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Abstract - The Oil-Impregnated Paper (OIP) insulation is commonly utilized as the foremost insulation type in the case of a 

converter transformer, which is constantly and unavoidably affected by elevated temperature and different stresses arising 

during the mode of operation. It causes a safety risk to the insulation system of the converter transformer. Because of this, the 

present study examines the effect on OIP insulation using the FDS technique as a function of frequency and elevated 

temperature. The Frequency Domain Spectroscopy (FDS) and Atomic Force Microscopy (AFM) techniques were carried out 

for condition evaluation and surface morphological changes of OIP insulation. The experimental results show that elevated 

temperature viz 30°C, 50°C, 70°C, 90°C, 110°C and 130°C produces irreversible damage to the surface of OIP, which can 

lead to morphological changes. The frequency-dependent permittivity studies also confirm the deterioration of OIP insulation 

as permittivity decreases with increased frequency. However, the synergistic effect generated on the OIP insulation can also be 

analyzed by image processing-based evaluation methods dependent on the average of four local areas of AFM images. One 

disk of a valve side star winding single phase converter transformer is developed in MATLAB Simulink. An impulse of 20kV, 

1.2/50µsec is applied to study the correlation among insulation degradation across the turn by considering elevated 

temperature and frequency dependence of OIP insulating material by wavelet transform. The energy of the wavelet coefficient 

is utilized to analyze the insulation degradation of insulation of the converter transformer. Thus the effectiveness of the FDS 

study revealed the condition monitoring of converter transformer insulation, and the presented results agree with the published 

work. 

Keywords - Atomic Force Microscopy, Converter transformer, Elevated temperature, Frequency Domain Spectroscopy, Oil 

Impregnated Paper, Wavelet transform. 

1. Introduction 
The converter transformer performs a dynamic task in an 

electrical power system's transmission and distribution 

network. The converter transformer insulation weakens when 

subjected to harsh operating conditions. The transformer 

insulating system mainly consists of Oil-Impregnated Paper 

(OIP). The transformer oil acts as insulation as well as 

coolant. The primary constituent OIP insulation is a polymer 

of glucose and Cellulose which degrades because of the 

stresses and elevated temperature during the operation.  

The reliable performance and avoiding the transformer 

outage depends upon the insulating material's character. 

Thus, insulation degradation due to thermal ageing is 

recognized as a prime cause of transformer failure. Hence to 

ensure reliable and safe operation performance, there is a 

need to test transformer insulation regularly. 

Thus, DGA analysis is regularly used to diagnose oil and 

thermally degraded insulating paper [1, 29], but methods 

produce certain limitations for the actual status of insulating 

cellulose paper. Due to the above reasons, utility engineers 

are more interested in non-invasive methods to examine 

transformer cellulose insulation.  

During the 1990s, Return Voltage Measurement (RVM) 

[3, 34] and Polarization and Depolarization Current (PDC) 

techniques [4-5] were the most widely popular to measure 

insulation conditions. RVM is a non-destructive technique 

with certain limitations for separately assessing oil and paper 
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insulation conditions. PDC measurement can overcome this 

limitation without opening the tank for paper sampling. 

However, examining the influence of ageing products and 

their effect on PDC measurements is not easy. 

On the other hand, the FDS technique is more 

appropriate for on-site insulation diagnosis, with abundant 

insulation information and powerful anti-interference 

capacity. The FDS technique involves using a sinusoidal 

electrical field with variable frequency. Other non-

destructive diagnostic tools like X-Ray Diffraction (XRD), 

Scanning Electron Microscopy (SEM), and Atomic Force 

Microscopy (AFM) are also used to study the microstructural 

deterioration of the OIP insulation under the thermal ageing 

mechanism. Many researchers have investigated insulation 

characteristics utilizing D.P. and SEM images under 

controlled laboratory conditions. During a low-frequency 

region, a significant impact of thermal ageing on the FDS 

test is recorded [6-8]. Some corrective measures are 

suggested for insulation diagnosis but fail to discuss 

problems associated with parameter variation [11]. 

The thermally aged pressboard insulation can be 

analyzed utilizing activation energy based on frequency-

temperature shift factor αT [12].E. I. Koufakiset. 

al. [14] determine the thermal lifetime of insulating material 

utilizing the thermal Coefficient in a distribution transformer. 

The researcher [15] derived an enhanced model based on the 

Kinetic specification of thermal degradation cellulose. 

