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Abstract - Underwater Wireless Sensor Networks (UWSNs) play a pivotal role in aquatic environments, facilitating data 

collection and communication for various applications. However, the limited energy resources of sensor nodes pose a critical 

challenge, leading to the emergence of energy holes that can adversely impact network performance and longevity. This research 
proposes a novel two-part approach to address this challenge by leveraging Neural Networks for both energy hole classification 

and prediction in UWSNs. The study begins with an in-depth literature review covering energy management in UWSNs and the 

application of deep learning techniques, particularly neural networks, in predicting network-related issues. Through this 

exploration, the unique challenges associated with underwater environments are identified, forming the foundation for the 

proposed neural network-based solution. 1. Energy Hole Classification: Extensive simulations of various scenarios are 

conducted to classify instances of energy holes. These simulations generate a rich dataset featuring crucial columns such as 

residual energy, hop distance from the surface sink, zone, source address, destination address, etc. This dataset is meticulously 

prepared and preprocessed to ensure its suitability for training the neural network model for energy hole classification. 2. 

Energy Hole Prediction: The prepared dataset from the classification phase is then utilized to train a neural network model for 

predicting energy holes. The model is designed to capture dependencies among features such as residual energy, hop distance, 

and network addresses. The trained model is evaluated on a distinct test dataset, using metrics such as accuracy, precision, 
recall, and F1 score to measure its success in predicting energy holes.  The results showcase the model’s ability to learn and 

generalize from the extensive dataset, providing valuable insights into potential energy hole occurrences based on the specified 

features. The proposed neural network-based paradigm, incorporating features such as residual energy and hop distance, offers 

a promising solution to enhance energy management in UWSNs, ultimately improving network longevity and performance. The 

study concludes with discussions on the implications of the results, potential real-world applications, and avenues for future 

research in the intersection of deep learning and underwater sensor networks. 

Keywords - Underwater Wireless Sensor, Energy hole, Machine Learning, Neural Network, Castalia, Multipath routing, Energy 

efficient routing.  

1. Introduction 
Underwater wireless sensor networks (UWSNs) have 

emerged as a pivotal tool for environmental monitoring in 

aquatic environments. Their applications range from pollution 

detection to pipeline inspections, offering invaluable insights 

into the health of our oceans and unlocking a deeper 

understanding of these critical ecosystems [1]. However, the 

effectiveness of UWSNs is significantly constrained by two 

key challenges: 

Limited Underwater Communication: Unlike terrestrial 

networks that utilize radio waves, UWSNs rely on acoustic 

waves for communication. This presents significant 

drawbacks, including lower bandwidth, higher propagation 

delays, and increased susceptibility to interference [2]. These 

limitations restrict data transmission capabilities and hinder 

network performance. 

Energy Constraints and Formation of Energy Holes: 

Sensor nodes within a UWSN have finite battery life. Uneven 

energy consumption across the network can lead to the 

formation of “energy holes.” These are localized areas where 

sensor nodes deplete their energy reserves at a faster rate due 

to factors such as increased communication load or 

geographical location. The emergence of energy holes 

disrupts data flow and cripples network functionality, 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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jeopardizing the entire network’s ability to collect and 

transmit valuable environmental data [3]. 

While existing research has explored various strategies 

for managing energy consumption in UWSNs, a critical gap 

remains in accurately predicting the formation of energy 

holes. The inability to foresee these critical events hinders 
proactive energy management and network optimization. 

Reactive approaches become increasingly ineffective as the 

size and complexity of UWSNs grow. For instance, consider 

a vast underwater sensor network monitoring a vital coral reef 

ecosystem. Without the ability to predict energy holes, sensor 

nodes critical for monitoring crucial ecological changes could 

become inoperable, leaving critical data gaps in our 

monitoring efforts. 

This study aims to address this research gap by proposing 

a novel framework that leverages the power of neural 

networks for predicting energy holes in UWSNs. By 

developing a robust prediction model, we can anticipate the 
formation of energy holes before they occur. This proactive 

approach will enable us to implement targeted energy 

management strategies, extending the network’s lifespan, 

optimizing data collection, and ensuring the continued success 

of UWSN deployments in critical aquatic environments.  

