuitable in the optimal 

path. So, to solve this problem, the salp swarm algorithm 

[24], [25] is combined with ACO to determine the optimum 

route that causes the least time to travel between the origin 

and the node it will reach.  

 

 
Fig. 1 Proposed diagram 
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This proposed system aims to develop a new clustering 

approach where the cluster head is chosen based on the most 

crucial mobile ad hoc network characteristics, such as 

distance and received signal strength (RSS). A cascaded 

Artificial Neural Network (ANN) is employed to create a 

secure, reliable and energy-efficient routing method to 

perform clustering. The best channel for data transmission is 

then chosen, which decreases network latency and lengthens 

network lifetime using less energy. To choose the best route 

for data transfer, a hybridized optimization technique 

combines Ant colony and salp swarm optimization.  

The remaining sections are arranged as follows, a brief 

note about the proposed system is discussed in section 2, In 

part 3, and the clustering and optimum shortest path routing 

techniques are thoroughly presented. In section 4, the results 

and their discussion are completed. Finally, section 5 

concludes. 

2. Proposed System 
Due to the increased mobility in multimedia wireless 

networks, the network topology in MANET becomes more 

dynamic, which causes network congestion. An excess of 

communications inside a network also brings on congestion. 

Since routing is closely related to the internet and customer 

service quality, creating a more effective dynamic routing 

method is imperative.  Hence, in this proposed 

system, clustering is performed using a cascaded Artificial 

Neural Network to perform efficient routing, as indicated in 

Figure 1. In clustering, mobile nodes are gathered into 

clusters. A cluster head is chosen for each cluster, which 

makes routing maintenance easier. 

The routing path selection is carried out using a 

novel hybrid ACO-SSA method which assists to determine 

the shortest data transfer path between the source and the 

destination node. The hybridized approach reduces network 

latency and increases network lifetime using less energy. The 

efficacy of this proposed system is evaluated based on 

measures including throughput, end-to-end delay, average 

latency, energy consumption and packet loss. 

2.1. Clustering 

Clustering is a technology that organises nodes to 

simplify network management. Each cluster in the network 

has a cluster head responsible for managing it. Nodes serve 

distinct functions in clustering algorithms, and three different 

types of nodes exist such as 

• Cluster head nodes 

• Cluster gateway nodes 

• Cluster member node 

Cluster head nodes: A node that oversees cluster 

operations is known as the cluster head. There will be one 

cluster head node per cluster. It is mainly used to perform 

routing, which makes it more accessible.  

 

 
Fig. 2 Clustering  
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Cluster gateway nodes: A node is referred to as a 

gateway if two or more cluster heads can reach it. 

Common node: It is said to be a cluster member and 

serves no specific purpose. 

In MANET, source nodes that want to interact with the 

target nodes send or receive command messages, such as 

requests for routing and replies, to linked neighbour nodes. 

This operation is repeated until a path to the target node is 

discovered. The traditional routing technique produces a lot 

of control overhead in networks with many nodes or that are 

congested. To address the extra overhead, clusters are created 

by a collection of a few nodes, with routing begun by cluster 

head instead of standard nodes. As seen in Figure 2, when 

routes have been created, information transmission will now 

occur via cluster nodes rather than individual nodes. Once 

grouped into clusters, a cluster leader is chosen from among 

the moveable nodes. A cascaded artificial neural network 

performs clustering in this proposed system. Clustering in 

MANET is represented in Figure 2 

This work’s main objective is effective cluster head 

determination in challenging instances where nodes 

dynamically change their positions with their neighbours. 

The cluster head node has optimum characteristics such as 

throughput, energy, and strong cooperation between each 

cluster’s participants. The cluster head is selected after 

analysis of the cluster head nodes’ properties. This system’s 

goals include locating the appropriate cluster head, reducing 

the chance of overcrowding inside a cluster, and effortlessly 

creating other cluster heads. 

