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Abstract - Wireless sensor Networks operating in dense forest environments, LoRa LPWAN systems, face significant 

challenges due to dense foliage and obstructions. Accurate path loss models are crucial for designing and optimizing such 

systems. This research article presents a comparative analysis of three path loss models, namely Lee, Dual Slope, and ITU-R 

P.833, for a LoRa LPWAN system deployed in dense forest monitoring applications. The performance of these models is 

evaluated based on their ability to predict signal strength in challenging forest environments. Field measurements are 

conducted in a dense forest area, capturing various characteristics using a simulation approach such as SINR, Attenuation, 

path loss exponent and foliage densities. The obtained simulated data is used to validate and compare the path loss models 

against the measured results. The analysis considers distance, antenna heights, and environmental conditions specific to dense 

forests. The results provide insights into the suitability and accuracy of the path loss models, aiding in designing and 

optimising LoRa LPWAN systems for effective monitoring in dense forest environments. This study contributes to 

understanding path loss modelling in challenging forest scenarios and enables informed decision-making in deploying 

wireless communication systems for forest monitoring applications. A thorough comparison of three path loss models for 

LoRa LPWAN systems in dense forest environments has been presented. 

Keywords - Dense forest monitoring, Dual slope model, ITU-R P.833 model, Lee model, LoRa-LPWAN, Path loss models, 

Signal attenuation, Spreading factor. 

1. Introduction 
Dense forest environments present unique challenges for 

wireless communication systems, particularly in the context 

of monitoring applications. Effective monitoring of dense 

forests requires reliable and robust wireless connectivity to 

transmit critical data and enable real-time analysis [1, 2]. 

Low Power Wide Area Network (LPWAN) techniques, such 

as LoRa (Long Range), have emerged as promising solutions 

due to their long-range capabilities, low power consumption, 

and suitability for Internet of Things (IoT) applications[3, 8, 

9]. However, deploying a LoRa LPWAN system in dense 

forest areas poses significant challenges due to dense foliage, 

which causes signal attenuation and degradation due to path 

loss. Accurate path loss prediction is essential for designing, 

deploying, and optimising wireless communication systems 

in dense forest monitoring scenarios[16].  

Path loss models are crucial in estimating the signal 

strength at different distances and locations within the forest. 

Several path loss models have been proposed in the 

literature, each offering varying levels of accuracy and 

applicability to different environments. In this research 

article, we compare the performance of three path loss 

models, namely Lee, Dual Slope, and ITU-R P.833, for a 

LoRa LPWAN system in dense forest monitoring. The Lee 

model is widely used in wireless. 

Communication applications consider terrain features, 

but their accuracy in dense forests is uncertain. The Dual 

Slope model incorporates line-of-sight and non-line-of-sight 

components, offering improved accuracy. The ITU-R P.833 

model, developed by the International Telecommunication 

Union, is designed explicitly for point-to-area predictions 

and accounts for environmental factors [10-14].  

This study aims to evaluate and compare the suitability 

and accuracy of these path loss models. The measured data is 

then used to validate and compare the predictions of the path 

loss models. The findings of this research will provide 

valuable insights into the performance of path loss models 
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for LoRa LPWAN systems in dense forest environments. 

These insights will aid in designing, optimising, and 

deploying wireless communication systems for effective 

monitoring and data transmission in dense forest 

applications. By enhancing our understanding of path loss 

modelling in challenging forest scenarios, this study 

contributes to advancing wireless communication technology 

in the context of forest monitoring [16].  

The rest of the paper is organized as follows. Section 2 

provides an overview of the related work in path loss 

modelling. Section 3 describes the methodology used for 

field measurements and data collection. Section 4 presents 

the design of the simulation experiment and mathematical 

modelling used to investigate the parameter of the path loss 

model. Section 5 discusses the results and implications of the 

findings and their significance for dense forest monitoring 

applications. Finally, Section 6 concludes the paper and 

outlines future research directions. 

2. Related Work 
The performance analysis of the Path Loss model using 

LoRa LPWAN demonstrates its effectiveness in providing 

long-range communication with low power consumption [1-

6]. Using SX1278 LoRa in forest monitoring showcases its 

remarkable performance and suitability for this specific 

application. The technology's long-range capabilities enable 

seamless communication over vast and obstructed forest 

areas, making it an ideal choice for monitoring remote and 

hard-to-reach locations.  

The low power consumption of the SX1278 LoRa 

module ensures prolonged battery life for monitoring 

devices, minimizing the need for frequent maintenance or 

battery replacements in challenging environments[18]. Its 

ability to penetrate foliage and obstacles allows for reliable 

data transmission, enabling real-time or periodic updates on 

environmental parameters such as temperature, humidity, and 

air quality.  

However, potential limitations like interference from 

other wireless devices or signal attenuation in dense 

vegetation should be considered during implementation[7]. 