Recently, thermal insulation monitoring and FFT analysis 

have been used for insulation degradation analysis [16]. The 

percentage of moisture variation, ageing product, and ageing 

of pressboard samples significantly impacted FDS test 

results. The literature found that among the above ageing 

products plus the pressboard, ageing significantly influences 

FDS data compared to moisture but fails to discriminate it 

effectively [18-19]. 

The moisture and ageing effect can be discriminated by 

extracting a grouping of feature parameters from the 

dielectric loss tangent (tan δ) curve. The tanδ curve is 

significantly influenced by moisture under medium and high 

frequency, whereas ageing under low frequency ( 10
-
³ < f < 

10
-
¹ Hz ) region [21]. Youyuan Wang et al. [22] discriminate 

based on the imagery part of permittivity ε″, correlating 

moisture and D.P. value. Currently, moisture impacts are 

significantly analyzed by exploiting commercial IDA-200 

dielectric response analyzers available in the market. [6, 17,  

20] 

In practice, the performance of OIP insulation is 

significantly affected by the cumulative effects of repeated 

impulses and the composite electric field. Many 

researchers utilize AFM phenomena to identify 

morphological changes on insulation surfaces and discuss 

the average, RMS roughness, and statistical parameters [26, 

27]. Some researchers have a Composite AC-DC electric 

field. The maximum voltage of 5.3% reduction with 

vegetable oil is recorded compared to mineral oil [28]. The 

composite AC-DC voltage application produced a significant 

impact as compared to D.C. voltage [29]. 

Pannala Krishna Murthy et al. [35] presented an 

investigation on detecting various line faults across HVDC 

transmission by using wavelet transform. The wavelet 

coefficient of D.C. voltage is used over D.C. current with 

99.3% efficiency for identifying faults. The researcher used 

the S-transform to analyze non-stationary signals to 

differentiate internal and external faults.  

The high-frequency transient voltage will be attenuated 

for external faults, and signals will persist untouched for 

internal faults [36]. Some researchers discriminate faults 

based on multiresolution wavelet analysis [37] and by 

comparing polarity features of currents at the end of faulty 

lines using wavelet transform [38]. 

The same approach is recorded for power system 

protection based on a transient current-based micro-grid, 

using Biorthogonal 1.5 as the mother wavelet, and faults 

detection and discrimination occur within a half cycle with 

detail coefficients [39, 40]. The researcher studied various 

techniques, including the wavelet transforms with 

Biorthogonal 2.2, as the mother wavelet provides a superior 

accuracy level for early fault detection [41]. With the same 

approach, researcher [42] proposed a fault identification 

algorithm in transformers using wavelet and BPNN with 

overall efficiency exceeding 95%.  

Thus, it is observed that the majority of past 

investigations are restricted to time domain-based and 

statistical parameters using the frequency-based FDS 

method. However, for a more accurate and early prediction 

of the synergetic effect of elevated temperature, there is a 

need to use sophisticated image processing-based evaluation 

techniques. In this paper, the phenomena of frequency and 

elevated temperature dependence OIP insulation by FDS are 

marked out, and various measurements and comparisons 

outline experimental evidence for it. 

The AFM observations and statistical parameters, such 

as average and RMS roughness, etc., indicate morphological 

changes in the OIP insulation. Both surface roughness and 

dielectric parameters magnify with applying temperature and 

frequency. Image processing-based techniques confirm these 

results. In addition to this, entropy, wavelet coefficient, and 

energy components also confirm these speculations. The rest 

of the sections of the manuscript are arranged as under, 

section 2 presents the experimental setup, results are 

reviewed in Section 3, analysis of converter transformer 

insulation degradation using wavelet transform is discussed 

in Section 4, and Section 5 is related to the conclusion. 
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Fig. 1 Flowchart for OIP insulation sample preparation

2. Experimental Details 
2.1. Sample Preparation 

The samples of paper insulation (10 mm diameter and 

0.5mm thickness) were dried at 110 °C for 24 h in the oven 

under vacuum. Pure mineral oil impregnates the samples 

again for 24 h using a two-stage drying unit.  

A 25-50 mbar vacuum was created and maintained in the 

oven for eight h to eliminate unwanted moisture from the 

insulation paper. The above drying process is repeated the 

second time, in which the temperature was kept at 110 for 8 

h, and a vacuum was maintained for 6 h.  