2.1.1. Cluster Head Selection using Cascaded ANN 

Based on the distance between nodes, mobile nodes are 

grouped. The nodes that have the least distance difference are 

grouped. After grouping, the cluster head is chosen to 

perform routing efficiently. The cluster head plays a vital 

role in routing path selection. Clustering in MANET using 

Cascaded ANN is represented in Figure 3; a cascaded 

artificial neural network is used to perform the cluster head 

selection. A simple artificial neural network’s performance is 

not much efficient for wide area network. Hence, the 

cascaded structure is employed to increase wireless 

communication’s transmission effectiveness. The cascaded 

ANN structure is as follows: cluster head is chosen for each 

cluster. The highest output value is taken to choose a cluster 

head and to find whether the model was trained adequately 

with minimum error; the chosen one is combined with the 

target output to determine the optimal result with high 

accuracy.

  

 
Fig. 3 Structure of cascaded ANN 
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Table 1. Input parameter values 

Parameters N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 MAX 

Energy 50 45 80 70 60 75 95 40 85 55 100 J 

Node degree 5 4 3 2 2 7 8 9 6 10 10 nodes 

Mobility 20 9 8 12 13 19 8 16 14 7 20 m/s 

Packet drop 200 150 120 180 170 175 125 100 160 140 200 packets 

Table 2. Value of normalized input 

Parameters N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

Energy 0.52 0.47 0.84 0.73 0.63 0.78 1 0.42 0.89 0.57 

Node degree 0.5 0.4 0.3 0.2 0.2 0.7 0.8 0.9 0.6 1 

Mobility 1 0.45 0.4 0.6 0.65 0.95 0.4 0.8 0.7 0.35 

Packet drop 1 0.75 0.6 0.9 0.85 0.87 0.62 0.5 0.8 0.7 

Target value 0.306 0.421 0.121 0.142 0.349 0.48 0.736 0.266 0.547 0.661 

 

To perform cluster head selection, the steps are as follows 

Step 1 : Initially, the input parameters are taken into 

consideration. The input parameters are  

• Packet drop (PDN) 

• Mobility (MN) 

• Energy (EN) 

• Neighbour of node (NDN) 

Step 2 : After considering the input, the weights are 

allocated to each parameter. Weighting the input 

variables when choosing the cluster head will 

ensure the maximum final goal value. Such input 

values imply that although access and packet loss 

should be reduced, energy and neighbour nodes 

should be increased. 

Step 3 : Assume an example data set of 10 nodes, and 

equation 1 shows the weights for the input 

parameters,  

𝑊1(𝐸𝑁) = 0.3, 𝑊2(𝑁𝐷𝑁) = 0.3, 𝑊3(𝑀𝑁) =
0.2, 𝑊4(𝑃𝐷𝑁) = 0.2      (1) 

Here, 𝑊1 + 𝑊2 + 𝑊3 + 𝑊4 = 1 

Step 4 : Table 1 displays the values of the input parameters 

for the five nodes. 

Step 5 : The input values are normalized, and it is shown in 

Table 2.  

Step 6 : After normalizing, the target value is computed for 

given inputs by the below formula. 

Target value = Energy*W1 + Node degree*W2+ (1-Mobility)  

*W3+ (1-packet drop)*W4       (2) 

Step 7 : By step 6, the target values are computed, 

represented in Table 2.  

Step 8 : The neural network works based on the given 

parameters and automatically trains and optimizes 

the network. Nodes, which are synthetic neurons, 

are created from these factors. Input, hidden, and 

output layers are the three components that make 

up a neural network. The total of concealed layers 

can vary depending on the optimization needed. 

Nodes in each layer represent the artificial neurons. 

The input layer’s nodes are chosen based on the 

number of inputs provided. Four nodes will be 

chosen for the input layer if four inputs are present. 

Figure 4 depicts the training paradigm between the 

three layers is shown in Figure 4. 

Step 9 : Forward pass: The neural network predicts an 

output after receiving inputs (xi) and weights from 

the input layer. The total net input is determined 

using the formula shown in the equation. 

𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡 = ∑ 𝑤𝑖 ∗ 𝑥𝑖     (3) 
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𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡 = 𝑤1 ∗ 𝐸𝑁𝑖 + 𝑤3 ∗ 𝑁𝐷𝑁𝑖 + 𝑤5 ∗ 𝑀𝑁𝑖 + 𝑊7 ∗ 𝑃𝐷𝑁𝑖

    (4) 

𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡 = 𝑤2 ∗ 𝐸𝑁𝑖 + 𝑤4 ∗ 𝑁𝐷𝑁𝑖 + 𝑤6 ∗ 𝑀𝑁𝑖 + 𝑤8 ∗ 𝑃𝐷𝑁𝑖   

    (5) 

Step 10 : To produce the output, the logistic function 

simplifies the input. 

𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1 =
1

1+𝑒−𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1
        (6) 

𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡2 =
1

1+𝑒−𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡2
        (7) 

Step 11 : The outcomes from the hidden layer neurons are 

supplied into output layer neurons as inputs in a 

subsequent iteration of this process. 

Step 12 : A squared error function is used to calculate the 

error of each outcome neuron, and the combined 

errors are then totalled to determine the total 

error. Providers of the squared error function 

include, 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2             (8) 

Step 13 : The neural network’s total error is computed by 

adding up all the errors shown in equations 9, 10 

and 11 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑜𝑢𝑡𝑝𝑢𝑡1 + 𝐸𝑜𝑢𝑡𝑝𝑢𝑡2      (9) 

𝐸𝑜𝑢𝑡𝑝𝑢𝑡1 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡01 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1)

2
   (10) 

𝐸𝑜𝑢𝑡𝑝𝑢𝑡2 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡02 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡2)

2
     (11) 

Step 14 : Substituting equations 10 and 11 in equation 9, the 

yielded equation is provided below,  

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡01 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1)

2
+

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡02 −

𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡)
2

    (12) 

Step 15 : Backward pass: The network’s loads are adjusted 

via backpropagation when determining the overall 

error to make the actual output more closely 

resemble the target value. This minimizes error 

for both the network as a whole and for each 

output neuron. Backpropagation takes partial 

derivative of 𝐸𝑡𝑜𝑡𝑎𝑙  With respect to the supplied 

weights. 

Step 16 : Chain rule application at the output level denoted 

below,  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊9
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
∗

𝜕𝑂𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1
∗

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1

𝜕𝑤9
    (13) 

Repeat the same to find the weight W10 

Step 17 : Similarly, the chain rule is applied at the hidden 

layer as given in equation 14. 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑛
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝐸𝑡𝑜𝑡𝑎𝑙
∗

𝜕𝑂𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1
∗

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1

𝜕𝑤𝑛
    (14) 

The same equation is used to find other weights in the hidden 

layer where n=1to8. 

Step 18 : The overall error change is computed with 

respect to the output is, 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡01 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1)

2
+

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡02 −

𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡2)
2
            (15) 

The output (o1) fluctuates in proportion to its overall net 

intake, as shown by the computation below. 

𝑂𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1 =
1

1+𝑒−𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1
     (16) 

𝑂𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡2 =
1

1+𝑒−𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡2
     (17) 

After performing partial differentiation in equation 13 

concerning outoutput1 yields equation (18). 

𝜕𝐸𝑡𝑜𝑡𝑎;

𝜕𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡1
= −(𝑡𝑎𝑟𝑔𝑒𝑡01 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1)   (18) 

In the same way, the differentiation is applied in 

equation 6 in relation to netinput1, which is provided in 

equation 19.  

𝜕𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1
= 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1(1 − 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1)    (19) 

Overall net input of output1 alters in relation to weights. 

Step 19 : Apply partial differentiation in (6) and (7) with 

regards to the corresponding weights yields the 

(20) 

𝜕𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡1

𝜕𝑤𝑛
= 𝑜𝑢𝑡𝑜𝑢𝑡𝑝𝑢𝑡1   (20) 

The total error is computed by applying the values of 17, 18 

and 19 in equation 8, which gives, 

For each weight,  
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑛
 is computed. Where n=1to10. 
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Step 20 : Next, to reduce the error,  
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑛
 partial total is 

deduced from the actual weight results which 

yields the equation 21. 

New weights are: 𝑊𝑛
+ = 𝑊𝑛 + 𝜇 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑛
  (21) 

In the algorithm above, in the hidden layer and output 

layer, the sigmoid function is used to activate. Neural 

networks train themselves and update weight following 

calculating errors in output neurons using a backpropagation 

algorithm based on the input samples. Here, the N8 node is 

selected as the head of the cluster for this analysis. The 

cluster head node is the node (sample) with the highest 

output value. When the final output closely resembles the 

node’s goal value, it is deemed that the model was correctly 

trained and the error was minimal. 

