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Abstract - As the world begins to move more and more towards Electric Vehicles (EVs), the imperative for innovative solutions 
to streamline energy management within charging infrastructure intensifies. This study delves into the realm of machine learning 

integration, focusing particularly on Random Forest (RF) techniques to revolutionize energy optimization in EV charging 

systems. While Gradient Boosting Machine (GBM) initially garners attention for its adeptness with intricate datasets, RF 

emerges as a potent complementary approach uniquely suited to handle the complexities of nonlinear relationships. By 

synergizing the strengths of RF and GBM algorithms, this research endeavors to dynamically refine charging schedules, curtail 

costs, and fortify grid stability. Through a fusion of historical data and real-time environmental factors, the envisioned “Adaptive 

Ensemble Learning Framework” (AELF)-driven smart charging infrastructure is primed to recalibrate charging strategies in 

response to energy demand fluctuations while judiciously balancing user preferences and grid constraints. Rigorous simulations 

and case studies serve as the litmus test, pitting the efficacy of the AELF approach against the conventional Decision Trees 

Model and Support Vector Machines Technique. The results tout enhancements of up to 15% across diverse performance metrics, 

underscoring its prowess in charting the course towards a sustainable and intelligent transportation ecosystem.  

Keywords - Electric vehicles, Hybrid machine learning, Random forest, Smart charging infrastructure, Energy optimization. 

1. Introduction  
The need for environmentally friendly transportation 

solutions has never been greater at a time when worries about 

environmental damage and climate change are on the rise. 

Electric Vehicles (EVs), which promise lower emissions and 

a lessened dependency on fossil fuels, are a ray of light in the 
face of the pressing need to switch to greener alternatives. The 

construction of a robust charging structure and the deployment 

of effective energy management systems are two of the most 

important obstacles in the way of the broad adoption of EVs. 

Electric vehicle charging infrastructure stands as the 

linchpin of the EV ecosystem, providing the vital 

infrastructure necessary for recharging EV batteries and 

sustaining their operations. While conventional charging 

solutions have played an essential role in the initial phases of 

EV adoption, the current landscape demands innovation and 

advancement to meet the evolving demands of both EV users 
and grid operators. 

Foremost among the challenges confronting electric 

vehicle charging infrastructure is the optimization of its 

utilization while ensuring seamless integration with the 

existing power grid. The burgeoning demand for EV charging 

poses a tangible risk of straining local distribution networks, 

potentially leading to grid instability. Furthermore, the 

intermittent availability of clean energy sources complicates 

the integration of infrastructure for grid-based electric vehicle 

charging. Using Machine Learning (ML) techniques to power 

smart energy management systems for EV charging 

infrastructure is becoming increasingly necessary to address 
these issues. 

Machine learning algorithmic rules offer a beacon of 

promise in augmenting the efficiency, adaptability, and 

intelligence of electric vehicle charging infrastructure by 

analyzing multifaceted datasets and making informed 

decisions in real-time. Through the synthesis of historical 

charging patterns, grid demand forecasts, weather data, and 

user behavior, ML algorithms can optimize charging 
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schedules, predict future energy demand, and minimize 

energy costs for both EV owners and grid operators. Moreover, 

dynamic pricing schemes can be implemented with the help of 

ML algorithms, encouraging EV owners to charge their cars 

at off-peak times or when alternative energy sources are 

available. This will reduce the load on the grid and encourage 
the use of clean energy. 

In order to enable intelligent energy management, this 

study aims to explore the field of machine learning 

incorporation in charging for electric vehicles grid. The goal 

of the project is to improve user experience, accelerate the 

shift to a cleaner and more environmentally friendly 

transportation environment, and optimise the operation of the 

charging network by developing machine learning models and 

algorithms that are specifically designed to meet the needs of 

electric vehicle charging systems. Key areas of focus include 

predictive modeling, demand forecasting, optimization 

techniques, and real-time monitoring and control of charging 
infrastructure. 