The doubly dried paper-insulated samples were slowly 

cooled to a temperature of 60°C. At this temperature, the 

paper insulation sample was again oil-impregnated. These 

oil-impregnated samples were kept in glassware surrounded 

by a cool, dry, and well-ventilated environment. An 

experimental setup at Vivid Grid Solutions Ltd., E-106, 

Waluj MIDC, Aurangabad, was used to prepare Oil-

Impregnated Paper (OIP) samples. The different steps 

involved in oil-impregnated paper insulation samples are 

illustrated in Figure 1. 

2.2. Characterizations 

A.C. conductivity, real and imaginary parts of 

permittivity, and dielectric loss tangent studies on Oil-

Impregnated Paper (OIP) samples were carried out as a 

function of temperatures at 30,50, 70, 90,110, and 130°C and 

the frequency range of 1 Hz to 10 MHz using PSM 1735, 

Newtons4th Ltd. 

The applied A.C. sinusoidal voltage was 2.5 Volt. The 

dielectric parameters, such as relative permittivity and 

dielectric loss, are calculated based on the applied voltage, 

current, and phase difference. The experimental arrangement 

is shown in Figure 2. 

 
Fig. 2 Experimental arrangement 

The topography of temperature ageing samples was 

analyzed using AFM images. The AFM instrument of PARK 

XE-7 was used to collect appropriate insulation images with 

a scan rate of 0.5 Hz and a scan window size of 3x3 µm. 

MATLAB R2021b was used for the analysis of the selected 

image database. Images are pre-processed before analysis, 

whereas pre-processing includes resizing to 256x256 and 

converting into a grey scale. 

3. Results and Discussions 
3.1. Influence of Frequency and Temperature on OIP 

Insulation 

The dielectric parameters were measured to explore 

further the effect of elevated temperature on the performance 

of OIP insulation. The measurement of permittivity 

concerning frequency was carried out for varying elevated 

temperatures. 

Figure 3 illustrates deviation in the fundamental part of 

permittivity (ε') of OIP samples as a function of frequency at 

various elevated temperatures. It can be noticed that an 

increment in frequency causes a decrement in ε'. The 

decrement in ε' is sharp near the low-frequency region, while 

at the high-frequency region, the decrement in ε' is very 

small and almost remains approximately constant; with 

increasing temperatures, the ε' decreases. The observed 

variation of ε' can be explained based on the following 

expression for the fundamental part of relative permittivity. 
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Fig. 3 Real part of permittivity of OIP under different temperatures 

 

 

 

 

 

 

 

 

 

Fig. 4 Conductivity of OIP under different temperatures 

 

 

 

 

 

 

 

 

 

Fig. 5 Imaginary part of permittivity (ε") of OIP under different 

temperatures 

      
     

  (  ) 
  (1) 

Where η is the time constant of relaxation polarization, ω 

is the frequency of the electric field, εS and ε∞ are static 

dielectric constants and optical dielectric constants, 

respectively, εS > ε∞. 

The observed behaviour of ε' at low-frequency regions 

can be attributed to the fact that the relative polarization of 

the dipoles is fully established due to the sufficient 

turnaround time. At high-frequency regions, the dipole 

moment lacks the change in electric field frequency, which 

results in insufficient polarization dipole, and therefore the 

value of ε' is around ε∞. It can be further observed from 

Figure 3 that the permittivity ε' goes on decreasing as 

temperature increases from 30°C to 130°C.In low-frequency 

region, the permittivity ε' lie between 3.8 to 2.5. The 

decrease in permittivity concerning incrementing in 

temperature is due to the increasing polarization 

phenomenon as the mobility of the charge carrier increases 

with temperature.  

Figure 4 illustrates the conductivity (ζ) trends of OIP as 

a function of frequency under different temperatures. 

Moreover, it is found that for the low-frequency range, the ζ 

for OIP also increases when temperature increases. In the 

case of a dielectric containing m number of charge carriers, 

the conductivity (ζ) can be calculated with equation 2. 

  ∑       
 
     (2) 

Where ni is the concentration of the carrier, qi is the 

electric charge of the carrier, and µi is the carrier's mobility. 

Under the uniform electric field, the mobility and electric 

charge are constant for the same carrier. Therefore, the value 

of ζ depends on carrier concentration ni, which is solely 

controlled by the number of molecules within the dielectric. 