Overall, SX1278 LoRa demonstrates great promise in 

enhancing forest monitoring efforts by providing an efficient, 

cost-effective, and robust communication solution in such 

critical ecosystems [10, 12, 19]. 

The study thoroughly examines the accuracy and 

reliability of the path loss model, which is essential for 

estimating signal attenuation and coverage prediction in 

LoRa networks.  The author reviewed the basic models in 

this research work: Lee, Dual Slope and ITU-RP. The 

detailed description mentions;  

Lee Model: The Lee path loss model is widely used in 

various wireless communication systems due to its simplicity 

and effectiveness. Lee’s model considers the effect of path 

loss due to both free space loss and shadowing caused by 

obstacles in the environment. However, the Lee model may 

not accurately capture the path loss characteristics in dense 

forest monitoring scenarios, where the foliage and trees 

create additional obstructions. Several studies have reported 

that the Lee model tends to underestimate path loss in dense 

forest environments [10, 11, 15].  

Dual Slope Model: The Dual Slope path loss model 

addresses the challenges posed by non-line-of-sight (NLOS) 

environments, making it suitable for dense forest monitoring 

applications. This model incorporates two path loss slopes, 

one for the line-of-sight (LOS) component and another for 

the NLOS component. By accounting for the scattering and 

diffraction effects caused by trees and foliage, the Dual Slope 

model has demonstrated improved accuracy in predicting 

path loss in dense forest scenarios [12-16]. 

ITU-R P.833 Model: The ITU-R P.833 model is a 

widely accepted path loss model for terrestrial fixed services 

and has been extensively used for coverage analysis in 

various environments. However, its applicability to dense 

forest monitoring with LoRa LPWAN systems is relatively 

limited. The ITU-R P.833 model does not explicitly consider 

the effects of tree and foliage attenuation, which are crucial 

in accurately characterizing path loss in dense forest 

environments. Hence, its accuracy may be compromised 

when deployed in such scenarios [15-17]. 

Comparative Analysis: Several comparative studies have 

been conducted to evaluate the performance of these path 

loss models in dense forest monitoring for LoRa LPWAN 

systems.  

Overall, the Dual Slope model has shown superior 

accuracy to the Lee and ITU-R P.833 models in capturing the 

complex propagation characteristics in dense forest 

environments. The Dual Slope model accounts for the 

significant effects of scattering and diffraction caused by 

trees and foliage, leading to more reliable path loss 

predictions [10-17]. 

3. Materials and Methods 
3.1. Study Area Selection 

The measured region's forest geographical and 

meteorological data, as shown in Figure 1 (Near Village: 

Hingna, district: Nagpur, State: Maharashtra, Country India), 

is collected using Low Power Wireless Area Network 

(LPWAN). The temperature, relative humidity and acoustic 

sensor value to detect unethical activity are measured for 

forest monitoring [17]. 

 



Sagar R. Pradhan et al. / IJEEE, 10(7), 116-124, 2023 

 

118 

3.2. WSN Deployment 

3.2.1. Architecture 

By carefully considering sensor selection, placement, 

network architecture, and data collection procedures, the 

wireless sensor network deployment ensures the availability 

of accurate and reliable data transmission [17]. Figure 2 

shows the basic block diagram of single-node architecture.  

3.2.2. Network Configuration 

The forest monitoring system incorporates the controller 

ESP8266 development board, DHT, Acoustic sensor and 

LoRa SX1278 module for long-range communication. The 

Node-MCU board help coordinate the data acquisition and 

transmission processes. The DHT sensor provides valuable 

environmental data. The sensor nodes (N1, N2, N3 and N4) 

are deployed at a distance of 400m, 800m, 750m and 300m, 

respectively. The data packets are received by a central 

gateway, where further processing and analysis take place 

using the Thingspeak IoT Platform [17]. 

Table 1 provides the Sensor node Numerical value for 

mathematical modelling and theoretical calculation. 

Implementation of Lee, Dual Slope, and ITU-R P.833 path 

loss models simulated using MATLAB 2021b programming.  
 