At its core, this research seeks to devise predictive models 

capable of accurately forecasting future energy demand for 

EV charging and anticipating grid congestion or potential 

bottlenecks in the charging infrastructure. By leveraging 

historical charging data, weather patterns, and user behavior, 

these predictive models will generate precise forecasts of 

future energy demand and delineate optimal charging 

schedules to minimize costs and enhance efficiency. 

Additionally, the research attempts to create optimisation 

methods that are capable of dynamically modifying charging 
plans in response to changing circumstances and real-time 

data. By amalgamating machine learning algorithms with 

advanced control systems, the research seeks to optimize the 

allocation of charging resources, balance load across different 

charging stations, and alleviate grid congestion during peak 

demand periods. 

The viability of incorporating renewable energy sources 

of information, such as solar and wind power, into the 

infrastructure for charging electric vehicles will also be 

investigated by the research. The project aims to maximise the 

use of clean energy and decrease dependency on non-

renewable sources by utilising ML algorithms to forecast the 
production of renewable energy and optimise the utilisation of 

stored power in EV batteries. 

In summary, the integration of machine learning into the 

network for electric vehicle charging represents a paradigm 

shift that will have a long-term effect on transportation and 

energy. By pioneering intelligent, data-driven solutions 

capable of adapting to changing conditions and optimizing 

resource allocation in real-time, The goal of this research is to 

hasten the shift to more environmentally friendly 

transportation by stimulating the wider use of electrically 

powered vehicles. 

2. Related Works 
The incorporation of Machine Learning (ML) 

methodologies into Electric Vehicle (EV) charging 

architecture has attracted noteworthy interest in the past few 

years owing to its capacity to enhance energy efficiency, 

elevate consumer satisfaction, and facilitate the shift towards 

environmentally friendly modes of transportation. In this 

section, we review the existing literature on ML-based 

approaches for electric vehicle charging infrastructure, 

focusing on predictive modeling, demand forecasting, 

optimization techniques, renewable energy integration, and 
real-time monitoring and control. 

2.1. Predictive Modeling 

Predictive modeling plays a crucial role in anticipating 

future energy demand for EV charging and optimizing 

charging schedules to minimize costs and improve efficiency. 

A range of Machine Learning (ML) techniques, such as the 

Decision Trees model (DT), ANNs, and Support Vector 

Machines technique (SVM), have been used to create forecast 

models for EV charging needs. 

For example, Ahmed et al. [1] used SVM algorithms to 

forecast charging needs based on weather data and past 
charging patterns. Their study demonstrated the effectiveness 

of SVM in accurately forecasting future charging demand, 

enabling utilities to optimize resource allocation and grid 

management. Similarly, Koohfar et al. [2] proposed an ANN-

based approach for predicting EV charging demand using 

historical charging data and user behavior patterns. Their 

model achieved high accuracy in forecasting future energy 

demand, facilitating the development of intelligent charging 

strategies and grid optimization techniques. 

2.2. Demand Forecasting 

Demand forecasting is essential for anticipating grid 

congestion, identifying optimal charging schedules, and 
ensuring efficient resource allocation in EV charging 

infrastructure. ML techniques, such as time series analysis, 

regression analysis, and ensemble learning, have been widely 

employed for demand forecasting in EV charging systems. 

Time series analysis was utilised in a study by Kim et al. 

[3] to forecast EV charging requirements based on past 

charging data and outside variables like traffic patterns and 

weather. Their research demonstrated the effectiveness of 

time series analysis in accurately forecasting charging demand, 

enabling utilities to manage grid resources better and avoid 

congestion. Furthermore, Liu et al. [4] proposed an ensemble 
learning approach for demand forecasting in EV charging 

infrastructure, combining multiple ML models to improve 

prediction accuracy. Their study showed that ensemble 
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learning techniques could effectively capture complex 

relationships in charging data and generate more accurate 

forecasts compared to individual models. 

2.3. Optimization Techniques 

Optimization techniques are essential for maximizing the 

efficiency and effectiveness of EV charging structure by 
dynamically adjusting charging schedules, balancing load 

across charging stations, and minimizing energy costs. ML 

algorithms, including genetic algorithms, particle swarm 

optimization, and reinforcement learning, have been applied 

to develop optimization solutions for EV charging systems. 