2.2. Shortest Path Routing using Hybridized Approach 

The Ant Colony and Salp Swarm optimization 

algorithms are coupled in the proposed work to find the best 

routes in MANET routing. The two algorithms are the most 

effective and competent in swarm intelligence. All of the 

parameters of both the ACO and SSA algorithms are used in 

the presented technique. The suggested strategy takes 

advantage of SSA to improve the qualities of the ACO 

algorithm. A novel swarm intelligence approach named SSA 

is inspired by the swarm foraging behaviour of sea salps, and 

the distinct chain structure of SSA has a beneficial impact on 

enhancing the algorithm’s accuracy, speed of convergence 

and strong searchability, which these benefits assist in 

improving the ACO method to discover the shortest path or 

route. Not only does the suggested approach reduce the 

number of paths in the ACO, but it also discovers the 

shortest path among the wide network. The hybrid algorithm 

outperforms the standalone ACO and SSA algorithms. The 

hybrid ACO-SSA technique’s flowchart is shown in Figure 

6, and the steps to choose a routing path are listed below. 

1. Initialize the ACO parameters. 

2. Construct Ant solutions utilizing pheromone testing 

based on bandwidth and residual node energy after 

initialization. 

3. Update the number of pheromones. 

4. If the maximum number of iterations is attained, move 

on to step 5; otherwise, move on to step 2. 

5. A set of routes that the Ant agents have discovered is 

produced. 

6. The salp chain population is initialized after the set of 

paths is discovered.  

7. Evaluate the fitness function to find the optimal solution 

8. Identify an ideal search agent 

9. Revise the ranking of the most prominent salp and 

followers.  

10. Adjust the salps based on the variable’s upper and lower 

boundaries. 

11. Repeat the steps from 7 to 11 until the optimum solution 

is found to determine the shortest path selection. 

12. Terminate. 

2.2.1. Ant Colony Optimization 

ACO is a metaheuristic method created to address 

challenging combinatorial optimization issues. Pheromone is 

left behind by real ant colonies on the trails they travel as 

they look for food sources. A path will likely be reinforced if 

other ants in quest of food detect the pheromone along it and 

follow it rather than wandering off in random directions. A 

path’s pheromone concentration will rise as more ants travel 

it, increasing the likelihood that other ants will choose it over 

others. Conversely, fewer ants will likely follow the trail 

when the pheromone wears off over time. The pheromone 

dissipates more quickly the farther the distance is between 

the food source and its home.  

 
Fig. 4 Workflow of ANN 
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Fig. 5 Set of routes discovered by ants 

The pheromone concentrations, therefore, stay higher on 

the shorter pathways. As a result, the journey’s length and 

the food supply’s calibre largely determine the degree of 

pheromone laid. The experimental setup shown in Fig. 5 

exemplifies how ants would behave in the abovementioned 

situation. In Figure 5(a), an ant-made trail between the hive 

(E) and an energy supply (A) is shown. On the passage being 

blocked by a barrier, as in Figure 5(b), The location B ants 

travel from point A to E while the ants at D location 

travelling along point E-A must decide between the paths 

that go through points C or H. Since neither of the two other 

pathways has ever had a pheromone trail, it is equally 

probable that the first ants to arrive at these spots will choose 

either way. As route BCD is faster than path BHD, the ant 

which picked the road via point C will arrive at point D 

before the ant that chose the road through point H. The track 

on path DCB will be more robust for an ant travelling from 

point D to point E. As a result, path DCB will have a higher 

selection chance than path DHB. The number of pheromones 

on path BCD will rise more quickly than the number of 

pheromones on road BHD because more ants will follow 

path BCD per unit of time and because of the evaporation 

factor. 