 
  Fig. 1 Meteorological location of the study conducted 

 

 

 

 

 

 

 

 

 

Fig. 2 Single node architecture 
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Table 1. Sensor node specification (experimental value) 

Sr. No Parameter Values Reference 

LoRa SX1278 

01 Operating Frequency (f) 433 MHz 

[21] 02 Antenna Transmitter Gain (GTX)[19, 20] 20 dBm 

03 Antenna Receiver Gain (GRX)[19, 20] -148 dBm 

04 
Average Antenna Height  

(both transmitter and Receiver) (h) 
3 m Experimental Setup 

05 Distance (d) 

d1 400 m 

Refer Figure 1 
d2 800 m 

d3 750 m 

d4 300 m 

06 Data Rate 

0.3 Kbps 

to 

50 Kbps [21] 

07 Bandwidth 125 KHz 

Microcontroller (Node MCU) 

08 
Energy 

Consumption 

Active Mode 0.5 J As per mathematical 

calculations from the 

datasheet 

Idle Mode 0.5 J 

Sleep Mode 0.3 J 

4. Mathematical Modelling  
To estimate the performance of Low Power Wide Area 

Networks (LPWAN) in dense forest monitoring, we can 

consider a mathematical model that considers various factors 

such as signal propagation, path loss, interference, and data 

rate. The path loss model breaks down into different 

components: 

4.1. Signal Propagation Model 

4.1.1. Free Space Path Loss (FSPL) Model 

This model estimates the loss of signal strength as the 

signal propagates through space without any obstacles. 

The FSPL is given by the equation 

FSPL(d) = 20log10(d) + 20log10(f) +  20log10(c) - GTX - GRX  

 (1) 

Where, 

 d: distance between the transmitter and Receiver 

 f: Frequency of the signal 

 c: speed of light or Signal Propagation 

GTX : transmitter gain 

GRX : receiver gain 

4.1.2. Path Loss Model in Forest Environment 

Forest path loss models consider vegetation's effects on 

signal propagation. These models incorporate tree density, 

height, and foliage density parameters. Examples of forest 

path loss models include the Lee Model, the Dual-Slope 

Model, or the ITU-R P.833 model. The specific model 

depends on the characteristics of the dense forest being 

monitored[16]. 

4.1.3. Interference Model  

LPWAN networks typically operate in unlicensed 

frequency bands, which can be susceptible to interference 

from other devices or networks. The interference can be 

modelled using metrics such as Signal-to-Interference-Noise 

Ratio (SINR) or Signal-to-Noise Ratio (SNR)[18], frequency 

utilization, spreading factor, path loss exponent and 

attenuation for LoRa WSN in dense forest monitoring[9, 10].  

To evaluate the performance through a simulation 

approach, we combine these models to estimate coverage 

range, received signal strength, packet error rate, or network 

capacity. The equations will depend on the chosen models 

and parameters for LPWAN technology and forest 

environment. 

Forest Path Loss Calculation 

The path loss model for estimating signal attenuation in 

dense forest conditions is shown in Figure 3. Basically, it 

considers the effects of tree height and tree density during 

signal propagation.   

The trees are assumed to be randomly distributed, and 

the ground reflection is neglected (equal to zero). The 

generalized path loss Model can be modelled as: 

PL = 20 × log10(d) + 10 × log10(f) + A − B  (2) 
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Where, 

PL : path loss in decibels (dB), 

d: distance between the transmitter and Receiver in 

meters, 

f: Frequency of signal in hertz (Hz), 

A: attenuation due to tree density in dB, 

B: attenuation due to tree height in dB. 

The attenuation due to tree density (A) is calculated as  

A = α ×ρ× (1- e(-β×ρ) )  (3) 

Where, 
α: path loss per unit tree density dB/m2 

β: the slope of the path loss curve in dB/m2 

ρ: tree density in number of trees per square. 

The attenuation due to tree height (B) is calculated as 

follows: 

B = γ × h   (4) 

Where, 

γ: path loss per unit tree height in dB/m, 

h: average tree height in meters. 

The values of α, β and γ are determined through 

experimental observation measurements for the dense forest 

condition. Hence equation 2 is modeled as follows; 

PL = 20log10(d) + 10log10(f) + {α ×ρ× (1- e(-β×ρ) )} – { γ × h} 

 (5) 

Attenuation Calculation 

To design a mathematical model for the attenuation in 

the ITU-R P.833, Lee, and Dual-Slope models, we represent 

the path loss (attenuation) as a distance function. Here is a 

mathematical representation for each model: 

Lee Model:The Lee model considers the path loss 

exponent and additional factors. It can be represented 

mathematically as; 

AttenuationLee = 20 log10(d) + 20log10(f) 27.55 + 

(nLee20log10(d)) + 20log10(10)                                         (6) 

Where, 

AttenuationLee : attenuation in dB. 

d: distance in meters. 

f : Frequency in Hz. 

nLee : path loss exponent for the Lee model 

Dual Slope Model: The Dual-Slope model considers two 

different path loss exponents and a distance threshold for 

switching between them. It can be represented 

mathematically as: 

AttenuationDual Slope =  

{
PL0 + n110log10 (

d

d0
)             if d ≤ d1

PL0 + n110log10 (
d1

d0
) + n210log10 (

d

d1
)  if d > d1

   (7)                                                                                 

Where, 

AttenuationDualSlope: attenuation in dB. 

d : distance in meters. 