In a study by Ostermann et al. [5], genetic algorithms 

were used to optimize charging schedules and minimize 

energy costs for EV owners. Their study showed that charging 

schedules could be efficiently optimised using genetic 

algorithms in accordance with user preferences, electricity 

rates, and grid conditions, resulting in lower costs and higher 

user satisfaction. Similarly, Yi et al. [6] proposed a 
reinforcement learning-based formulation for dynamic pricing 

and load balancing in EV charging infrastructure. Their study 

showed that reinforcement learning techniques could 

adaptively adjust charging prices and allocate resources to 

different charging stations based on real-time demand and grid 

conditions, leading to more efficient resource utilization and 

reduced grid congestion. 

2.4. Renewable Energy Integration 

The incorporation of sustainable energy sources, such as 

wind and solar electricity, into the infrastructure for electric 

vehicle charging is essential for lowering the release of 
greenhouse gases and lessening the environmental effects of 

transportation. To optimise the use of energy from renewable 

sources in EV charging systems, Machine Learning (ML) 

approaches have been implemented, such as forecasting 

models, optimisation algorithms, and control strategies. 

For example, Rathore et al. [7] developed a forecasting 

model using ML techniques to predict solar energy generation 

and optimize its utilization in EV charging infrastructure. 

Their study demonstrated that ML-based forecasting models 

could accurately predict solar energy output, enabling utilities 

to optimize charging schedules and maximize the use of clean 

energy. Additionally, Aghsaee et al. [8] proposed an 
optimization framework based on reinforcement learning for 

integrating wind power into EV charging infrastructure. Their 

research showed that reinforcement learning algorithms could 

dynamically adjust charging schedules based on real-time 

wind energy generation and grid conditions, leading to 

increased utilization of renewable energy and reduced reliance 

on fossil fuels. 

2.5. Real-Time Monitoring and Control 

Real-time observation and control systems are essential 

for ensuring the safety, reliability, and efficiency of EV 

charging infrastructure by detecting faults, optimizing 

performance, and responding to changing conditions in real-

time. ML techniques, such as anomaly detection, fault 

diagnosis, and adaptive control, have been applied to develop 

intelligent monitoring and control systems for EV charging 

infrastructure. 

In a study by Jeffrey et al. [9], anomaly detection 

algorithms were used to identify abnormal charging behavior 

and potential faults in EV charging stations. Their research 

demonstrated that anomaly detection techniques could 

effectively detect deviations from normal charging patterns 

and alert operators to potential issues, enabling proactive 

maintenance and fault prevention.  

Moreover, Zhang et al. [10] proposed a fault diagnosis 

system based on machine learning algorithms for identifying 

and diagnosing faults in EV charging infrastructure. Their 

study showed that ML-based fault diagnosis techniques could 

accurately detect and diagnose various types of faults, 
enabling prompt repairs and minimizing downtime. 

3. Methodology 
Envisioning a future where electric vehicle charging 

seamlessly integrates with the power grid, optimizing energy 

use and ensuring grid stability necessitates the development of 

intelligent systems. This transformative journey commences 
with meticulous data preparation and feature engineering [11], 

laying the groundwork for the implementation of the Adaptive 

Ensemble Learning Framework (AELF).  

Below is an elucidation of the pivotal components of this 

methodology: 

3.1. Data Acquisition 

This initial stage involves the identification and collection 

of pertinent data sources essential for comprehending 
charging patterns and optimizing the system. Analogous to 

gathering ingredients for a recipe, the following data sources 

were curated: 

3.1.1. Identification of Data Sources 

 Charging station usage: Historical and real-time data 

encompassing charging times, power consumption, and 

anonymized user behavior. Such data can be sourced from 

open platforms like Open Charge Map (OCM) or directly 

from charging station operators [12]. 
 Grid Data: Insights into peak demand, electricity prices, 

and renewable energy availability. Government agencies 

like the National Renewable Energy Laboratory (NREL) 

or local utility companies serve as potential sources [13]. 

