Optimal Decolorization Efficiency of Textile Dye via a Nano-TiO2/Bamboo-Charcoal Photocatalytic Process
International Journal of Applied Chemistry |
© 2019 by SSRG - IJAC Journal |
Volume 6 Issue 2 |
Year of Publication : 2019 |
Authors : Ming-Shien Yen |
How to Cite?
Ming-Shien Yen, "Optimal Decolorization Efficiency of Textile Dye via a Nano-TiO2/Bamboo-Charcoal Photocatalytic Process," SSRG International Journal of Applied Chemistry, vol. 6, no. 2, pp. 8-13, 2019. Crossref, https://doi.org/10.14445/23939133/IJAC-V6I2P102
Abstract:
The present work describes the fabrication of a hybrid material made of nanoscale titanium dioxide (TiO2) and bamboo charcoal (BC) through calcination and the investigation of its decolorization effects on simulated textile wastewater containing the acidic dye C.I. Acid Red 266 solution. The parameters contributing to the photocatalytic decolorization of C.I. Acid Red 266 solution were the concentration of the hybrid-material solution, the proportion of nanoscale TiO2 and BC in the hybrid material, the change in the pH of the dye solution, and the reaction time under ultraviolet irradiation. The decolorization of C.I. Acid Red 266 by the hybrid material was measured with an ultraviolet spectrometer. The experimental results demonstrated that decolorization was optimal when the pH of the dye solution was 4 and the proportion of the nanoscale TiO2and BC in the hybrid material was 2:8. The TiO2 in the hybrid material induced a photocatalytic reaction with the dye, adding to the effects attained by the decolorization ability of the BC material.
Keywords:
bamboo charcoal, titanium dioxide, photocatalyst, decolorization, acid dyes
References:
[1] C. G. Silva, W. Wang, and J. L. Faria,―Photocatalytic and photochemical degradation of mono-, di-, and tri-azo dyes in aqueous solution under UV irradiation,‖ J. Photochem. Photobiol., A.,vol. 181, pp. 314–324, 2006.
[2] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan,―Solar/UV-induced photocatalytic degradation of three commercial textile dyes,‖ J. Hazard. Mater., vol. B 89, pp. 303–317, 2002.
[3] M. H. Habibi, A. Hassanzadeh, and S. Mahdavi, ―The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions,‖ J. Photochem. Photobiol., A., vol. 172, pp. 89–96, 2005.
[4] M. E. Nagel-Hassemer, R. S. Catia, Carvalho-Pinto., W. G. Matias, and F. R. Lapolli, ―Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation,‖Environ. Technol., vol. 32(16), pp. 1867–1874, 2011.
[5] F. Banat, S. A1-Asheh, M. A1-Rawashdeh, and M. Nusair,―Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes,‖ Desalination., vol. 181, pp. 225-232, 2005.
[6] Q. Husain, ―Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review,‖ Rev. Environ. Sci. Biotechnol., vol. 9, pp. 117–140, 2010.
[7] Y. Anjaneyulu, N. S. Chary, and D. S. S. Raj, ―Decolourization of industrial effluents–Available methods and emerging technologies–a review,‖ Rev. Environ. Sci. Biotechnol., vol. 4, pp. 245–273, 2005.
[8] F. Banat, S. Al-Asheh, S. Al-Anbar, and S. Al-Refaie, ―Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater,‖ Bull. Eng. Geol. Environ., vol. 66, pp. 53–58, 2007.
[9] V. Vimonsesa, S. Lei, B. Jina, C. W. K. Chowd, and C. Saint, ―Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials,‖ Chem. Eng. J., vol. 148, pp. 354–364, 2009
[10] C. Namasivayam, and D. Sangeetha, ―Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics, and dyes from water by adsorption onto ZnCl2 activated coir pith carbon,‖ J. Hazard. Mater., vol. B135, pp. 449–452, 2006.
[11] R. Coşkun,―Removal of cationic dye from aqueous solution by adsorption onto crosslinked poly(4-vinylpyridine/crotonic acid) and its N-oxide derivative,‖Polym. Bull., vol. 67, pp.125–140, 2011.
[12] L. Wang, ―Adsorption of direct blend yellow D-3RNL onto bamboo-base activated carbon: optimization, kinetics, and isotherm,‖ Desalin. Water Treat., vol. 51, pp. 5792–5804, 2013.