2.2.2. Salp Swarm Algorithm 

SSA mimics the swarming and navigation behaviours of 

oceanic salps to find meals. There are two tiers of hierarchy 

in a salp chain: leaders and followers. The swarm is led by 

the leader, who is in the lead as they navigate across a 

multidimensional search space in search of the optimum food 

source for the optimization issue. SSA begins using arbitrary 

responses and iterative analysis to ascertain each salp’s 

optimal fitness by scouring and using the search space. The 

mathematical modelling of the salp swarm algorithm is 

represented below,  

The following equation is used to update the leader’s 

salp location following the distance between the salp and 

food supply 

𝑥𝑖
1 = {

𝐹𝑖 + 𝑟1((𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑟2 + 𝑙𝑏𝑖)𝑟3 ≥ 0

𝐹𝑖 + 𝑟1((𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑟2 + 𝑙𝑏𝑖)𝑟3 < 0
  (22) 

𝑋𝑖
1 indicates the position of leader in 𝑖𝑡ℎ place. 

𝐹𝑖 indicates the position of food sources in 𝑖𝑡ℎ place. 

𝑢𝑏𝑖 , 𝑙𝑏𝑖 represents the position of the upper and lower bound 

in 𝑖𝑡ℎ place. 

𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 are the random numbers. 

In search space, the parameter 𝑟1stabilizes exploration and 

exploitation where 𝑟1 is given by, 

𝑟1 = 2𝑒−(
4𝑙

𝐿
)

2

      (23) 

L and l denote the most iterations and the most recent 

iteration, respectively. 

By using Newton’s law of motion, the follower’s position is 

updated by,  

𝑥𝑖
𝑗

=
1

2
𝑎𝑡2 + 𝑉0𝑡      (24) 

𝑥𝑖
𝑗
 represents the follower of j in 𝑖𝑡ℎ dimension. 

The initial speed is represented by 𝑉0 

t represents the time of iterations. 

The flowchart of the hybrid ACO-SSA algorithm is 

presented below. 

E                                        E                                               E 

A                                        A                                              A 
(a)                                        (b)                                             (c) 

A 

H        Obstacle        C   

 

H        Obstacle        C   
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Fig. 6 Flowchart of hybrid AC0-SSA
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Fig. 7 Possible routes from source node to target node 

 
Fig. 8 Delay in each node between the source and destination 

 
Fig. 9 Selected path from source to destination 

N1 is the source node, and N11 is the destination node in 

the sample topology shown in Figure 7. It outlines the 

potential route the ACO algorithm picks. Initial populations 

for SSA are created using these paths. The delay among the 

origin and the final point is shown in every node in Figure 8.  

The SSA algorithm calculates these delays to choose the 

path with the least delay between the source and the 

destination. The SSA method chooses the best path by 

calculating the fitness function, which includes metrics like 

delay and the hop count between the source and destination 

nodes. 

In Figure 9, N1 transmits data to the N11 destination 

node utilizing the N5, N6, and N7 pathways. The ACO 

algorithm chooses the pathways between N1 and N11 nodes. 

The SSA algorithm receives a population that is a chosen 

path from the ACO algorithm. Each chosen pathway has the 

same hops between the source and destination nodes.  

The SSA algorithm calculates the latency between the 

hop and the destination node to address this issue. The SSA 

algorithm updates the node’s position and velocity in 

addition to computing fitness functions utilizing latency and 

hop count as metrics. The SSA approach selects the route 

with the least amount of time between the source and 

destination nodes. 

3. Results and Discussion 
Due to the increased mobility in wireless networks, the 

network topology in MANET becomes more dynamic, which 

causes network congestion. Since routing is directly related 

to internet and consumer service quality, improving dynamic 

routing strategies for multimedia wireless networks is 

critical. Therefore, a novel hybrid ACO-SSA and cascaded 

ANN clustering are used to achieve an efficient dynamic 

routing approach in wireless networks. Matlab software is 

used to implement the simulation.  

3.1. Energy Dissipation of Cluster Heads 

The graphical depiction of Cluster Heads’ energy 

dissipation is shown in Figure 10. It is clear from the graph 

that the energy levels of the nodes serving as Cluster Heads 

are not dropping off quickly. In the network, Cluster Heads 

are in charge of the majority of the tasks being carried out, 

i.e., Network administration uses more energy than regular 

nodes perform. Thus, it can be inferred from the preceding 

graph that less energy dissipation results in a longer network 

life. The proposed novel hybrid algorithm is empirically 

evaluated and compared to several optimization methods in 

many aspects, detailed below. Table 1 shows the parameters 

utilized for simulation in the MATLAB software. 
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3.2. Latency 

Latency is the time taken to reach the data to its 

destination across the network. In Figure 11, the proposed 

hybrid algorithm’s latency is analogized with other 

algorithms such as Particle Swarm Optimization (PSO), Ant 

colony optimization (ACO) Genetic Algorithm (GA), and 

Salp Swarm Algorithm (SSA). The graph demonstrates that 

other optimization strategies lag behind the hybrid ACO-

SSA approach. This hybridized method is more effective 

than other methods because it takes less time to transmit 

packets to their destination.  

