Chemical and Biological Pretreatment Process of Energy Efficient Manufacturing of Nanocellulose
International Journal of Applied Chemistry |
© 2015 by SSRG - IJAC Journal |
Volume 2 Issue 2 |
Year of Publication : 2015 |
Authors : S.Bhaskar, R.Krushanakumar |
How to Cite?
S.Bhaskar, R.Krushanakumar, "Chemical and Biological Pretreatment Process of Energy Efficient Manufacturing of Nanocellulose," SSRG International Journal of Applied Chemistry, vol. 2, no. 2, pp. 8-13, 2015. Crossref, https://doi.org/10.14445/23939133/IJAC-V2I1P104
Abstract:
Nanocellulose is a new-age substance derived from cellulosic biomass and has huge exact surface area, high modulus and extremely hydrophilic in nature. It comprises of two structural forms viz., nano fibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). This paper provides an important summary of the recent methods of bioand chemo-mechanical processes for construction of nanocellulose, their energy requirements and their functional properties. More than a dozen of pilot plants/commercial plants are under operation mostly in the urbanized countries, trying to develop the probable of nanocellulose as reinforcing agent in paper, films, concrete, rubber, polymer films and so on. The exploitation of nanocellulose is classified mainly due to preliminary asset involved, high manufacture cost and require of toxicological information. This paper focus the present development and exploration of power proficient and environment using pretreatment their possibility in scaling up and the potential range for growth of nanocellulose application in various fields without impacting the atmosphere. In accumulation, a nanocellulose quality index is derived to act as a guide for appliance based screening of nanocellulose creation protocols.
Keywords:
Biodegradable, Energy Conservation, Mechanical Process, Nanocellulose, Pretreatment
References:
[1] Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. (2012) Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydrate Polymers, 90, 735-764. http://dx.doi.org/10.1016/j.carbpol.2012.05.026
[2] Giri, J. and Adhikari, R. (2013) A Brief Review on Extraction of Nanocellulose and Its Application. BIBECHANA, 9,7.
[3] Rebouillat, S. and Pla, F. (2013) State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. Journal of Biomaterials and Nanobiotechnology,4,24. ttp://dx.doi.org/10.4236/jbnb.2013.42022
[4] Dufresne, A. (2013) Nanocellulose: A New Ageless Bionanomaterial. Materials Today, 16, 220-227. http://dx.doi.org/10.1016/j.mattod.2013.06.004
[5] Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., et al. (2011) Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438-5466. http://dx.doi.org/10.1002/anie.201001273
[6] Isogai, A., Saito, T. and Fukuzumi, H. (2011) TEMPOOxidized Cellulose Nanofibers. Nanoscale, 3, 71-85. http://dx.doi.org/10.1039/C0NR00583E
[7] Abdul Khalil, H.P.S., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., et al. (2014) Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydrate Polymers, 99, 649-665. http://dx.doi.org/10.1016/j.carbpol.2013.08.069
[8] Siró, I. and Plackett, D. (2010) Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose, 17, 459-494. http://dx.doi.org/10.1007/s10570-010-9405-y
[9] Abdul Khalil, H.P.S., Bhat, A.H. and Ireana Yusra, A.F. (2012) Green Composites from Sustainable Cellulose Nanofibrils: A Review. Carbohydrate Polymers, 87, 963-979. http://dx.doi.org/10.1016/j.carbpol.2011.08.078
[10] Azizi Samir, M.A., Alloin, F. and Dufresne, A. (2005) Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 6, 612-626. http://dx.doi.org/10.1021/bm0493685
[11] Lagerwall, J.P.F., Schutz, C., Salajkova, M., Noh, J., Park, J.H., Scalia, G., et al. (2014) Cellulose Nanocrystal-Based Materials: From Liquid Crystal Self-Assembly and Glass Formation to Multifunctional Thin Films. NPG Asia Materials, 6, e80. http://dx.doi.org/10.1038/am.2013.69
[12] Aspler, J., Bouchard, J., Hamad, W., Berry, R., Beck, S., Drolet, F., et al. (2013) Review of Nanocellulosic Products and Their Applications. In: Dufresne, A., Thomas, S. and Pothen, L.A., Eds., Biopolymer Nanocomposites: Processing, Properties, and Applications, John Wiley & Sons, Inc., Hoboken, 461-508. http://dx.doi.org/10.1002/9781118609958.ch20
[13] Spence, K., Habibi, Y. and Dufresne, A. (2011) Nanocellulose-Based Composites. In: Kalia, S., Kaith, B.S. and Kaur, I., Eds., Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer, Berlin, 179-213. http://dx.doi.org/10.1007/978-3-642-17370-7_7
[14] Dufresne, A. (2012) Nanocellulose: From Nature to High Performance Tailored Materials. De Gruyter, Berlin. http://dx.doi.org/10.1515/9783110254600
[15] Surhone, L.M., Tennoe, M.T. and Henssonow, S.F. (2011) Nanocellulose. Betascript Publishing, Beau-Bassin.
[16] Charreau, H., Foresti, M.L. and Vazquez, A. (2013) Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose. Recent Patents on Nanotechnology, 7, 56-80. http://dx.doi.org/10.2174/187221013804484854
[17] Duran, N., Lemes, A.P. and Seabra, A.B. (2012) Review of Cellulose Nanocrystals Patents: Preparation, Composites and General Applications. Recent Patents on Nanotechnology, 6, 16- 28. http://dx.doi.org/10.2174/187221012798109255
[18] Payen, A. (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. (Memoir on the composition of the tissue of plants and of woody [material]). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 7, 7.
[19] Klemm, D., Heublein, B., Fink, H.P. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393. http://dx.doi.org/10.1002/anie.200460587
[20] French, A. and Johnson, G. (2007) Cellulose Shapes. In: Brown Jr., R.M. and Saxena, I., Eds., Cellulose: Molecular and Structural Biology, Springer, Dordrecht, 257-284. http://dx.doi.org/10.1007/978-1-4020-5380-1_15