Metal Adsorption Property of Succinamic Acid Functionalized MCM-41

International Journal of Applied Chemistry
© 2018 by SSRG - IJAC Journal
Volume 5 Issue 1
Year of Publication : 2018
Authors : Aneesh Mathew, Surendran Parambadath
pdf
How to Cite?

Aneesh Mathew, Surendran Parambadath, "Metal Adsorption Property of Succinamic Acid Functionalized MCM-41," SSRG International Journal of Applied Chemistry, vol. 5,  no. 1, pp. 6-14, 2018. Crossref, https://doi.org/10.14445/23939133/IJAC-V5I1P103

Abstract:

The adsorption properties of succinamic acid functionalized MCM-41 (SA-MCM-41) towards transition metals was investigated. The material was synthesized initially by anchoring (3-aminopropyl)triethoxysilane (APTES) over MCM-41 (A-MCM-41), and the proceeding immobilization of succinic anhydride in hot methanol (SA-MCM-41). X-ray diffraction and transmission electron microscopy showed that the MCM-41, A-MCM-41 and SA-MCM-41 materials had mesoscopically ordered, hexagonal symmetry and well-defined morphologies. The N2 sorption experiments showed that the material has a large surface area (1008 m2 g-1), acceptable pore diameter (2.8 nm) and reasonable pore volume (0.54 cm3 g-1) which is suitable for maximum functionalization. 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy revealed a change in the silicon environment by each step of modification. Organic functionalization was determined successfully by Fourier transform infrared and 13C cross-polarisation magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy. The optimal condition for the removal of Cr3+, Co2+, Ni2+, Cu2+ and Cd2+ from water was explored by varying the parameters, such as solution concentration, initial pH, stirring time, and amount of adsorbent. The adsorbent exhibited low adsorption ability towards the individual metal ion solutions under our experimental condition. SA-MCM-41 was shown exceptional amount of adsorption for Cr3+ and Cu2+ ions from the five metal mixture at pH 6.5. The effect of the metal ion concentration over mole adsorption selectivity in the ternary mixture was examined by doubling the concentration of at least one metal ion in the mixture. The result was compared with the ternary mixture containing equal concentrations of metal ions

Keywords:

Mesoporous, MCM-41, Succinamic acid, Adsorption, Metal ions

References:

1 C. T. Cresge, M. E. Leonowicz, W. J. Roth, and J. C. Vartuli, J. S. Beck, Nature 359, 710 (1992).
2 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).
3 A. Mathew, S. Parambadath, M. J. Barnabas, S. Y. Kim, D. W. Kim, K. M. Rao, S. S. Park, and C. S. Ha, Micropor. Mesopor. Mater. 238 (2017) 27-35.
4 E. Dána, Micropor. Mesopor. Mater. 247 (2017) 145.
5 F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Angew. Chem. Int. Ed., 45 (2006) 3216-3251.
6 M. S. Moorthy, P. K. Tapaswi, S. S. Park, A. Mathew, H. J. Cho, and C. S. Ha, Micropor. Mesopor. Mater. 180 (2013) 162–171.
7 C. S. Griffith, V. Luca, J. Cochrane, and J. V. Hanna, Micropor. Mesopor. Mater. 111 (2008) 387.
8 F. M. Koehler, M. Rossier, M. Waelle, E. K. Athanassiou, L. G. Limbach, R. N. Grass, D. Gunther, and W. J. Stark, Chem. Commun. 32 (2009) 4862.
9 H. Yang, N. Coombs, I. Sokolova, and G. A. Ozin, J. Mater. Chem. 7 (1997) 1285.
10 S. Parambadath, A. Mathew, S. S. Park, and C. S. Ha, J. Environ. Chem. Eng. 3 (2015) 1918–1927.
11 V. Hernández-Morales, R. Nava, Y. J. Acosta-Silva, S. A. Macías-Sánchez, J. J. Pérez-Bueno, and B. Pawelec, Micropor. Mesopor. Mater. 160 (2012) 133–142.
12 K.M. Parida, and D. Rath, J. Molecular Catalysis A: Chemical 310 (2009) 93–100.
13 A. Datt, I. El-Maazawi, and S. C. Larsen J. Phys. Chem. C 2012, 116, 18358−18366.
14 G. E. Fryxell, S. V. Mattigod, Y. Lin, H. Wu, S. Fiskom, K. Parker, F. Zheng, W. Yantasee, T. S. Zemanian, R. S. Addleman, J. Liu, K. Kemner, S. Kelly, X. Feng, J. Mater. Chem. 17 (2007) 2863–2874.
15 B. D. Lourdes, N. R. David, C. C. Mercedes, Chem. Soc. Rev. 36 (2007) 993–1017.
16 A. Mathew, S. Parambadath, M. J. Barnabas, H. J. Song, J. S. Kim, S. S. Park, C. S. Ha, Dyes Pigm. 131 (2016) 177-185.
17 A. Mathew, S. Parambadath, S. Y. Kim, H. M. Ha, C. S. Ha, Micropor. Mesopor. Mater. 229 (2016) 124-133.
18 T. Ukmar, U. Maver, O. Planinsek, A. Pintar, V. Kaucic, A. Godec, et al., J. Mater. Chem. 22 (2012) 1112–1120.
19 K. Ananthanarayanan, P. Natarajan, Micropor. Mesopor. Mater. 124 (2009) 179–189.
20 J. Kobler, K. MÖller, T. Bein, ACS Nano 2 (2008) 791–799.
21 A. C. Pradhan, K. M. Parida, J. Mater. Chem. 22 (2012) 7567–7579.
22 D. P. Quintanilla, A. Sanchez, I. dei Hierro, M. Fajardo, I. Sierra, J. Coll. Inter. Sci. 313 (2007) 551–562.
23 A. Mathew, S. Parambadath, S.Y. Kim, S.S. Park, C.S. Ha, J Porous Mater 22 (2015) 831-842.
24 S. Radi, S. Tighadouini, M. El Massaoudi, M. Bacquet, S. Degoutin, ́B. Revel, Y. N. Mabkhot, J. Chem. Eng. Data 60 (2015) 2915−2925.
25 A. C. Pradhan, K. M. Parida, J Mater Chem, 22 (2012) 7567–7579.
26 S. Ray, M. Brown, A. Bhaumik, A. Dutta, C. Mukhopadhyay, Green Chem. 15 (2013) 1910-1924.
27 C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jefinija, S. Xu, S. Jeftiniya, J. Am. Chem. Soc. 125 (2003) 4451–4459.
28 I. Slowing, B. G. Trewyn, V. S. Y. Lin, J. Am. Chem. Soc. 128 (2006) 14792–14793.
29 E. Moazzen, N. Daei, S. M. Hosseini, H. Ebrahimzadeh, A. Monfared, M. M. Amini, O. Sadeghi, Microchim Acta 178 (2012) 367–372.
30 H. Ebrahimzadeh, N. Tavassoli, O. Sadeghi, M. M. Amini, S. Vahidi, S. M. Aghigh, E. Moazzen, Food Anal Methods 5 (2012) 1070–1078.
31 M. A. Qunaibit, M. Khalil, A. A. Wassil, Chemosphere 60 (2005) 412–418.
32 M. R. Jamalia, Y. Assadi, Shemirani F, M. S. Niasari, Talanta 71 (2007) 1524–1529.
33 A. Bagheri, M. Taghizadeh, M. Behbahani, A. A. Asgharinezhad, M. Salarian, A. Dehghani, H Ebrahimzadeh, M. M Amini, Talanta 99 (2012) 132–139.
34 V. Kumari, M. Sasidharan, A. Bhaumik, Dalton Trans. 44 (2015) 1924–1932.
35 S. Parambadath, A. Mathew, M. J. Barnabas, K. M. Rao, C. S. Ha, Micropor. Mesopor. Mater. 225 (2016) 174-184.
36 V. K. Rana, M. Selvaraj, S. Parambadath, C. S. Wook, S. S. Park, S. Mishra, J. Solid State Chem. 194 (2012) 392–399.
37 M. D. Popova, A. Szegedi, I. N. Kolev, J. Mihaly, B. S. Tzankov, G. M. Tz, Int. J. Pharm 436 (2012) 778–785.
38 P. Kumar, V. V. Guliants, Micropor. Mesopor. Mater. 132 (2010) 1–14.
39 D. P. Quintanilla, I. Hierro, M. Fajardo, I. Sierra, Micropor. Mesopor. Mater. 89 (2006) 58–68.
40 A. Mathew, S. Parambadath, S.S. Park, C.S. Ha, Micropor. Mesopor. Mater. 200 (2014) 124–131.
41 F. Gode, E. Pehlivan. J. Hazard. Mater. 136 (2006) 330–337.
42 P. Govindaraj, P. Sivasamy, J. Rejinis, J. Chem. Pharma. Res. 2012, 4, 286-293.
43 G. L. Radu, G. I. Truica, R. Penu, V. Moroeanu, S. C. Litescu, UPB Sci. Bull. Ser. B 74 (2012) 137–148.
44 M. S. Moorthy, S. S. Park, M. Selvaraj, C. S. Ha, J. Nanosci. Nanotechnol. 14 (2014) 8891–8897.
45 A. Bagheri, M. Behbahani, M. M. Amini, O. Sadeghi, M. Taghizade, L. Baghayi, M. Salarian, Talanta 89 (2012) 455-461.
46 A. Bagheri, M. Taghizadeh, M. Behbahani, A. A. Asgharinezhad, M. Salarian, A. Dehghani, H. Ebrahimzadeh, M. M. Amini, Talanta 99 (2012)132-139.
47 S. Parambadath, A. Mathew, M. J. Barnabas, S. Y. Kim, C. S. Ha, J Sol-Gel Sci Technol, (2015) DOI 10.1007/s10971-015-3923-x.