Synthesis, Charecterization, DNA binding and photocleavage studies of Mixed ligand Nickel(II) complexes containing 5-methyl-1,3,4-thiadiazole with 1,10 phenanthroline and 2’2 bipyridine

International Journal of Applied Chemistry
© 2017 by SSRG - IJAC Journal
Volume 4 Issue 3
Year of Publication : 2017
Authors : Shwetha K.M., Krishnamurthy G., Bhojya Naik H.S., Prabhakara M.C.
pdf
How to Cite?

Shwetha K.M., Krishnamurthy G., Bhojya Naik H.S., Prabhakara M.C., "Synthesis, Charecterization, DNA binding and photocleavage studies of Mixed ligand Nickel(II) complexes containing 5-methyl-1,3,4-thiadiazole with 1,10 phenanthroline and 2’2 bipyridine," SSRG International Journal of Applied Chemistry, vol. 4,  no. 3, pp. 7-15, 2017. Crossref, https://doi.org/10.14445/23939133/IJAC-V4I5P102

Abstract:

The two new mixed ligand Ni(II) complexes of the type [Ni(Phen)2(L)](PF6)2 (1), and [Ni(bpy)2(L)](PF6)2 (2) (where, L= 5-methyl-1,3,4- thiadiazole-2-thiole phen=1,10-phenanthroline, bpy=bipyridine) were synthesized and structurally characterized. Elemental analysis, magnetic and spectroscopic data suggested octahedral geometry for both the complexes. Binding of these complexes with CT-DNA were analyzed by absorption spectra, viscosity and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator with binding constant Kb = 1.7x10 4 M- 1 for complex (1) and Kb= 1.5x104 M-1 for Complex (2) respectively. The photocleavage activities of the complexes were studied with supercoiled (SC) pUC19 DNA by using gel electrophoresis, and the results show that complexes have potent nuclease activity.

Keywords:

Mixed Ligand; CT-DNA; Viscosity; Photocleavage; Electrophoresis.

References:

[1] L.N. Ji, X.H. Zou, J.G. Liu, “Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA”, Coord. Chem. Rev. 216 (2001) 513-536.
[2] F. Arnesano, G. Natile, “Mechanistic Insight into the cellular uptake and processing of cisplatin 30 years after its approval by FDA”, Coord. Chem. Rev. 253 (2009) 2070-2081.
[3] Y.W. Jung, S.J. Lippard, “Direct cellular response to Platinum-induced DNA damage”, Chem. Rev. 107 (2007) 1387-1407.
[4] T. Boulikas, A. Pantos, E. Bellis, P. Christofis, “Designing platinum compounds in cancer: structures and echanisms”, Cancer Ther. 5 (2007) 537-583.
[5] R. Gust, W. Beck, G. Jaouen, H. Schoenenberger, “Optimization of cisplatin for the treatment of hormone dependent tumoral diseases: Part 1: Use of steroidal ligands”, Coord. Chem. Rev. 253 (2009) 2742-2759.
[6] P.C.A. Bruijnincx, P.J. Sadler, “New trends for metal complexes with anticancer Activity”, Curr. Opin. Chem. Biol. 12 (2008) 197-206.
[7] J. Tan, B. Wang and L. Zhu, DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex, Bioorg. Med. Chem., 17 (2009) 614-620.
[8] L. J. K. Boerner and J. M. Zaleski, Metal complex–DNA interactions: from transcription inhibition to photoactivated cleavage Curr. Opin. Chem. Biol., 9 (2005) 135-144.
[9] Prabhakara, M.C. and Bhojya Naik, H.S. (2008). Binding and photocleavage of DNA by mixed ligand Co(III) and Ni(II) complexes of thiophene[2, 3-b] quinoline and phenanthrolie/bipyridine. Biometals 21: 675-684.
[10] V. Hero, S. Poornima, E. Sundaravadivel and M. Kandaswamy International Journal of Inorganic and Bioinorganic Chemistry 2012, 2(4): 58-67
[11] O.M. Adelaide,O.O. Abidemi and A. D.Olubunmi, Synthesis, characterization and antibacterial studies of some copper (II) complexes of 2,2’-bipyridine and 1.10- phenanthroline J.Chem. and Pharm. Res. 2013, 5(8):69-73
[12] Salman M. Saadeh, Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand, Arabian Journal of Chemistry (2013) 6, 191–196
[13] N. Wang, Q. Y. Lin, J. Feng, Y. L. Zhao, Y. J. Wang, S. K. Li, Crystal structures, DNA interaction and antiproliferative activities of the cobalt(II) and zinc(II) complexes of 2-amino-1,3,4-thiadiazole with demethylcantharate, Inorganica Chimica Acta 363 (2010) 3399–3406
[14] A. B. P. Lever, “The Electronic Spectra of Tetragonal Metal Complexes Analysis and Significance,” Coordination Chemistry Reviews, Vol. 3, No. 2, 1968, pp.119-140
[15] S.Y. Ebrahimipour, M. Mohamadi, J. Castro, N. Mollania, H.A. Rudbari, A. Saccá. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium(VI) complexes incorporating tetradentate N2O2 Schiff base ligands, RSC Adv., (2015) (5) 95104-95117
[16] M. Amirnasr, R.S. Sadeghi Erami, K. Mereiter, K.S. Job, S. Meghdadi, S. Abbasi, Syntheses, characterizations, Xray crystal structures, and antibacterial activities of Co(II), Ni(II), and Zn(II) complexes of the Schiff base derived from 5-nitro-2-hydroxybenzaldehyde and benzylamine, J. Coord. Chem., 68, (2015) 616-631.
[17] P. Subbaraj, A. Ramu, N. Raman, J. Dharmaraja. Synthesis, characterization, and pharmacological aspects of metal(II) complexes incorporating 4- [phenyl(phenylimino)methyl]benzene-1,3-diol, J. Coord. Chem., 67, 2747 (2014).
[18] Animesh Patray, Supriti Seny, Sandipan Sarkary, Ennio Zangrandoz and Pabitra Chattopadhyay Journal of Coordination Chemistry Vol. 65, No. 23, 10 December 2012, 4096–4107
[19] V. Hero, S. Poornima, E. Sundaravadivel and M. Kandaswamy DNA Binding and Cleavage studies of Cu(II), Ni(II) and Zn(II) complexes of N-(5-aminopentyl)- 3-[[(5-(N-hydroxy acetamido) - pentyl]carbamoyl]propionohydroxamic acid in aqueous medium International Journal of Inorganic and Bioinorganic Chemistry 2012, 2(4): 58-67
[20] Omar H. Al-Obaidi Chemistry Department, Education College for Women, Al-Anbar University, Ramadi, Iraq Received July 1, 2012; revised August 9, 2012; accepted August 30, 2012, Open Journal of Inorganic Non-metallic Materials, 2012, 2, 59-64
[21] B. Vinay Kumar, H.S. Bhojya Naik, D. Girija, N. Sharath, and Joy Hoskeri, H Prabhakara M.C. Synthesis, DNAbinding, DNA-photonuclease profiling and antimicrobial activity of novel tetra-aza macrocyclic Ni(II), Co(II) and Cu(II) complexes constrained by thiadiazole, Spectrochim. Acta A: Mol. Biomol. Spectrosc., (2012):
[22] Prabhakara, M.C. Basavaraju, B. and Bhojya Naik, H.S. (2007). Co(III) and Ni(II) complexes containing bioactive ligands: synthesis, DNA binding and photocleavage studies. Bioinorg.Chem.Appln., 7-13.
[23] Sudhamani, C.N., Bhojya Naik, H.S., Ravikumar Naik, T.R., Prabhakara, M.C. (2009). Synthesis, DNA binding and cleavage studies of Ni(II) complexes with fused aromatic N-containing ligands, Spectrochimica Acta Part A 72, 643–647.