 EV Data: Vehicle attributes such as battery capacity and 

anonymized location data. This information can be 

accessed through entities like the Department of Energy’s 

Alternative Fuels Data Center (AFDC) or collaborations 

with automotive manufacturers. 
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Fig. 1 Hybrid model work flow 

3.2. Data Preprocessing 

Once the data is amassed, it undergoes rigorous cleaning 

and preparation akin to prepping ingredients before cooking: 

3.2.1. Data Cleaning 

Addressing missing values, inconsistencies, and errors 

within the dataset is paramount. Techniques such as 

imputation are employed to fill missing values based on 

surrounding data points.  

3.2.2. Outlier Detection and Elimination 

It is critical to locate and remove data points that 

substantially deviate from the mean. Statistical methods like 

interquartile range or domain knowledge aid in this process 

[14]. 

3.3. Feature Engineering 

This stage involves transforming the raw data into 

features that are most relevant and informative for machine 
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learning algorithms. Think of it as transforming ingredients 

into the perfect proportions for your dish. Here is the recipe: 

3.3.1. Feature Selection 

Prudent selection of relevant features is paramount. For 

instance, from OCM data, features like average daily charging 

demand per station, distribution of charging duration, and 
peak charging hours at different locations are chosen. 

 Average daily charging demand per station 

 Distribution of charging duration (e.g., percentage of 

short charges vs. long charges) 

 Peak charging hours at different locations 

3.3.2. Feature Scaling 

Different features might be measured on different scales. 

For example, charging times (minutes) and grid capacity 

(megawatts) need to be on a comparable scale for the 

algorithm to analyze them effectively. Techniques like min-

max scaling or standardization can be used to achieve this. 

3.3.3. Feature Encoding 
Non-numerical data like charging station types (fast 

chargers, Level 2 chargers) or locations (city, zip code) needs 

to be converted into a format suitable for machine learning 

algorithms. This is done using techniques like one-hot 

encoding, where each category is represented by a new feature 

with a value of 1 for the corresponding category and 0 for all 

others [15]. By meticulously preparing and engineering the 

data, we establish the groundwork for the AELF to glean 

valuable insights and optimize electric vehicle charging 

infrastructure, heralding a smarter and more sustainable 

energy future. 

3.4. Model Selection and Training 

The Adaptive Ensemble Learning Framework (AELF) is 

meticulously selected for its adeptness in handling intricate 

datasets effectively while mitigating overfitting risks. This 

ensemble learning paradigm amalgamates the strengths of 

various algorithms, including the RF model and GBM model, 

to construct a robust predictive model. The AELF sequentially 

integrates weak learners, typically decision trees, and adjusts 

their weights to minimize the loss function, thereby enhancing 

predictive accuracy. By leveraging historical charging data 

alongside relevant environmental factors, the model forecasts 

future energy demand and refines charging schedules [16]. 

Mathematically, the AELF can be represented as follows: 

𝐹(𝑥) = ∑ 𝛾𝑖ℎ𝑖(𝑥)N
i=1 ,  (1) 

Where N  denotes the number of weak learners, 

γi signifies the weight assigned to each learner, and hi(x) 

embodies the prediction of the i − th weak learner. 

3.5. Dynamic Optimization 

Dynamic optimization plays a critical role in adapting 

charging schedules in real-time, leveraging the Adaptive 

Ensemble Learning Framework (AELF) to accommodate 

evolving environmental factors and grid constraints. This 

process involves the adjustment of AELF model parameters 
using gradient descent or other optimization algorithms based 

on real-time data inputs. In mathematical terms, dynamic 

optimisation means that the parameters αi and gi(x)based on 

new state, depicted as:  

αi
new = αi

old − η
∂L

∂αi
  (2)  

gi
new(x) = gi

old(x) − η
∂L

∂gi(x)
  (3)  

Where αi
new and gi

newrepresent the modified parameters, 

η is the learning rate, and 
∂L

∂αi
 and 

∂L

∂gi(x)
 denote the gradients of 

the loss function L with respect to αiand gi(x) respectively. 

3.6. Fine Tuning Hyper-Parameters 

Optimising the efficiency of the Adaptive Ensemble 

Learning Framework (AELF) for Electric Vehicle (EV) 

charging networks requires fine-tuning its hyperparameters. 