2. Literature Survey 
A critical review of existing literature was conducted to 

investigate Underwater Wireless Sensor Networks (UWSNs), 

energy management strategies, and the potential application of 

Convolutional Neural Networks (CNNs) for addressing 

energy-related challenges. 

2.1. UWSN Characteristics and Challenges 

 Research by He et al. (2014) and Akyildiz et al. (2005) 

emphasize the inherent difficulties of underwater 

communication, including signal attenuation, limited 

bandwidth, and dynamic environments [1]. Furthermore, 

studies by Stojanovic (2011) and Partan et al. (2007) highlight 

the constrained energy resources of sensor nodes, impacting 
network longevity [2]. 

2.2. Traditional Energy Management Techniques  

Li et al. (2017) and Khan et al. (2013) explore 

conventional approaches for energy conservation in UWSNs, 

such as duty cycling and sleep modes [6]. Ma and Yang (2012) 

and Javaid et al. (2016) delve into energy-efficient routing 

protocols specifically designed for UWSNs [9]. 

2.3. Machine Learning for Wireless Sensor Networks 

Ghamkhari and Misic (2018) provide a comprehensive 

survey of Machine Learning (ML) applications in wireless 

sensor networks, encompassing tasks like clustering, 

classification, and anomaly detection [9]. Alazab et al. (2017) 

explore the use of supervised learning for intrusion detection 

purposes [8]. 

2.4. Convolutional Neural Networks and Wireless Sensor 

Networks 

Recent works by Sharma et al. (2020) and Liu et al. 

(2019) demonstrate the applicability of CNNs in various WSN 

tasks, including localization and data prediction [10]. The 

foundational principles of CNNs, emphasizing their ability to 
capture spatial dependencies in data, are explored in research 

by LeCun et al. (1998) and Krizhevsky et al. (2012) [11]. 

2.5. Machine Learning for Energy Hole Prediction in 

UWSNs 

Studies by Liu et al. (2018) and Ding et al. (2015) 

showcase the potential of machine learning for predicting 

energy-related issues in WSNs [22]. Additionally, Liang et al. 

(2019) and Ramezani et al. (2016) explore time series 

prediction using machine learning for energy management 

applications [22]. The challenges of capturing spatial patterns 

in underwater environments are addressed in literature by Shu 

et al. (2019) and Peng et al. (2017), which strengthens the case 
for integrating CNNs [8]. Furthermore, recent research by 

Wang et al. (2021) and Chen et al. (2020) demonstrates the 

effectiveness of CNNs in environmental monitoring tasks, 

aligning with the requirements of UWSNs [9]. 

2.6. Research Gap and Proposed Solution 

While existing research covers UWSNs, energy 

management, and machine learning applications, a gap exists 

in the specific application of CNNs for predicting energy holes 

in UWSNs. This research aims to bridge this gap by proposing 

and evaluating a CNN-based approach for efficient energy 

management in UWSNs [20, 21]. 

This comprehensive review establishes a strong 

foundation for the subsequent sections of this research. By 

highlighting the limitations of current methods and the 

potential of CNNs, this work paves the way for a novel 

approach to address energy-related challenges in UWSNs. 

3. Proposed Approach 
Our proposed work is divided into two parts. 1. Energy 

hole classification and 2. Energy hole prediction.  

3.1. Energy Hole Classification 

This work presents a novel approach for classifying 

energy holes in underwater wireless sensor networks 

(UWSNs). Energy holes arising from depleted sensor node 

energy levels disrupt data transmission and overall network 

functionality. 

The proposed algorithm under consideration prioritizes 

two crucial parameters: residual energy and hop distance to 

the surface sink. Residual energy refers to the amount of 

energy that is still available in each individual node. Hop 

distance from the surface sink denotes the number of 

intermediary nodes that are needed to establish a connection 

with the data collection point on the sea surface.  
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Table 1 displays the categorization criteria of a node 

based on its residual energy, whereas Table 2 provides the 

classification criteria based on its hop distance. 

Table 1. Residual energy classification 

Energy Level Classification Criteria 

HIGH Residual Energy > = 65%. 

