Improving Extraction Processes Of Crustacean Chitin Using Solid State Analytical Techniques

International Journal of Applied Chemistry
© 2019 by SSRG - IJAC Journal
Volume 6 Issue 2
Year of Publication : 2019
Authors : F. Ó Fearghail, M. Giltrap, C. O’Connor, P. Behan
pdf
How to Cite?

F. Ó Fearghail, M. Giltrap, C. O’Connor, P. Behan, "Improving Extraction Processes Of Crustacean Chitin Using Solid State Analytical Techniques," SSRG International Journal of Applied Chemistry, vol. 6,  no. 2, pp. 23-30, 2019. Crossref, https://doi.org/10.14445/23939133/IJAC-V6I2P104

Abstract:

Solid state analytical techniques are becoming more widely used for the analysis of a range of organic products which demonstrate very poor solubility in both common organic and polar solvents and as such cannot be accurately characterised using solution based techniques. Primarily used as a secondary technique for qualitative analysis of insoluble intermediates and products in organic synthesis, 13C CP-MAS NMR can be utilised in tandem with a targeted extraction and clean up procedure for accurate quantitative analysis of insoluble bio-molecules of interest. Here solid state 13C CP-MAS NMR is utilised as the primary analytical technique in the characterisation of crustacean sourced chitin whereby Cancer pagurus crab shell chitin and Pandalus borealis shrimp shell chitin are shown to have a degree of acetylation greater than 90%. FTIR spectroscopy, Raman spectroscopy and DSC provide secondary structural, molecular and thermal analysis of the raw materials and extracted chitin.

Keywords:

Chitin, crab, shrimp, enzymatic, extraction, solid-state, analysis.

References:

[1] A. Rafique, K. Mahmood Zia, M. Zuber, S. Tabasum and S. Rehman, Int. J. Biol. Macromol., 2016.
[2] C. Choi, J. P. Nam and J. W. Nah, J. Ind. Eng. Chem., 2015.
[3] P. Zou, X. Yang, J. Wang, Y. Li, H. Yu, Y. Zhang and G. Liu, Food Chem., 2016, 190.
[4] A. Muxika, A. Etxabide, J. Uranga, P. Guerrero and K. de la Caba, Int. J. Biol. Macromol., 2017.
[5] C. K. S. Pillai, W. Paul and C. P. Sharma, Prog. Polym. Sci., 2009, 34, 641–678.
[6] F. A. A. Sagheer, M. A. Al-Sughayer, S. Muslim and M. Z. Elsabee, Carbohydr. Polym., 2009, 77, 410–419.
[7] C. N. Costa, V. G. Teixeira, M. C. Delpech, J. V. S. Souza and M. A. S. Costa, Carbohydr. Polym., 2015, 6, 94.
[8] J. Kumirska, M. Czerwicka, Z. Kaczyński, A. Bychowska, K. Brzozowski, J. Thöming and P. Stepnowski, Mar. Drugs, 2010, 8, 1567–1636.
[9] M. L. Duarte, M. C. Ferreira, M. R. Marvão and J. Rocha, Int. J. Biol. Macromol., 2002, 31, 1–8.
[10] A. Zaja̧c, J. Hanuza, M. Wandas and L. Dymińska, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2015, 134, 114–120.
[11] M. Wysokowski, V. V. Bazhenov, M. V. Tsurkan, R. Galli, A. L. Stelling, H. Stöcker, S. Kaiser, E. Niederschlag, G.
Gärtner, T. Behm, M. Ilan, A. Y. Petrenko, T. Jesionowski and H. Ehrlich, Int. J. Biol. Macromol., 2013, 62, 94–100.
[12] S. Hajji, I. Younes, O. Ghorbel-Bellaaj, R. Hajji, M. Rinaudo, M. Nasri and K. Jellouli, Int. J. Biol. Macromol., 2014, 1, 45.
[13] H. Zhang, S. Yun, L. Song, Y. Zhang and Y. Zhao, Int. J. Biol. Macromol., 2016, 12, 17.
[14] L. S. Guinesi and É. T. G. Cavalheiro, Thermochim. Acta, 2006, 444, 128–133.
[15] S. H. Chen, C. T. Tsao, C. H. Chang, Y. M. Wu, Z. W. Liu, C. P. Lin, C. K. Wang and K. H. Hsieh, Carbohydr. Polym., 2012, 1, 55.
[16] S. Kumari, P. Rath, A. Sri Hari Kumar and T. N. Tiwari, Environ. Technol. Innov., 2015, 3, 77–85.
[17] G. Lamarque, C. Viton and A. Domard, Biomacromolecules, 2004, 5, 992–1001.
[18] I. Younes and M. Rinaudo, Mar. Drugs, 2015, 13, 1133–1174.
[19] Y. F. Aklog, M. Egusa, H. Kaminaka, H. Izawa, M. Morimoto, H. Saimoto and S. Ifuku, Int. J. Mol. Sci., 2017, 10, 1600.
[20] H. El Knidri, R. El Khalfaouy, A. Laajeb, A. Addaou and A. Lahsini, Process Saf. Environ. Prot., 2016, 09, 20.
[21] C. Bettiol, L. Stievano, M. Bertelle, F. Delfino and E. Argese, Appl. Geochemistry, 2008, 23, 1140–1151.
[22] A. Tolaimate, J. Desbrières, M. Rhazi, A. Alagui, M. Vincendon and P. Vottero, Polymer (Guildf)., 2000, 41, 2463–2469.
[23] H. Ehrlich, P. G. Koutsoukos, K. D. Demadis and O. S. Pokrovsky, Micron, 2009, 40, 169–193.
[24] H.-U. Gremlich and B. Yan, Infrared and Raman spectroscopy of biological materials, 2001.
[25] Horiba Scientific, Raman Spectroscopy Software Functionality Manual, FLAT Correction.
[26] Z. Movasaghi, S. Rehman and I. U. Rehman, Appl. Spectrosc. Rev., 2007, 42, 493–541.
[27] N. Sayari, A. Sila, B. E. Abdelmalek, R. Ben Abdallah, S. Ellouz-Chaabouni, A. Bougatef and R. Balti, Int. J. Biol. Macromol., 2016, 87, 163–171.
[28] M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen and K. O. Tozak, Food Biophys, 2014, 9, 2.
[29] S. Kumari, S. H. Kumar Annamareddy, S. Abanti and P. Kumar Rath, Int. J. Biol. Macromol., 2017, 4, 119.
[30] L. Heux, J. Brugnerotto, J. Desbrières, M. F. Versali and M. Rinaudo, Biomacromolecules, 2000, 1, 746–751.
[31] L. Raymond, F. G. Morin and R. H. Marchessault, Carbohydr. Res., 1993, 246, 331–336.
[32] M. L. Duarte, M. C. Ferreira, M. R. Marvão and J. Rocha, Int. J. Biol. Macromol., 2001, 28, 359–363.
[33] 96/23/Ec Commission Decision, 96/23/Ec Comm. Decis., 2002, 29.
[34] S. A. Antunes-Valcareggi, S. R. S. Ferreira and H. Hense, Int. J. Environ. Agric. Res.
[35] U. Grienke, J. Silke and D. Tasdemir, Food Chem., 2014, 142, 48–60.
[36] I. Younes, S. Hajji, V. Frachet, M. Rinaudo, K. Jellouli and M. Nasri, Int. J. Biol. Macromol., 2014, 69, 489–498.
[37] L. Beaulieu, J. Thibodeau, P. Bryl and M. É. Carbonneau, Bioresour. Technol., 2009, 100, 3332–3342.
[38] A. Hirai, H. Odani and A. Nakajima, Polym. Bull., 1991, 26, 87–94.
[39] M. R. Kasaai, Carbohydr. Polym., 2010.
[40] S. Bhaskar and R.Krushanakumar, Int. J. of Applied Chemistry, 2015, 2, 8-13.
[41] R. Ragaventheran, Int. J. of Applied Chemistry, 2014, 1, 1-3.