[24] M.E. Reichmann, S. A.Rice, C. A.Thomas, P. Doty, A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid, .J. Am. Chem. Soc. 1954, 76, 3047.
[25] V.G.Vaidyanathan, B.U. Nair. Synthesis, characterization and binding studies of chromium(III) complex containing an intercalating ligand with DNA J. Inorg. Biochem. 2003, 95, 334.
[26] A.Wolfe, G. H.Shimer, T.Meehan. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochemistry. 1987, 26, 6392-6396.
[27] B.Norden, T.Tjerneld. Structure of methylene blue–DNA complexes studied by linear and circular dichroism spectroscopy, Biopolymers. 1982, 21, 1713.
[28] L. Lerman. Structural considerations in the interaction of DNA and acridines, J. Mol. Biol. 1961, 3, 18.
[29] S. Ramakrishnana, M. Palaniandavar. Mixed-ligand copper(II) complexes of dipicolylamine and 1,10- phenanthrolines: The role of diimines in the interaction of the complexes with DNA, J. Chem. Sci. 2005, 117, 179-186.
[30] G. Cohen, H.Eisenberg. Viscosity and sedimentation study of sonicated DNA– proflavine complexes, Biopolymers 1969, 8, 45-55.
[31] M.C. Prabhakara, H.S. Bhojya Naik, V. Krishna, H.M. Kumaraswamy, Binding and oxidative cleavage studies of DNA by mixed ligand Co(III) and Ni(II)complexes of quinolo[3,2-b]benzodiazapine and 1,10-phenanthroline. Nucleos.Nucleot. Nucl. Acid 26 (2007) 459
[32] Obaleye, J. A., Orjiekwe, C. L. and Edward, D. A. Synthesis, transition metal complexes of (1-cinnamyl) and (1- benzyl)-2, 4 diaza-1, 3-butanedione. Bull. Chem. Soc. Ethiopia., 1(1997) 11–18.
[33] A.I. Vogel, A Textbook of Qualitative Inorganic Analysis, 4th ed., Longmans, Green, London, (1978), p. 567.
[34] J.A. Obaleye, C.L. Orjiekwe, J. Bivalent metal complexes of sodium ascorbate. Sci., I. R. Iran 9 (1998) 148-152.
[35] W. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J. Coord. Chem. Rev. 7 (1971) 81-122.
[36] J.H. Rayner, H.M. Powell, Crystal structure and thermal behaviour of manganese(II) and zinc(II) complexes. Bull. Chem. Soc. Jpn. 42 (1963) 123.
[37] O.A. Odunola, J.A.O. Woods, K.S. Patel, Magnetic moments and infrared spectroscopy of some compounds. Synth. React. Inorg. Met. Org. Chem.7, (1992) 35-41.
[38] R.L. Carlin, First transition series, in Transition Metal Chemistry,Transition, Met. Chem. 684 (1965).
[39] A.K. Lallan mishra, R.S. Yadav, C.S. Phadke, Choi, Koji Araki, Studies on Some New Ru(III) Complexes Using aryl-azo Pentane- 2,4-dione and 2,6-bis (2'- Benzimidazolyl) Pyridine as Ligands: Synthesis, Spectroscopic, Luminescent, Electrochemical and Biological Activities, Metal Based Drugs 8 (2) (2001) 65- 71.
[40] Animesh Patray, Supriti Seny, Sandipan Sarkary, Ennio Zangrandoz and Pabitra Chattopadhyay, Journal of Coordination Chemistry Vol. 65, No. 23, 10 December 2012, 4096–4107.
[41] J. K. Barton, A. Danishefsky, J. Goldberg, Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J. Am. Chem. Soc., 1984, 106 (7), pp 2172–2176.
[42] S. A. Tysoe, R. J. Morgan, A. D. Baker, T. C. Strekas, Spectroscopic investigation of differential binding modes of .DELTA.- and .LAMBDA.-Ru(bpy)2(ppz)2+ with calf thymus DNA, J. Phys. Chem., 1993, 97 (8), pp 1707– 1711.
[43] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation, Nucleic Acids Res (1985) 13 (17): 6017-6034.
[44] S. Satyanarayana, J.C. Dabrowiak, J. B. Chaires, Neither .DELTA.- nor .LAMBDA.- tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation, Biochemistry, 1992, 31 (39), pp 9319–9324
[45] S. Satyanarayana, J.C. Dabrowiak, J. B. Chaires, Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding Biochemistry, 1993, 32 (10), pp 2573–2584.
[46] Y. Xiong, X. F. He, X. H. Zou, J. Z. Wu, X. M. Chen, L. N. Ji, R.H. Li, J. Y. Zhou and K. B. Yu , Interaction of polypyridyl ruthenium(II) complexes containing non-planar ligands with DNA, J. Chem. Soc., Dalton Trans., 1999, 19-24
[47] B.Y. Wu , L. H. Gao, Z. M. Duan, K. Z. Wang, Syntheses and DNA-binding studies of two ruthenium(II) complexes containing one ancillary ligand of bpy or phen: Ru(bpy)(pp[2,3]p)2](ClO4)2 and Ru(phen)(pp[2,3]p)2](ClO4)2, 99 (2005) 1685–1691.
[48] S. Mahadevan and M. Palaniandavar, Spectroscopic and Voltammetric Studies on Copper Complexes of 2,9- Dimethyl-1,10-phenanthrolines Bound to Calf Thymus DNA Inorg. Chem., 1998, 37 (4), 693–700
[49] G. A. Neyhart, N. Grover, S.R. Smith, W. A. Kalsbeck, T. A. Fairley, M. Cory, H. H.Thorp, Binding and kinetics studies of oxidation of DNA by oxoruthenium(IV), J. Am. Chem. Soc., 1993, 115 (11), 4423–4428.
[50] R.M. Hartshorn, J. K. Barton, Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA , J. Am. Chem. Soc., 1992, 114 (15), 5919–5925.