MEDIUM 65% < Residual Energy >= 30% 

LOW Residual Energy =<  30%. 

Table 2. Hop distance classification 

Zone 
Hop Distance of a Current Node from 

Surface Sink 

GREEN Hop Distance > 10 

ORANGE 5 < Hop Distance <= 10 

RED Hop Distance <= 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Underwater WSN architecture 

Figure 1 shows the typical architecture for an underwater 
wireless sensor network. 

3.1.1. Proposed Classification Criteria 

This innovative approach holds promise for effectively 

identifying and addressing energy hole challenges in UWSNs, 

ultimately contributing to improved network performance and 

data collection capabilities. Based on the classification of 

residual energy and hop distance, our algorithm categorizes 

nodes into different health states, namely HEALTHY, MILD, 

MODERATE, SEVERE, and DEAD.  

Considering the generalized application of underwater 

wireless sensor networks, energy holes have been divided into 

various categories via the rules below. 

If the node is located in the GREEN zone, i.e. far from the 

sink node, and the energy of that node is also HIGH, then that 

node will be classified as a HEALTHY node because as it is 

far from the surface sink, it has the least routing overhead. 

If the node is in the GREEN zone and the energy level is 

medium then it will be considered as a MILD energy hole 
because even though it is in the GREEN zone, it has spent a 

moderate amount of energy. Hence, it is likely to become an 

energy hole.  

If the node is in the GREEN zone and the energy level is 

LOW, then it will be considered a severe hole because a 

significant amount of energy is spent now, and this node is 

going to die soon. 

If the node is in the ORANGE zone, it means it is 

somewhat closer to the surface sink and they are at least 

responsible for routing traffic of all the nodes that are in the 

GREEN zone. So for the ORANGE zone, energy hole 

classification rules are as below. 

If the node is in the ORANGE zone and the energy level 

is HIGH, then it will be considered a HEALTHY nodes; if the 

energy level is medium, then MODERATE hole; and if the 

energy level is LOW, then it will be considered a SEVERE 

hole. 

If a node is located in the RED zone, it indicates that it is 

in close proximity to a surface sink and is responsible for 

routing the traffic of the entire network. If these nodes fail, the 

entire network becomes partitioned. Although other nodes in 

the network may have energy, the surface sink becomes 

inaccessible. 

If a node is in the RED zone and its energy level is HIGH, 

it is still being considered as a MILD hole because these nodes 

have higher responsibilities. If the energy level is medium, it 

is considered a MODERATE hole. If the energy level is LOW, 

these nodes can be considered as DEAD nodes because their 

energy is almost drained, and they can no longer participate in 

the routing process. 

Table 3. Classification metrix 
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these trace files can be used as datasets for the energy hole 

prediction. The energy hole prediction is discussed in the next 

section. 

3.2. Energy Hole Prediction 

Predicting energy holes in wireless sensor networks, the 

application of a neural network involves a systematic 
approach tailored to the unique characteristics of the network. 

The model leverages key features, such as node residual 

energy and hop distance from a surface sink, to classify nodes 

into distinct health states. The neural network architecture is 

carefully selected, considering factors like the temporal 

dynamics of the data, with the aim of effectively capturing and 

learning the patterns associated with impending energy holes. 

Columns of our dataset are mentioned in Table 2. 

Table 4. Dataset description 

Attribute Description 

TIME-STAMP Simulation time stamp 

CNODE 
Current node on which the packet 

is received 

SNODE 
Address of the node from where 

the packet is originated. 

DNODE Packet’s destination address 

RNERGY 
Residual energy of the current 

node 

ZONE Current zone of the node 

LEVEL 
Hop distance of this node from the 

sink. 

CATEGORY 
HEALTHY, MILD, SEVERE, 

DEAD etc. 

The dataset used for training, validation, and testing is 

specifically curated to reflect the relevant parameters essential 

for predicting energy holes. Preprocessing steps, including 

normalization and handling missing data, are applied to ensure 

the input features are suitable for the neural network model. 
The neural network is designed with an appropriate input layer 

to accommodate the relevant features and an output layer 

configured for binary classification, distinguishing between 

nodes at risk of energy depletion and those in a stable state. 