Based on equation (2), this increase in ζ can be explained by 

generating short-chain molecules and polar groups due to the 

succession of cellulose chains and oil molecules due to 

increased temperature. Thus, it can enhance the polarizing 

ability of dielectrics and consequently further enhance carrier 

concentrations. Consequently, the elevated temperature is the 

key reason for the increase in surface roughness and relative 

permittivity, as it leads to the creation of polar substances 

and a change in the fiber structure. Considering the existence 

of conductivity in the real dielectric, equation (3) can be used 

to express the relationship between tanδ and ε", 

     
      ( )

 ⁄

 ( )
   (3) 

The ε" and tan(δ) plots of OIP samples under different 

temperature conditions are shown in Figures 5 and 6. Here ε" 

decreases and tan(δ) increases with increasing temperature, 
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particularly in the lower frequency region. As a result, older 

OIP samples will lose more energy during the polarization 

processes due to increased relaxation polarization losses, 

interfacial polarization losses, and conduction losses. In 

response to the increase in temperature, an increasing 

number of polar molecules will be created by the covalent 

bonds breakdown in the cellulose chains in addition to the oil 

molecules, thereby increasing the concentration of carriers. 

The increased conductivity causes the conduction loss and 

tan(δ) to increase. The temperature damage and ageing 

products cause a drastic change in surface morphology, also 

dielectric properties of OIP samples due to elevated 

temperatures. 

3.2. FTIR Spectroscopy 

The types of bonds present have been studied using 

FTIR spectroscopy. Thus, it is applied to the quantitative 

examination of the degradation of by-products on OIP 

insulation samples. The numbers of stretched and bending 

vibrations give information about the bonding structure of 

the OIP sample or degradation of OIP insulation. A sharp, 

high-intensity characteristic peak in OIP insulation 

appeared at 2925.64 cm-1, indicating stretching of C-H with 

changes in the bond's length which is evidence for the 

presence of methyl group. The peak at 1744.87 cm-

1 corresponds to the bending vibration C=O of carbonyl 

groups present. 

In contrast, the peat at 1374.24 cm-1 represents the 

absorption peak due to alkenes—the low-intensity absorption 

peak results from the OIP insulation at elevated 

temperatures. The peak at 726.36 cm-1 represents the out-of-

plane bending of C-H. A stretch in C=C has been visualized 

at 1458.2 cm-1 resulting from aromatic rings at elevated 

temperatures. Apart from these, a minor peak visible at 

1457.29 cm-1 is attributed to ketones groups present. In 

contrast, the peak corresponding to wave number 721.72 cm-

1 may be out-of-plane vibrations or of olefins overlapping or 

vibration of CH2. Thermal ageing or degradation may result 

in slight shifts in peak positioning or reduction in peak 

intensity in the spectrum in OIP insulation. The observed 

results show that OIP insulation has been degraded with 

elevated temperature and frequency variation. The spectral 

analysis displays a distinctive absorbance peak at 2923.01 

cm-1 with a high intensity that recognizes the C-H stretch 

demonstrating alkanes' existence. 

3.3. Atomic Force Microscopic Image-based Study 

The performance of OIP is significantly related to the 

impact of temperature on its surface. Micro-damages caused 

by temperature change are studied with Atomic Force 

Microscopic (AFM) observations. AFM images at various 

temperatures are collected for analysis. The temperature is 

applied to the sample in the range of 30°C to 130°C at the 

interval of 20°C with a frequency variation from 1Hz to 10 

MHz. Four significant local areas around the centre of the 

sample are randomly chosen and tested under AFM with the 

assumption that the deterioration is homogenous. 

Figure 8(a) shows a virgin OIP sample with a smooth 

and uniform surface without significant protuberances. 

Figures 8(b), 8(c), and 8(d) show AFM images of the OIP 

sample at 90°C, 110°C, and 130°C with significant 

increments in protuberances as compared to the virgin 

sample. The surface develops cracks as temperature increases 

and more prominent protuberances appear. Similarly, in 3D 

AFM images, it is also observed that there is a notable rise in 

the degree of fluctuation and fluctuation ratio of a unit area 

with an increase in temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 6 Tan(δ) of OIP under different temperatures 

 

 

 

 

 

 

 
 

 

 
Fig. 7 Bonding analysis using FTIR spectrum 
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Fig. 8 Topographical images of (a), (b), (c), (d)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Temperature vs  Entropy 

The performance evaluation of AFM images was done 

using time and frequency domain parameters;  

3.3.1. Time Domain Parameters 

Texture represents spatial variation in the surface image. 

