Synthesis of novel main-chain azo-benzene poly(ester amide)s via interfacial polycondensation

International Journal of Applied Chemistry
© 2020 by SSRG - IJAC Journal
Volume 7 Issue 2
Year of Publication : 2020
Authors : Giorgi Tsiklauri, Temur Kantaria, Tengiz Kantaria, Ramaz Katsarava, Giorgi Titvinidze
pdf
How to Cite?

Giorgi Tsiklauri, Temur Kantaria, Tengiz Kantaria, Ramaz Katsarava, Giorgi Titvinidze, "Synthesis of novel main-chain azo-benzene poly(ester amide)s via interfacial polycondensation," SSRG International Journal of Applied Chemistry, vol. 7,  no. 2, pp. 63-69, 2020. Crossref, https://doi.org/10.14445/23939133/IJAC-V7I2P109

Abstract:

Two amino acid-based poly(ester amide)s (PEAs) with azobenzene moieties in the main chain were successfully synthesized via interfacial polycondensation of a dip-toluenesulfonic acid salt of bis-(Lleucine)- 1,6-hexylene diester with azobenzene 3,3′- dicarbonyl chloride or azobenzene 4,4′-dicarbonyl chloride. The structures of the obtained polymers were confirmed and characterized by 1H and 13C NMR spectroscopy and gel permeation chromategraphy (GPC). The photo-induced cis-trans-isomerization of azobenzene containing PEAs in the DMF solution was studied by UV-Vis spectroscopy. Irradiation with U.V. light (365 nm) resulted in reversible cis-trans isomerization. The effect of cistrans-isomerization on the glass transition temperature was investigated by differential scanning calorimetry (DSC). It is shown that glass transition temperature decreases by irradiation when changes from trans to cis-isomer. Synthesized polymers were used in the preparation of photoresponsive nanoparticles for targeted drug delivery application. Nanoparticles' average diameter (A.D.), polydispersity index (PDI), and zeta-potential (Z.P.) were determined by Dynamic Light Scattering (DLS). Moreover, the stability of the N.P.s over time at low temperatures and upon irradiation were investigated.

Keywords:

Biodegradable smart polyester amides, main chain azo-benzene polymers, trans-to-cis isomerization, U.V. irradiation.

References:

[1] O. S. Fenton, K. N. Olafson, P. S. Pillai, M. J. Mitchell, R. Langer, Advances in Biomaterials for Drug Delivery, Adv. Mater. 2018, 30, 1705328 (1-29).
[2] P. S. Kowalski, C. Bhattacharya, S. Afewerki, R. S. Langer, Smart Biomaterials: Recent Advances and Future Directions, ACS Biomater. Sci. Eng. 2018, 4, 3809-3817.
[3] P. Xiao, J. Zhang, J. Zhao, M. H. Stenzel, Light-induced release of molecules from polymers, Prog. Polym. Sci. 2017, 74, 1–33.
[4] Y. Wang, D. S. Kohane, External triggering and triggered targeting strategies for drug delivery, Nat. Rev. Mater. 2017, 2, 17020.
[5] R. Tong, D. S. Kohane, Shedding light on nanomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 638-662.
[6] S. Sortino, Photoactivated nanomaterials for biomedical release applications, J. Mater. Chem., 2012, 22, 301.
[7] A. Y. Rwei, W. Wang, D. S. Kohane, Photoresponsive nanoparticles for drug delivery, Nano Today 2015, 10, 451–467.
[8] C.S. Linsley, B.M. Wu, Recent advances in light-responsive on-demand drug delivery systems, Ther. Deliv. 2017, 8, 89-107.
[9] S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West, Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res. 2000, 51, 293-298.
[10] C. Alvarez-Lorenzo, L. Bromberg, A. Concheiro, Lightsensitive Intelligent Drug Delivery Systems, Photochem. Photobiol. 2009, 85, 848-860.
[11] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
[12] O. Bertrand, J. Gohy, Photoresponsive polymers: Synthesis and applications, Polym. Chem. 2017, 8, 52–73.
[13] F.D. Jochum, P. Theato, Temperature- and light-responsive smart polymer materials, Chem. Soc. Rev., 2013, 42, 7468-7483.
[14] G.S. Kumar, D.C. Neckers, Photochemistry of Azobenzene-Containing Polymers, Chem. Rev. 1989, 89, 1915-1925.
[15] A. Barhoumi, Q. Liu, D.S. Kohane, Ultraviolet Light-Mediated Drug Delivery: Principles, Applications, and Challenges, J. Controlled Release 2015, 219, 31−42.
[16] H.M. Dhammika Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 2012, 41, 1809–1825.
[17] B.P. Timko, T. Dvir, D.S. Kohane, Remotely Triggerable Drug Delivery Systems, Adv. Mater. 2010, 22, 4925–4943.
[18] E. R. Ruskowitz, C.A. DeForest, Photoresponsive Biomaterials for Targeted Drug Delivery and 4D Cell Culture, Nat. Rev. Mater. 2018, 3, 17087.
[19] S. Jia, W.-K. Fong, B. Graham, B. J. Boyd, Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications, Chem. Mater. 2018, 30, 2873−2887.
[20] J.M. Silva, E. Silva, R.L.Reis, Light-triggered Release of Photocaged Therapeutics - where are we now?, J Control Release 2019, 298, 154-176.
[21] W.A. Velema, W. Szymanski, B.L. Feringa, Photopharmacology: Beyond Proof of Principle, J. Am. Chem. Soc. 2014, 136, 2178−2191.
[22] M.-Q. Zhu, G.-F. Zhang, C. Li, M.P. Aldred, E. Chang, R.A. Drezek, A.D. Li, Reversible Two-Photon Photoswitching and Two-Photon Imaging of Immunofunctionalized Nanoparticles Targeted to Cancer Cells, J. Am. Chem. Soc. 2011, 133, 365–372.
[23] J. Croissant, M. Maynadier, A. Gallud, H.P. N’Dongo, J.L. Nyalosaso, G. Derrien, C. Charnay, J.-O. Durand, L. Raehm, F. Serein-Spirau, N. Cheminet, T. Jarrosson, O. Mongin, M. Blanchard-Desce, M. Gary-Bobo, M. Garcia, J. Lu, F. Tamanoi, D. Tarn, T.M. Guardado-Alvarez, J.I. Zink, Two-
Photon-Triggered Drug Delivery in Cancer Cells Using Nanoimpellers, Angew. Chem. Int. Ed. 2013, 52, 13813 –13817.
[24] G. Cabré, A. Garrido-Charles, M. Moreno, M. Bosch, M. Porta-de-la-Riva, M. Krieg, M. Gascón-Moya, N. Camarero, R. Gelabert, J.M. Lluch, F. Busqué, J. Hernando, P. Gorostiza, R. Alibés, Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation, Nat. Commun. 2019, 10, 907.
[25] Y. Ji, S. Shan, M. He, C.‐ C. Chu, A Novel Pseudo-Protein-Based Biodegradable Nanomicellar Platform for the Delivery of Anticancer Drugs, Small 2017, 13(1), 1-17.
[26] W.G. Turnell, Z. Gomurashvili, R. Katsarava (2006 ) Therapeutic polymers and methods. U.S. Patent Application 20060286064 A1.
[27] B.-W. Liu, H.-B. Zhao, Y. Tan, L. Chen, Y.-Z. Wang, Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance, Polymer Degradation and Stability 2015, 122, 66-76.
[28] Q.-c. Jia, Y.-j. Chen, H.-m. Hou, Microwave-assisted synthesis of azo aromatic diacyl chlorides Advanced Materials Research 2012, 524-527, 1702-1705.
[29] S. Ghosh, D. Usharani, A. Paul, S. De, E. D. Jemmis, S. Bhattacharya, Design, Synthesis, and DNA Binding Properties of Photoisomerizable Azobenzene-Distamycin Conjugates: An Experimental and Computational Study, Bioconjugate Chem. 2008, 19, 2332–2345.
[30] M. L. Tomlinson, The Reduction of p-Nitrobenzoic Acid to Hydrazo- and Azo-benzene-4 : 4'-dicarboxyEic Acids by Means of Glucose, J. Chem. Soc. 1946, 756.
[31] Tem. Kantaria, Teng. Kantaria, S. Kobauri, M. Ksovreli, T. Kachlishvili, N. Kulikova, D. Tugushi, R. Katsarava. Biodegradable nanoparticles made of amino acid based ester polymers: preparation, characterization, and in vitro biocompatibility study. Appl. Sci. 2016; 6, 444. doi:10.3390/app6120444.
[32] H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G.K. Auernhammer, R. Berger, H.-J. Butt, S. Wu, Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solidto-liquid transitions, Nat. Chem. 2017, 9, 145–151.
[33] C. J. Martínez Rivas, M. Tarhini, W. Badri, K. Miladi, H. Greige-Gerges, Q.A. Nazari, S.A. Galindo Rodríguez, R.Á. Román, H. Fessi, A. Elaissari. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017; 532, 66-81.
[34] Sunny Pannu. "Investigation of Natural Variants for Antimicrobial Finishes in Innerwear A Review Paper for Promotion of Natural Hygiene in Innerwear". International Journal of Engineering Trends and Technology (IJETT). V4(5):2168-2171 May 2013. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group.