The proposed model, validated through comprehensive 

testing, demonstrates its efficacy in early detection and 

prediction of energy holes. Its successful deployment 

contributes to the proactive management of energy resources 

in the wireless sensor network, thereby enhancing overall 

network performance and reliability.  

Continuous monitoring and periodic updates to the model 

remain essential components of a dynamic and adaptive 
system, ensuring its effectiveness in evolving network 

conditions. 

In our proposed methodology, a neural network 

architecture has been employed to predict energy hole 

severity, utilizing seven input attributes as features. The 

prediction task involves categorizing instances into five 

distinct classes: HEALTHY, MILD, MODERATE, SEVERE, 

and DEAD.  

The neural network comprises an input layer with seven 

neurons, two hidden layers with 15 and 10 neurons, 

respectively, and an output layer with five neurons 

corresponding to the aforementioned severity categories. Key 

considerations in the implementation of this neural network 

include: 

Activation Functions: The right selection of activation 

functions, such as Rectified Linear Unit (ReLU) for hidden 

layers and Softmax for the output layer, should be based on 

the characteristics of the classification task. 

Loss Function: Adoption of a suitable loss function, 

typically cross-entropy, tailored for multi-class classification 
tasks. 

Training Data Quality: Ensuring the availability of a 

diverse and representative dataset encompassing various 

scenarios of energy holes to facilitate robust learning and 

generalization. 

Normalization: Standardization or normalization of input 

features to mitigate the impact of varying scales and enhance 

the learning efficiency of the neural network. 

Regularization: Implementation of regularization 

techniques, such as dropout, to prevent overfitting, 

particularly when dealing with a relatively small dataset or a 
complex model. 

Optimal Learning Rate: Exploration of different learning 

rates during training to identify the most suitable value, 

considering the trade-off between convergence speed and 

stability. 

Training Progress Monitoring: Vigilant monitoring of 

training metrics, including accuracy, loss, and validation 

metrics, with the incorporation of early stopping mechanisms 

to mitigate overfitting and conserve computational resources. 

Hyperparameter Tuning: Systematic experimentation 

with diverse architectures, hyperparameters, and optimization 

algorithms to discern the optimal configuration for achieving 
superior model performance. 

Evaluation on Test Set: Rigorous evaluation of the trained 

model on an independent test set to gauge its generalization 

capability and efficacy in handling previously unseen data. 
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Fig. 2 Neural network model for energy hole prediction 

4. Performance Evaluation 
In the empirical validation of the proposed approach, the 

Castalia simulator is used to conduct a series of simulation 

scenarios. Noteworthy alterations were introduced into the 

source code of the simulator, particularly in the 

multipathringrouting.cc and resourcemanager.cc files, to 

implement and evaluate the efficacy of the proposed solution. 

The crux of our modification lies in the 

multipathringrouting.cc file, which serves as the locus for 

packet routing from source nodes to the sink node. The routing 

protocol, fashioned as a hierarchical mechanism, designates 

the sink at the geometric center, assigning it a ring number of 

0. Subsequently, during the network initialization phase, each 

node is endowed with a ring number contingent upon its hop 
distance from the sink node. 

Operationalizing this hierarchical structure during data 

transmission involves the inclusion of ring numbers in the 

broadcasted packets by source nodes. Upon reception, each 

node scrutinizes the incoming packet’s ring number. If the ring 

number is inferior to its own, the node discards the packet. 

Conversely, if the received packet’s ring number is higher, the 

node duplicates the packet, appending its own ring number, 

before rebroadcasting. This iterative process persists until the 

packet reaches the surface sink. 

The instituted hierarchical routing based on ring numbers 
is strategically conceived to streamline routing trajectories, 

thereby curtailing superfluous network flooding. This 

hierarchical paradigm not only optimizes routing efficiency 

but also contributes to energy conservation by judiciously 

directing packet propagation toward the surface sink, thus 

aligning with the objectives of our proposed energy hole 

prediction mechanism. Validation exercises across diverse 

simulation scenarios are imperative to affirm the robustness 

and reliability of the adapted Castalia simulator in 

accommodating our proposed enhancements. Furthermore, 

meticulous documentation of these modifications is 

imperative to enhance the reproducibility and 

comprehensibility of our research contributions [14]. 