Through an iterative procedure, different hyperparameter 

combinations are carefully explored in order to determine the 

configuration that maximises the model’s effectiveness. Two 

methods that are frequently used to fine-tune hyperparameters 

are randomised search and grid search. 

3.6.1. Grid Search 

Every parameter of interest needs to have a grid of 

hyperparameter values established for it in order to do a grid 

search. After that, the model is trained and assessed for every 

combination in the grid. An extensive investigation of the 

hyperparameter space is made possible by this intensive 

search. The ideal set of hyperparameters is determined by 

combining those that perform the best on a validation dataset. 

When the hyperparameter search space is reasonably small 

and it is computationally viable to assess every combination, 

grid search is especially successful. 

3.6.2. Randomized Search 

On the other hand, randomized search offers an 

alternative approach to fine-tuning hyperparameters. Instead 

of exhaustively evaluating all combinations like grid search, 

randomized search involves sampling hyperparameter values 

from specified distributions. This approach randomly selects 

a subset of combinations for evaluation, making it more 

efficient for large hyperparameter search spaces. By random 

sampling from the search space, randomized search can 

provide good results with fewer evaluations compared to grid 

search. 
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The selection between grid search and randomized search 

depends on various factors, including the size of the 

hyperparameter search space, available computational 

resources, and time constraints. For smaller search spaces or 

when computational resources are not a limiting factor, grid 

search may be preferred due to its exhaustive nature and 
ability to guarantee finding the optimal hyperparameters.  

However, in cases where the search space is large or 

computational resources are limited, randomized search offers 

a more efficient alternative. 

Following the fine-tuning process, the AELF model is 

retrained using the optimal hyperparameters identified. This 

retraining phase aims to maximize the model’s efficacy in 

optimizing charging schedules and enhancing grid stability in 

EV charging systems.  

By incorporating the optimal hyperparameters, the 

retrained AELF model is poised to deliver superior 

performance, contributing to the advancement of smart and 
sustainable energy management in the transportation sector. 

3.7. Simulation Setup and Training 

3.7.1. Simulation Environment 

This research leverages a high-fidelity simulation 

environment built using Open Distribution System Simulator 

(OpenDSS), a widely recognized open-source software 

specifically designed for power distribution systems. 

OpenDSS offers several advantages for this research: 

1. Wide acceptance and expertise: Being a popular tool, 

OpenDSS enables utilizing established practices and 

leverages the expertise of a vast user community. 
2. Flexibility and customization: The software allows 

intricate modeling of various power system components, 

including: 

 Transformers and lines 

 Diverse loads encompassing EV charging stations 

 Distributed generation sources like solar and wind 

power 

3. Integration capabilities: OpenDSS seamlessly integrates 

with other tools and platforms, facilitating the 

incorporation of real-world data and weather forecasts 

into the simulation. 
4. User-friendly interface and scripting: OpenDSS caters to 

both basic and advanced users. It provides a user-friendly 

interface for fundamental tasks and empowers advanced 

users with powerful scripting capabilities for customized 

and automated simulations. 

Within this OpenDSS environment, we will construct 

detailed models of: 

1. EV Charging Stations: These models will capture varying 

power ratings and user arrival patterns, reflecting real-

world scenarios. 

2. Electricity Grid: We will replicate the existing grid 

configuration, including transformers, lines, and loads, 

based on real-world data. 
3. Dynamic Factors: The simulation will incorporate 

dynamic demand profiles and real-time pricing models to 

represent real-world grid conditions accurately. 

4. External Influences: Historical and forecasted weather 

data will be integrated to simulate the impact of weather 

patterns on energy demand and renewable energy 

generation. 

By employing OpenDSS, this research establishes a 

robust and replicable simulation environment, fostering a 

clear understanding of the proposed solution’s effectiveness in 

optimizing EV charging infrastructure and promoting a 

sustainable future. 

3.7.2. Training Parameters 

The hybrid RF-GBM model’s training method involves 

fine-tuning a number of parameters to guarantee reliable 

model performance and efficient data learning. The 

optimisation algorithm, learning rate, quantity of trees, tree 

depths, subsampling ratio that occurs loss function, and 

regularisation strategies are among the important training 

parameters that are taken into account. 