[13] K. Mizuta, T. Matsumoto, Y. Hatate, K. Nishihara, and T. Nakanishi, ―Removal of nitrate nitrogen from drinking water using bamboo powder charcoal,‖ Bioresource Technol., vol. 95, pp. 255–257, 2004.
[14] F. Y. Wang, J. W. Ma, and H. Wang, ―Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent–Bamboo charcoal,‖ J. Hazard. Mater., vol. 177, pp. 300–306, 2010.
[15] Y. Kimmura, S. Suto, and M. Tatsuka, ―Evaluation of carcinogenic/co-carcinogenic activity of Chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in
BALB/c 3T3 Cells,‖ Biol. Pharm. Bull., vol. 25(8), pp.1026–1029, 2002.
[16] E. L. K. Muia, W. H. Cheunga, M. Valix, and G. McKay, ―Dye adsorption onto char from bamboo,‖ J. Hazard. Mater., vol. 177, pp. 1001–1005, 2010.
[17] S. Y .Wang, M. H. Tsai, S. F. Lo, and M. J. Tsai, ―Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal,‖ Bioresource Tech., vol. 99, pp. 7027–7033, 2008.
[18] M. J. Iqbal, and M. N. Ashiq, ―Adsorption of dyes from aqueous solutions on activated charcoal,‖ J. Hazard. Mater., vol. B139, pp. 57–66, 2007.
[19] L. Sangjung, and H. Ihnsup, ―The analysis of melamine and the removal efficiencies in the advanced oxidation process (AOP) and granular activated carbon (GAC) processes,‖ Desalin. Water Treat., vol. 53, pp. 1565–1577, 2015.
[20] N. Azbar, T. Yonar, and K. Kestioglu, ―Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent,‖ Chemosphere., vol. 55, pp. 35–43, 2004.
[21] J. Chung, and J. O. Kim, ―Application of advanced oxidation processes to remove refractory compounds from dye wastewater,‖ Desalin. Water Treat., vol. 25, pp. 233–240, 2011.
[22] E. C. Catalkaya, and F. Kargi, ―Color, TOC, and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study,‖ J. Hazard. Mater., vol. B139, pp. 244–253, 2007.
[23] M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, ―Recent developments in photocatalytic water treatment technology: A review,‖ Water Res., vol. 44, pp. 2997–3027, 2010.
[24] H. L. Liu, and Y. R. Chiou, ―Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology,‖ Chem. Eng. J., vol. 112, pp. 173–179, 2005.
[25] K. Tanakai, K. Padermpole, and T. Hisanaga, ―Photocatalytic degradation of commercial azo dyes,‖ Water Res., vol. 34(1), pp. 327-333,2000.
[26] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, ―Solar photocatalytic degradation of azo dye comparison of photocatalytic efficiency of ZnO and TiO2,‖ Sol. Energy Mater. Sol. Cells., vol. 77, pp. 65–82, 2003.
[27] M. R. Sohrabi, and M. Ghavami, ―Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters,‖ J. Hazard. Mater., vol. 153, pp. 1235–1239, 2008.
[28] U. G. Akpan, and B. H. Hameed, ―Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review,‖ J. Hazard. Mater., vol. 170, pp. 520–529, 2009.
[29] C. G. Maia, A. S. Oliveira, E. M. Saggioro, and J. C. Moreira, ―Optimization of the photocatalytic degradation of commercial azo dyes in aqueous TiO2 suspensions,‖ Reac. Kinet. Mech. Cat., vol.113, pp. 305–320, 2014.
[30] M.A. Behnajady, M.E. Alamdari,and N. Modirshahla, ―Investigationoftheeffectofheattreatmentprocess on characteristics and photocatalytic activity of TiO2-UV100 nanoparticles,‖ Environ. Prot. Eng., vol. 39(1), pp. 33–46, 2013.
[31] D. M. Santos, J. Navas, T. Aguilar, A. Sánchez-Coronilla, R. Alcántara, C. Fernández-Lorenzo, G. Blanco, and J. M. Calleja, ―Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO2 nanoparticles,‖ Mater. Chem. Phys., vol. 161, pp. 175–184, 2015.
[32] C. Andriantsiferana, E. F. Mohamed, and H. Delmas, ―Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material,‖ Environ. Tech., vol. 35(3), pp. 355–363, 2014.
[33] M. H.Habibi, A. Hassanzadeh, and S. Mahdavi, ―The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspension,‖J. Photochem. Photobiol., A., vol. 172, pp. 89–96, 2005.