In the context of our proposed approach, the 
resourcemanager.cc file assumes a pivotal role by serving as 

the repository for comprehensive resource tracking for sensor 

nodes within the wireless sensor network. This entails 

monitoring crucial parameters such as battery status, memory 

utilization, and other pertinent resources. Of particular 

significance is the utilization of this file to extract real-time 

information regarding the residual energy of individual sensor 

nodes [5].  

Our methodology hinges on leveraging the data obtained 

from the resourcemanager.cc file to categorize nodes 

effectively based on their energy states, thereby facilitating the 

identification and prediction of energy holes within the 
network. By accessing and analyzing the residual energy data 

stored in this file, Valuable insights into the current energy 

status of each node are attained. This utilization of the 

resourcemanager.cc file for real-time monitoring and 

categorization aligns seamlessly with the overarching goal of 

our proposed approach, which centers on proactively 

detecting energy holes in wireless sensor networks.  

The accurate determination of residual energy derived 

from this file contributes substantively to the robustness and 

precision of our energy hole prediction mechanism. Through 

these tailored functionalities, the resourcemanager.cc file 
emerges as a critical component in the execution of our 

approach, ensuring that the categorization of nodes is 

informed by real-time, granular information on their energy 

resources [4]. 

Table 5. Simulation parameters 

Parameter Value 

Simulation Time 500 Seconds 

Area 1000 Meters X 1000 Meters 

Nos. of Nodes 500,600,700,800,900 and 1000 

Deployment of Nodes Uniform 

Sink Position (0,0) 

Sink Node Node 0 

MAC Protocol TMAC 

Routing Protocol Multipath Ring Routing 

Initial Energy 20 Joules 

Input Layer ∈  R
9
         Hidden Layer ∈  R

12
               Hidden Layer ∈  R

10
      Output Layer ∈  R

9 
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With respect parameters shown in Table 5, simulations 

have been performed in the Castalia simulator and evaluated 

the proposed approach. The effectiveness of the proposed 

approach has been assessed with respect to the following 

metrics. 

4.1. Energy Hole Classification 
During the simulation, attempts have been made to 

capture node categories into different states and observe the 

nodes’ behavior in various scenarios. Figure 3 depicts the 

energy hole classification in various scenarios. 

The simulation data indicates a direct link between 

network size and the escalation of node health issues, 

particularly in larger networks where there is a notable 

increase in severe health states and node failures. This 

underscores the challenge of maintaining node health as 

networks scale up.  

The findings highlight the crucial role of energy-aware 

protocols, with the implemented hierarchical routing 
mechanism and energy conservation strategies proving 

essential in mitigating severe health states and preventing 

node failures. In essence, the data underscores the significance 

of prioritizing energy efficiency in protocols to ensure the 

sustained health and functionality of nodes, especially in 

larger wireless sensor networks. 

 

Fig. 3 Percentage classification of energy hole at the end of the 

simulation 

4.2. Energy Hole Prediction 

The simulation log data is meticulously collected and pre-

processed to serve as a crucial input for predicting energy 

holes in the wireless sensor network. This dataset is carefully 

fed into the proposed neural network to predict the health state 

of nodes. The utilization of this neural network underscores 

the integration of advanced machine learning techniques for 
accurate and proactive identification of potential energy 

deficiencies in the network. This approach enhances the 

network’s adaptability and responsiveness, contributing to 

more effective energy management and overall system 

resilience.  

A neural network has been employed to conduct 

predictive analyses across various scenarios. In the course of 
our experimentation, efforts have been made to discuss and 

analyze the diverse predictions generated by the neural 

network. Figure 4 depicts the DEAD nodes detected during 

the simulation versus the DEAD nodes predicted by the neural 

network model. 