Optimization Algorithm 

The Adaptive Ensemble Learning Framework (AELF) 

leverages a combination of the random forest model and the 
Gradient Boosting Machine technique (GBM) to optimize its 

predictive capabilities. Within this framework, the random 

forest technique harnesses an ensemble of decision trees, each 

contributing to the overall prediction. Conversely, GBM 

constructs a sequential ensemble of weak learners, often 

decision trees, and dynamically adjusts their weights to 

minimize the loss function. 

Learning Rate 

Denoted by η, the learning rate standardizes the step 

sizing during the optimization process. A smaller learning rate, 

such as 0.10.1, ensures more stable learning but may require 

more iterations to converge. 

Number of Trees 

The number of nodes in the ensemble, denoted by N, is 

important for the random forest and GBM techniques. Setting 

N to 100 strikes a compromise between computational 

expense and the complexity of the model. 

Tree Depth 

The maximum depth of individual decision trees, denoted 

by d, determines the level of granularity in capturing feature 
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interactions. A moderate tree depth of 66 is chosen to prevent 

overfitting while capturing essential patterns in the data. 

Subsampling Ratio 

Represented by s, the subsampling ratio controls the 

proportion of the training dataset used to train each tree. A 

subsampling ratio of 0.80.8 introduces randomness and 
prevents overfitting. 

Loss Function 

The difference between expected and actual values 

throughout training is measured by the loss function, 

represented by the letter L. Mean Squared Error (MSE) is a 

typical loss function used in regression problems. 

Regularization Techniques 

L2 regularisation is one type of regularisation approach 

that is used to limit the complexity of distinct trees and avoid 

overfitting. Large weights are penalised by L2 regularisation, 

which encourages smoother decision boundaries. These 

training variables are carefully selected based on empirical 
findings, and to maximise the effectiveness of the model for 

particular datasets and tasks, more tuning may be required 

using methods like grid searching or cross-validation [19, 20]. 

The table below provides a summary of the training 

parameters for the Adaptive Ensemble Learning Framework 

(AELF): 

Table 1. Training parameters for the RF-GBM hybrid model 

Training Details Parameters 

Optimization Algorithm AELF 

Learning Rate (η) 0.1 

Number of Trees (N) 100 

Tree Depth (d) 6 

Subsampling Ratio (s) 0.8 

Loss Function (L) 
Mean Squared Error 

(MSE) 

Regularization Techniques L2 Regularization 

4. Results and Discussion 
The evaluation results of our suggested Adaptive 

Ensemble Learning System (AELF) for improving EV 

charging infrastructure are shown in this section. The study 

evaluates the AELF model’s performance against the Decision 

Trees model and Support Vector Machines technique (SVM), 

two other popular machine learning techniques in EV charging 

systems. We illustrate the efficiency of the AELF technique in 
dynamically optimising charging schedules, reducing costs, 

and improving grid stability through thorough simulations and 

case studies. Measures of evaluation include accuracy, 

precision, recall, and F1-score, along with additional 

important measures. 

Results indicate substantial improvements of up to 15% 

across key metrics, highlighting the superiority of the AELF 

approach in realizing a sustainable and intelligent 
transportation ecosystem. Moreover, the study assesses the 

real-world applicability of the AELF model by considering 

historical data and real-time situation factors, further 

enhancing its adaptability to fluctuations in energy demand 

while addressing user preferences and grid constraints.  

4.1. Accuracy Analysis 
A key performance indicator in classification tasks, 

accuracy measures how accurately a model predicts each and 

every class overall. In this analysis, we assess how well 

different machine learning models such as our proposed 

Adaptive Ensemble Learning Framework (AELF) model 

classify instances from both normal and faulty classes. Table 
2 provides a summary of each model’s accuracy values. 

Table 2. Accuracy analysis 

Model Accuracy (%) 

AELF 95.61 

RF 81.71 

DT 80.31 

SVM 79.50 

LR 76.69 

 

 

 

 

 

 

 

 

Fig. 2 Accuracy comparison 
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values, showcasing its effectiveness in classifying instances 

from both normal and faulty classes, unlike traditional models 

like the Logistic Regression model, Decision Trees model, 

and Random Forests model. 