3.3. Jitter 
Jitter is defined as intermittent delays during data 

transmission. It is caused by network congestion, poor 

queuing, or delays between packet transfers. The minimum 

number of jitter results in the best network performance. In 

Figure 12, a Comparison is made between proposed hybrid 

algorithm with other optimization approaches to measure the 

network performance. The graph shows that the hybrid 

algorithm outperforms the other methods as it takes the least 

intermittent delays during data transfer. 

 
Fig. 10 Energy dissipation graph of cluster heads 

 
Fig. 11 Latency 

 

3.4. Packet Delivery Ratio 

It measures the number of packets transmitted by the 

source to the number of packets obtained by the destination. 

A comparison of the packet delivery ratio is represented in 

fig. 13. The graph shows that the proposed hybrid algorithm 

attains the topmost position in the packet delivery ratio 

compared to other approaches. Hence it is more effective 

than other algorithms. 

 
Fig. 12 Jitter 

 
Fig. 13 Packet delivery ratio 

 
Fig. 14 Average energy 
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Table  3. Energy dissipation of cluster heads 

Cluster Head Node ID 5 6 7 13 16 22 

Round 1 0.4218 0.6552 0. 6782 0.7075 0.7514 0.9141 

Round 43 0.4035 0. 6421 0. 6671 0.6664 0.7216 0.9005 

Round 71 0.3980 0. 6345 0. 6543 0.6321 0.7105 0.8875 

Round 99 0.3876 0.6249 0. 6421 0.0000 0.6934 0.8765 

Table  4. Throughput comparison 

Number of Nodes PSO GA SSA ACO Hybrid ACO-SSA 

20 210 215 225 236 250 

40 198 208 216 220 236 

60 186 198 204 210 228 

80 180 185 196 199 204 

 

3.5. Throughput 

The throughput analysis of the proposed hybrid 

algorithm is analogized in Table 4. Throughput is the number 

of packets reaching the destination within a given interval. It 

is measured in Kbps. The graph shows that the proposed 

hybrid algorithm’s clustering behaviour significantly 

increases its throughput over the other techniques. 

3.6. Average Energy 

One of a network’s properties is its energy usage. 

Maintaining the node’s energy level throughout the 

transmission is a challenging task. The average energy of the 

proposed hybrid ACO-SSA is compared with other 

approaches, such as PSO, GA, ACO and SSA, represented in 

Figure 14. The graph shows that energy consumption is 

reduced by using a proposed hybrid algorithm. As a result, 

the hybrid strategy outperforms the other alternatives. The 

efficacy of the proposed system is calculated based on 

latency, jitter, packet delivery ratio, throughput and Average 

delay. The hybrid approach generates the best output in all 

these metrics to convey data from the source to the 

destination. 

4. Conclusion 
The suggested study aims to create an efficient dynamic 

routing strategy for wide-area networks. In order to 

accomplish effective routing, clustering and cluster head 

selection are formed using cascaded ANN. Following 

clustering, hybrid ACO-SSA is used to find the best path to 

perform routing. Network Simulator (NS2) is used to 

implement a simulation. Regarding several variables, the 

suggested model is empirically evaluated and contrasted with 

PSO, GA, SSA, and ACO. Based on the findings, other 

optimization algorithms have a higher delay than the 

hybridized approach. The hybrid ACO-SSA algorithm is 

faster than the other protocols at delivering packets to their 

intended locations. Utilizing a hybrid method reduces the 

routing protocol, packet loss, and energy usage to some 

extent. The suggested unique hybrid algorithm’s throughput 

is higher than conventional protocols due to its clustering 

characteristic, and its average delay is the least packet 

forwarding latency. The proposed method is, therefore, more 

effective than other protocols. 
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