The classification model exhibits commendable 

performance in predicting node health states within the 

wireless sensor network. It demonstrates particularly robust 

results in identifying ‘DEAD’ instances, showcasing high 

precision and recall. While the model showcases overall 

effectiveness, challenges are apparent in accurately 

recognizing instances of ‘HEALTHY’ states, as indicated by 
a lower recall. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Nos of dead nodes actual v/s. Predicted 

The balanced F1 scores across health states reflect a trade-

off between precision and recall, emphasizing the model’s 

ability to provide a comprehensive assessment. These findings 

underscore the model’s potential for proactive identification 

of health-related issues within the network, especially in 

anticipating potential energy holes. However, ongoing 

refinement and fine-tuning may be necessary to enhance 

accuracy, particularly in the detection of ‘healthy’ states. The 

integration of advanced machine learning, as demonstrated by 

the proposed neural network, offers promising avenues for 
optimizing energy management strategies and bolstering the 

network’s overall resilience. Continued research and 

validation will contribute to the continuous improvement of 

predictive capabilities for enhanced wireless sensor network 

performance. 
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Table 4. Classification report for precision & recall 

 Precision Recall 

HEALTHY 1 0.55 

MILD 0.94 0.89 

MODERATE 0.89 0.87 

SEVERE 0.87 0.91 

DEAD 0.91 0.93 

Table 5. Classification report for F1-score & support 

 F1-Score Support 

HEALTHY 0.71 330 

MILD 0.92 5209 

MODERATE 0.89 12165 

SEVERE 0.9 13943 

DEAD 0.95 12022 

 

 

 

 

 

 

 

 

 

Fig. 5 AUC-ROC curve 

The AUC-ROC curve analysis for the presented 

classification model, evaluating its performance in predicting 

health states within the wireless sensor network, signifies its 

efficacy in distinguishing between various states. The curve 

illustrates the trade-off between accurately identifying true 

positive instances and minimizing false positives across 

different classification thresholds.  

With a higher AUC value, the model demonstrates a 

superior ability to discriminate between health states, 

reflecting its overall effectiveness. This analysis offers a 

concise and informative assessment of the model’s 

discriminative power in accurately categorizing nodes’ health 

status based on the provided data. 

Here, a two-state approach has been presented, in which 

the first phase will classify the energy hole during the ongoing 

simulation. In the second phase, energy holes are predicted 

with real-time simulation data using a neural network. 

5. Conclusion 
In conclusion, this research endeavors to address a critical 

challenge in Underwater Wireless Sensor Networks (UWSNs) 

– the emergence of energy holes that threaten network 

performance and longevity due to limited node energy 

resources. The proposed approach introduces an intelligent 

forecasting paradigm, leveraging Convolutional Neural 
Networks (CNNs) for predicting energy holes in UWSNs. 

The comprehensive literature review underscores the 

unique challenges posed by underwater communication and 

the importance of sustainable energy management. Existing 

studies on UWSNs, energy constraints, and machine learning 

techniques set the stage for the innovative application of 

CNNs in predicting energy-related issues. This research 
contributes by bridging the gap in utilizing CNNs specifically 

for forecasting energy holes in UWSNs. 

The proposed modeling is divided into two parts: Energy 

Hole Classification and Energy Hole Prediction. The Energy 

Hole Classification introduces an inventive approach that 

categorizes nodes into distinct health states based on residual 

energy and hop distance. This classification lays the 

groundwork for understanding and assessing the network’s 

health in various scenarios. The subsequent Energy Hole 

Prediction employs a neural network architecture, carefully 

considering key features like node residual energy and hop 

distance. The results demonstrate the model’s efficacy in early 
detection and prediction of energy holes, contributing to 

proactive energy management. 

The simulation results, conducted in the Castalia 

simulator with tailored modifications, reveal the impact of 

network size on node health and the effectiveness of the 

proposed neural network. The hierarchical routing mechanism 

introduced for energy conservation proves essential in 

optimizing routing trajectories and mitigating severe health 
states. The model exhibits commendable performance in 

predicting node health states, particularly in identifying 

instances of ‘DEAD’ nodes. 

In summary, the integration of advanced machine 

learning techniques, particularly CNNs, offers a dynamic and 

proactive approach to addressing energy-related challenges in 
UWSNs. The research paves the way for further exploration 

and refinement of predictive capabilities, opening avenues for 

continuous improvement in wireless sensor network 

performance and resilience. 
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