The image's texture is generally described as smooth, rough, 

and bumpy as a function of pixel intensities. Quantification 

of this parameter is performed by calculating entropy and 

Energy. As temperature applied to sample paper changes, 

surface quality. Since it is reflected as a texture in AFM 

images, as the effect of temperature on sample paper cannot 

be described only in terms of pixel intensities, Texture 

analysis is functional, represented with Time domain 

parameters, such as entropy, energy, and standard deviation 

of image and surface roughness.  

3.3.2. Frequency Domain Parameters 

Wavelet Transform of the image represents spectral 

information about the AFM image. Discrete Wavelet 

Transform (DWT) is used to analyze images indicating the 

effect of ageing on insulation. 

 3.3.3. Entropy 

Entropy meant intensity distribution or homogeneity of 

the image structure. To determine the effect of temperature 

on samples, the texture is calculated in terms of the Entropy 

of AFM images [31,32]. Figure 9 represents entropy vs 

temperature; it mathematically can be expressed as, 

  ∑   
   
           (4) 

Where, Pi: Probability associated with grey level i. 

3.3.4. Energy 

Energy is a measure of the homogeneity of an image and 

is utilized for determining the even degree of a given grey-

level deviation of a given texture. In the case of AFM 

images, as temperature increases, textural deformations are 

generated, and the image develops inhomogeneity resulting 

in the reduction of the energy value of an image. Figure 10 

represents decreases in energy for temperature increases [32-

33]. 
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Fig. 10 Temperature vs Energy 

 

 

 

 

 

 

 

 

 

Fig. 11 Temperature vs Standard deviation 
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3.3.5. Standard Deviation 
Standard deviation is one of the most significant 

descriptive statistical methods to measure the deviation of 

measured values or the data from its mean. It implies a gross 

measure of the deviation about the target value of light 

intensity at each such data point. Figure 11 represents the 

increase in standard deviation, i.e. light intensity increases 

with temperature. 
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3.3.6. Surface Roughness 

The distance between peaks and valleys evaluates 

Surface roughness [26-27]. Surface roughness using image 

processing algorithms is represented as, 
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Where,  

μ is the arithmetic mean of relative altitude, M and N are 

the numbers of sampling points in the x and y direction, 

respectively. 

Z(xi, yi) is the relative altitude of point (xi, yi).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12(a) Temperature vs Average roughness (b) Temperature vs RMS 

roughness 

Figures 12(a) and (b) give a comparative analysis of 

average and RMS roughness for each sample calculated by 

XEI software and MATLAB.  
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Fig. 13 Three levels of decomposition of the image 

The average roughness increases by 21.96%, 64.56%, 

34.37%, 136.91%, 161.66% and 214.71% times under the 

elevated temperatures of 30, 50, 70, 90, 110 and 130°C 

respectively, as compared to virgin samples using XEI 

software. An approximately similar trend was recorded for 

RMS roughness. 

 

3.3.7. Wavelet Transform Analysis 

Wavelet Transform is successfully utilized in various 

types of image analysis since it provides an arsenal and 

dynamic toolbox for measuring insulation ageing. Wavelet 

Transform based multiresolution analysis is superior to being 

localized in time and frequency. DWT provides adequate 

information regarding the analysis and synthesis of original 

images with notable relaxation in computational time 

compared to CWT and WPT. The following relationship can 

express the DWT, 

   (   )  √  ∫  ( )  (    

  
   )   (10) 

Where ψ is the mother wavelet function, DTW(p,q) are 

the wavelet coefficients., and ψ* is a complex conjugate of 

the wavelet function. It decomposes images into Horizontal 

(H), Vertical (V), and Diagonal (D); detail sub-bands 

incorporate edges as the image with high-frequency 

information and the approximation sub-band with low-

frequency information. The image decomposition can be 

achieved by repetitively applying Wavelet Transform to the 

approximation sub-band.  

These images of size 256x256 are wavelets decomposed 

up to three levels. The decomposition of these images 

provides a complete representation of changes due to 

temperature rise.  

The availability of many mother wavelets leads to the 

selection of optimum ones suitable for investigating 

insulation ageing. In this investigation, the optimum mother 

wavelet is derived from the minimum value of entropy of 

wavelet coefficients, as shown in Figure 14. Entropy 

quantifies information on the content inside the image [32]. 