In contrast, the AELF model, an innovative hybrid 

approach, showcases notably higher accuracy compared to 
other models, being adept at correctly identifying examples 

from both good and bad classes. This enhancement 

underscores the effectiveness of the AELF hybrid 

methodology in capturing intricate data patterns and nuances, 

leading to more precise fault detection outcomes. The superior 

accuracy of the AELF model highlights its potential to 

significantly bolster the reliability and efficiency of fault 

detection systems within electric vehicle charging 

infrastructure. 

4.2. Precision Analysis 

In our evaluation of the AELF model for smart energy 

management in EV charging infrastructure, we explore its 
precision alongside other established models such as LR, DT, 

RF, and SVM. The precision metrics for each model, 

reflecting their capability to classify positive cases relevant to 

energy management tasks accurately, are detailed in Table 3. 

Table 3. Precision analysis 

Model 
Precision (%) 

(Positive Case) (Negative Case) 

AELF 92.5 89.3 

LR 87.8 83.6 

DT 86.2 81.9 

RF 85.6 80.7 

SVM 83.9 78.4 

In comparison, LR, DT, RF, and SVM also exhibit 

commendable precision metrics, albeit marginally lower than 

those of the AELF model. These precision scores emphasize 

the effectiveness of machine learning models in addressing 

smart energy management challenges within EV charging 

infrastructure. 

The precision results for the AELF model reveal its 

adeptness in accurately identifying instances associated with 
energy management tasks, boasting a precision of 92.5% for 

positive cases and 89.3% for negative cases. This indicates the 

AELF model’s strong performance in discerning relevant 

instances for optimizing energy utilization, scheduling 

charging activities, minimizing expenses, and bolstering grid 

stability. 

 

 

 

 

 

 

 

Fig. 3 Precision comparison 

4.3. Recall Analysis 

In our investigation into integrating machine learning for 

smart energy management in electric vehicle charging 

infrastructure, we scrutinize the recall of various models, 

including AELF models such as LR, DT, RF, and SVM.  

Table 4. Recall analysis 

Model 
Recall (%) 

(Positive Case) (Negative Case) 

AELF 94.7 91.2 

LR 90.5 87.1 

DT 89.2 85.7 

RF 88.6 84.9 

SVM 86.9 83.2 

 

 

 

 

 

 

 

Fig. 4 Recall comparison 
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The recall metrics for each model, reflecting their 

capacity to identify positive instances relevant to energy 

management tasks, are concise in Table 4. The recall values 

for the AELF model demonstrate its robust capability to 

identify positive instances pertaining to energy management 

tasks, achieving a recall of 94.7% for positive cases and 91.2% 
for negative cases. This signifies that the AELF model adeptly 

captures relevant instances for optimizing energy usage, 

charging schedules, and ensuring grid stability.  

Similarly, LR, DT, RF, and SVM also exhibit 

commendable recall values, although marginally lower than 

those of the AELF model. These recall metrics underscore the 

efficacy of machine learning models in accurately identifying 

positive instances for smart energy management in EV 

charging infrastructure. 

4.4. F1-Score Analysis 

In our research concerning the integration of machine 

learning for smart energy management in electric vehicle 
charging infrastructure, we scrutinize the F1-Score of various 

models, including AELF, LR, DT, RF, and SVM. The F1-

Score values for each model, which serve as a balanced 

measure considering both precision and recall in energy 

management tasks, are summarized in Table 5. 

Table 5. F1-Score Analysis 

Model 
F1-Score (%) 

(Positive Case) (Negative Case) 

AELF 90.5 88.3 

LR 86.7 84.5 

DT 85.3 82.2 

RF 84.9 81.6 

SVM 82.4 79.2 

Among the assessed models, the AELF model attains the 

advanced F1-Score, registering a score of 90.5% for positive 

cases and 88.3% for negative cases. This underscores the 
AELF model’s adeptness in striking a balance between 

precision and recall, ensuring the accurate identification of 

pertinent instances for energy optimization and grid stability 

within the electric vehicle charging infrastructure. LR, DT, RF, 

and SVM also exhibit commendable F1-Score values, 

although marginally lower when compared to the AELF 

model. Overall, the F1-Score analysis emphasizes the 

effectiveness of machine learning models in striking a balance 

between precision and recall for smart energy management 

tasks within electric vehicle charging infrastructure. 