PL0 : reference path loss at the reference distance d0. 

n1 : path loss exponent for the first segment. 

n2 : path loss exponent for the second segment. 

d0 : reference distance. 

d1 : distance threshold for switching to the second segment. 

ITU-R P.833 Model: The ITU-R P.833 model calculates 

the path loss based on the distance and Frequency. It can be 

represented mathematically as: 

AttenuationITU−R = −22 log10(d) − 20 log10(f) + 20 log10(10) 

 (8) 

By considering the mathematical modelling and the 

experimental values depicted in Table 1 the results were 

plotted for frequency utilization, spreading factor, path loss 

exponent and attenuation for LoRa WSN in dense forest 

monitoring. 

5. Results and Discussion 
The bandwidth utilization of the LoRa LPWAN system 

against the spreading factor has been observed and shown in 

Table 2. The variation of Bandwidth utilization against the 

spreading factor has been plotted in Figure 5.  

It indicates that as the distance of LoRa increases, 

spreading factor also increases and results in Bandwidth 

suppression. With the help of mathematical modelling and 

simulation using MatLab 2021b version, the path loss and 

attenuation parameter has been calculated over the distance 

of 0m to 1000m in a dense forest environment for Lee, Dual 

slope and  ITU-R P.833.  

It is observed that ITU-R P.833 model provides a 

maximum power loss of about (250-300)dB, and the Dual 

slope model provides a minimum power loss upto (50-100) 

dB compared to the Lee model.  

The attenuation is a maximum of about 200dB for the 

ITU-R P.833 model and a minimum of about negative (300 -

400) dB for the Lee model.  
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Fig. 3 Path loss propagation model for LoRa LPWAN (WSN) in dense forest monitoring  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Bandwidth utilization of LoRa LPWAN for spreading factor (sf)=07 

Table 2. Spreading factor vs Bandwidth utilization 

Sr. No Spreading Factor Bandwidth Utilization (KHz) 

01 07 130.484 

02 08 126.535 

03 09 124.721 

04 10 123.705 

05 11 123.350 

06 12 2.5 
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Fig. 5 Simulation result of spreading factor vs Utilized bandwidth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Plot for power loss in case of lee, dual slope and ITU-R P.833 models 

The comparative analysis of our proposed system with 

other technology is shown in Table 3. The study examined 

parameters such as standard, frequency band, modulation 

type, channel bandwidth, power consumption, data rate, 

communication range, cost, and network topologies. ZigBee, 

adhering to IEEE 802.15.4 standard, operates in the 

frequency bands of 868/915 and 2.4 GHz, with a channel 

bandwidth of 2 MHz and a communication range of 100 

meters. It showcases low power consumption and low 20, 40, 

and 250 kbps data rates. Bluetooth Low Energy, following 

IEEE 802.15.1, operates solely in the 2.4 GHz frequency 

band with a narrower bandwidth of 1 MHz, limiting its 

communication range to 10 meters. It boasts ultra-low power 

consumption and a data rate of 1 Mbps. WiFi, based on IEEE 

802.11a, b, g, n, utilizes the 2.4 GHz frequency band with a 

channel bandwidth of 22 MHz, providing a communication 

range of 100 meters and data rates ranging from 11 to 150 

Mbps. However, it exhibits higher power consumption 

compared to the other technologies. Our proposed system 

utilizing LoRa technology, adhering to IEEE 802.15.4g, 

operates at 433 MHz with a channel bandwidth of 125-130 

KHz, enabling a communication range of 500 to 1000 meters 
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with propagation loss and can be evaluated with the help of 

Lee, Dual Slope and ITU-R P.833 Models. It stands out with 

shallow power consumption and a data rate of 50 kbps. 

Hence, the LoRa-based system is cost-effective and supports 

star-of-stars network topologies, offering versatile 

deployment options. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Plot for attenuation in case of lee, dual slope and ITU-R P.833 models 

Table 3. Comparative analysis of proposed path loss model with other technology 

 

6. Conclusion 
This research article thoroughly compares three path loss 

models for LoRa LPWAN systems in dense forest 

environments. The study demonstrated the importance of 

accurate path loss modelling in designing effective wireless 

communication systems for forest monitoring applications. 

We evaluated the Lee, Dual Slope, and ITU-R P.833 models' 

performance in predicting signal strength amidst dense 

foliage and obstructions through extensive field 

measurements and rigorous analysis. The results revealed 

that while all three models showed varying degrees of 

accuracy, the ITU-R P.833 model exhibited the best overall 

performance in dense forest scenarios. Its ability to account 

for characteristics and foliage densities provided more 

reliable signal strength predictions, ensuring better system 

design and optimization.  A result fosters advancements in 

forest monitoring applications and facilitates the 

implementation of efficient and resilient LoRa LPWAN 

systems in dense forest regions, further promoting 

environmental monitoring and conservation efforts. 
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