Among all, Bior 5.5 displays the most negligible value 

of entropy magnitude for a particular pattern; hence it is 

selected as the mother wavelet for further analysis. Wavelet 

coefficients, Average (ad), Horizontal(hd), Vertical(vd), and 

Diagonal(dd), are obtained by implementing DWT and three-

level decomposition with bior5.5 as the mother wavelet. The 

graph of the average of all wavelet coefficients Vs 

temperature for a particular image is shown in Figure 15.  

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Fig. 14 Magnitude of entropy for various wavelets after three levels of decomposition 
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Fig. 15 Temperature vs Wavelet coefficient 

4. Analysis Converter Transformer Insulation 

Degradation using Wavelet Transform 
A 315 MVA, 230/123/213 kV single phase dual winding 

converter transformer's parameters were estimated with the 

help of ANSYS Maxwell's software [2]. The mathematical 

model of a single disc of a 123kV valve side winding with 

five turns per disc is shown in Figure 16. The model is used 

to identify the analysis of insulation degradation across the 

single disc in the MATLAB Simulink environment. An 

impulse of 20kV, 1.2/50µsec is applied, and the FDS data at 

50 Hz subjected to 110°C temperature is utilized to analyze 

the insulation degradation across the turn using wavelet 

transform. 

Figure 17 indicates the neutral current of the converter 

transformer for various insulation conditions under the 

application of an impulse of 20kV, 1.2/50µsec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 MATLAB simulink model of single disc of 123 kV valve side winding 

A further examination of the neutral current can be 

analyzed using wavelet transform to determine the failure of 

the OIP insulation across the winding more effectively. The 

wavelet transform uses the Daubechies4 wavelet with level 4 

(db4) as the mother wavelet and wavelet coefficients, as 

shown in Figure 18(b). A failure of the OIP insulation causes 

a typical variation in the energy of the wavelet coefficient for 

the higher-order frequencies. It is noticed that the decrement 

of energy of the wavelet coefficient as insulation degradation 

shifted toward the neutral point, as shown in Figure 19. The 

change in the energy of the coefficients is found to be 4.54% 

at the fifth turn compared to the virgin insulation sample. 

Thus, the deterioration of the insulation across the 

winding can be analyzed based on typical changes in the 

wavelet energy coefficients. It can also determine the 

approximate localization of the insulation degradation or 

failure. 
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Fig. 17 The neutral current of the converter transformer for various insulation conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18(a) Wavelet transform analysis of neutral current signal (for virgin insulation) using db4 level 4 as mother wavelet 
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Fig. 18(b) Wavelet transform analysis of neutral current signal for various locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 Energy of the wavelet coefficient for various operating conditions 

5. Conclusion 
The FDS measurements performed on OIP insulation 

shows that the insulation performance is greatly affected by a 

change in frequency and elevated temperature. The relative 

permittivity, A.C. conductivity, and tanδ significantly change 

for lower frequency regions. The creations of polar products 

and cellulose fibre variation are mainly responsible for 

insulation parameter variation. The FDS measurement also 

leads to micro-morphological changes inside the structure of 

OIP insulation. The XEI software has depicted excellent 

results for morphological changes. The RMS surface 

roughness varied from 21.96% to 214.7% for elevated 

temperatures between 30°C to 130°C.  

The experimental results suggest that the average RMS 

roughness, energy, and entropy in the spatial domain are 

effective methods in the degradation assessment of OIP 

samples. The horizontal, vertical, and diagonal detail wavelet 

entropy coefficients are determined by implementing 

Discrete Wavelet Transform (DWT).  

The statistical parameter, such as the average wavelet 

coefficient, is extracted using bior5.5 as the mother wavelet 

after performing three-level decomposition. The extracted 

parameters in the spatial and frequency domain confirm 

insulation degradation. Finally, one disk, five turns single 

phase dual winding converter transformer modelled in 

MATLAB Simulink environment and tested under impulse 

condition. The neutral current for various insulation 

conditions is captured, and the wavelet coefficient energy is 

utilized for the insulation degradation. The energy of the 

coefficients is inherently decreasing, and 4.54% changes in 

the energy coefficients when the insulation at 5
th

 turn is 

degraded compared to the virgin sample. Thus, the FDS 

method is beneficial for the analysis of insulation 

degradation in the winding of the converter transformer. 
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