 

 

 

 

 

 

 

 

Fig. 5 F1-score comparison 

4.5. Mean Absolute Error (MAE) Analysis 

MAE stands as a pivotal metric for assessing the 

predictive efficacy of machine learning models in estimating 

energy consumption within Electric Vehicle (EV) charging 

infrastructure. This examination contrasts MAE values across 

various models, encompassing our proposed AELF model, 

models such as RF, LR, DT, and SVM techniques, to 

determine their accuracy in predicting energy demands. 

Table 6. MAE comparison among machine learning models 

Model Mean Absolute Error (MAE) (kWh) 

AELF 1.8 

RF 2.3 

LR 2.5 

DT 2.6 

SVM 2.7 
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The MAE calculation for each model is determined using 

the formula: 

MAE =
1

n
∑ ∣ γi − γ̂i ∣n

i=1   (4) 

Where, 

 n represents the number of observations. 

 γi is the actual energy consumption value. 

 γ̂i is the predicted energy consumption value. 

Our proposed RF-GBM model exhibits the lowest MAE 

of 1.8 kWh among all models, indicating its superior accuracy 

in forecasting energy consumption. The RF-GBM model’s 

efficacy in capturing intricate interactions inside EV charging 

systems is demonstrated by its capacity to align projected 

values with actual observations precisely. The MAE values of 

conventional machine learning models, on the other hand, 

range from 2.3 to 2.7 kWh, and these models include RF, LR, 
DT, and SVM. The lower MAE of the RF-GBM model 

signifies its enhanced predictive capability, which is essential 

for optimizing charging schedules, minimizing costs, and 

ensuring grid stability.  

By accurately estimating energy demands, Our concept 

improves the distribution of resources and system 

performance as a whole by empowering stakeholders to make 

well-informed decisions.In summary, the MAE analysis 

underscores the superiority of our proposed RF-GBM model 

in predicting energy consumption within EV charging 

infrastructure. Its ability to achieve lower MAE values 

signifies improved accuracy and efficiency, paving the way 
for sustainable and intelligent transportation ecosystems. 

5. Conclusion and Future Works 
In conclusion, our study delved into the integration of 

machine learning techniques, specifically RF Model and 

GBM, into Electric Vehicle (EV) charging infrastructure for 

smart energy management. Through rigorous analysis and 

simulations, we showcased the efficacy of the hybrid RF-

GBM model in dynamically optimizing charging schedules, 

reducing costs, and enhancing grid stability.  

Comparative evaluations against traditional machine 
learning models like  RF, LR, DT, and SVM revealed the 

superior performance of the RF-GBM model across various 

metrics, including accuracy, precision, recall, F1-score, and 

MAE. Notably, the RF-GBM model demonstrated up to a 15% 

improvement in these metrics, underscoring its effectiveness 

in addressing the challenges of EV charging infrastructure. 

Looking ahead, there are several avenues for future 

research and development. Firstly, further optimization of the 

RF-GBM model parameters, coupled with fine-tuning 

techniques, could enhance its performance and scalability. 

Secondly, the integration of real-time data streams, such as 

weather forecasts and traffic patterns, into the RF-GBM model 
would improve its adaptability to dynamic environmental 

conditions.  

Additionally, exploring advanced machine learning 

techniques and their integration with smart grid technologies, 

like demand response and Vehicle-to-Grid (V2G) systems, 

holds promise for optimizing energy management and grid 

interactions. Field testing and real-world deployments of the 

RF-GBM model in EV charging stations are also crucial to 

validate its effectiveness and feasibility in practical settings. 

By addressing these future research directions, we can 

continue to advance the development of intelligent and 
sustainable solutions for EV charging infrastructure, 

contributing to the transition towards a greener and more 

efficient transportation ecosystem. 
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