Atmospheric Concentration of Trace Metals in PM2.5 and Their Bioavailability in Different Areas of Gwalior Region

International Journal of Applied Chemistry
© 2019 by SSRG - IJAC Journal
Volume 6 Issue 2
Year of Publication : 2019
Authors : Poorti Varshney ,Ravi Bansal ,Rahul Tiwari ,A. K. Halve , Ajay Taneja
pdf
How to Cite?

Poorti Varshney ,Ravi Bansal ,Rahul Tiwari ,A. K. Halve , Ajay Taneja, "Atmospheric Concentration of Trace Metals in PM2.5 and Their Bioavailability in Different Areas of Gwalior Region," SSRG International Journal of Applied Chemistry, vol. 6,  no. 2, pp. 41-49, 2019. Crossref, https://doi.org/10.14445/23939133/IJAC-V6I2P107

Abstract:

The contemporary study aims to explore the concentration of particulate matter (PM), sources and their inherent health risk of exposure in different urban and rural areas of Gwalior, India. In the month of June and July in 2017, with the help of fine particulate sampler, the fine particles (PM2.5) were collected on polytetrafluoroethylene (PTFE) filter paper. The average mass concentration of PM2.5 was 63.02±27.71μg/m3 (urban) and 73.07±32.17 μg/m3 (rural). The metal concentration of PM2.5 was characterized using atomic absorption spectroscopy (AAS). Results publicised that mostly the toxic metals were primarilypresent in bioavailable fractions. The estimated bioavailable fractions of chromium and lead were 86.62 μg/m3 and 28.96 μg/m3 respectively shows the incremental cancer risk, indicating the potential impact on residents of urban and rural areas.

Keywords:

PM2.5, AAS, toxic metals, incremental cancer risk, Bioavailable

References:

[1] K. Donaldson, and W. MacNee, ―Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10),‖ Int J Hyg Environ Health. Vol. 203, pp. 411-415, 2001.
[2] K. Kim, E. Kabir, and S. Kabir, ―A review on the human health impact of airborne particulate matter,‖ Environ Int. vol. 74, pp. 136-143, 2015.
[3] J. A. Araujo, B. Baraja, M. Kleinman, X. Wang, B. J. Bennett, K. W. Gong, M. Navab, J. Harkema, C. Sioutas, A. J. Lusis, and A. E. Nel, ―Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress,‖ Circ Res. Vol. 102, pp. 589-596, 2008.
[4] H. Ormstad, ―Suspended particulate matter in indoor air: Adjuvants and allergen carriers,‖ Toxicology. Vol. 152 (1-3), pp. 53-68, 2000.
[5] A. Peters, D. W. Dockery, J. E. Muller, and M. A. Mittleman, ―Increased particulate air pollution and the triggering of myocardial infarction,‖ Circulation. Vol. 103 (23), pp. 2810-2815, 2001.
[6] M. Lippmann, K. Ito, J. S. Hwang, P. Maciejczyk, and L. C. Chen, ―Cardiovascular effects of nickel in ambient air,‖ Environ Health Persp, vol. 114, pp. 1662–1669, 2006.
[7] K. Kawata, H. Yokoo, R. Shimazaki, and S. Okabe, ―Classification of heavy–metal toxicity by human DNA microarray analysis,‖ Environ Sci Technol. Vol. 41, pp. 3769–3774, 2007.
[8] A. J. Ghio, J. Stonehuerner, L. A. Dailey, and J. D. Carter, ―Metals associated with both the water–soluble and insoluble fractions of an ambient air pollution particle catalyse an oxidative stress,‖ Inhal Toxicol. Vol. 11, pp. 37–49, 1999.
[9] W. Birmili, A. G. Allen, F. Bary and R. M. Harrison, ―Trace metal concentrations and water solubility in size–fractionated atmospheric particles and influence of road traffic,‖ Environ Sci Technol. Vol. 40, pp. 1144–1153, 2006.
[10] L. C. Chen, and M. Lippmann, ―Effects of metals within ambient air particulate matter (PM) on human health,‖ Inhal Toxicol. Vol. 21, pp. 1– 31 2009.
[11] I. Y. R. Adamson, H. Prieditis, C. Hedgecock, and R. Vincent, ―Zinc is the toxic factor in the lung response to an atmospheric particulate sample,‖ Toxicol Appl Pharmacol. vol. 166 (2), pp. 111-119, 2000.
[12] G. B. Sun, K. Crissman, J. Norwood, J. Richards, R. Slade, and G. E. Hatch, ―Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter,‖ Am J Physiol Lung Cell Mol Physiol. Vol. 281 (4), pp. L807-L815, 2001.
[13] M. R. Heal, L. R. Hibbs, R. M. Agius, and I. J. Beverland, ―Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK,‖ Atmos Environ. Vol. 39 (8), pp. 1417–1430, 2005.
[14] D. Vousta, and C. Samara, ―Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas,‖ Atmos Environ. Vol. 36, pp. 3583–3590, 2002.
[15] A. Kulshrestha, B. D. Singh, J. Masih, D. Massey, S. Tiwari, and A. Taneja, ―Chemical characterization of water soluble aerosols in different residential environments of semi-arid region of India,‖ Journal of Atmos Chem. Vol. 62, pp. 121–138, 2010.
[16] A. Kumar, A. K. Sudheer, and M. M. Sarin, ―Chemical characteristics of aerosols in MABL of Bay of Bengal and Arabian Sea during spring inter-monsoon: a comparative study,‖ J Earth Syst Sci. vol. 117, pp. 325–332, 2008.
[17] S. Pervez, and G. S. Pandey, ―Toxic metals status in kidneys and gallstones of workers in a steel plant environment,‖ Environ Monit Assess. Vol. 32(2), pp. 93–99, 1994.
[18] P. Varshney, R. Saini, and A. Taneja, ―Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study,‖ Environ Geochem Health. Vol. 38, pp. 593-605, 2016.
[19] Census of Gwalior, https://www.census2011.co.in/district.php, accessed 12 December 2018.
[20] CBS News. 2018. The most polluted cities in the world ranked. https://www.cbsnews.com. Accessed 23 July 2018.
[21] USEPA, (1999). Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268, Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. 3.2. pp. 13.
[22] National ambient air quality Standards (NAAQS) (2009). http://cpcb.nic. in/oldwebsite/Environmental%20Standards/default_Environment_standards.html. Accessed 23 July 2018.
[23] WHO air quality guidelines global update, Geneva: World Health Organization 2005. 496.
[24] W. H. Schroeder, M. Dobson, D. M. Kane, and N. D. Johnson, ―Toxic trace elements associated with airborne particulate matter: A review,‖ J Air Waste Manage Assoc. vol. 37, pp. 1267-1285, 1987.
[25] M. S. Baptista, M. Teresa, S. D. Vasconcelos, J. P. Carbral, and C. M. Pacheo, ―AMG. Copper, nickel, lead in lichens and tree bark transplants over different period of time,‖ Environ Pollut. Vol. 151, pp. 408–13, 2008.
[26] M. Odabasi, A. Muezzinoglu, and A. Bozlaker, ―Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey,‖ Atmos Environ. Vol. 36, pp. 5841–5851, 2002.
[27] S. Rajšic´, Z. Mijic´, M. Tasic´, M. Radenkovic´, and J. Joksic´, ―Evaluation of levels and sources of trace elements in urban particulate matter,‖ Environ Chem Lett. Vol. 6, pp. 95–100, 2008.
[28] P. Mushak, and A. F. Crocetti, ―Determination of numbers of lead-exposed American children as a function of lead source: Integrated summary of a report to the U.S. Congress on childhood lead poisoning,‖ Environ Res. Vol. 50, pp. 210–229, 1989.
[29] M. E. Gutierrez–Castillo, M. Olivos–Ortiz, A. De Vizcaya–Ruiz, and M. E. Cebrian, ―Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000,‖ Chemosphere, vol. 61, pp. 701–710, 2005.
[30] H. Rohra, R. Tiwari, N. Khandelwal, and A. Taneja, ―Mass distribution and health risk assessment of size segregated particulate in varied indoor microenvironments of Agra, India - A case study,‖ Urban Climate. Vol. 24, pp. 139-152, 2018
[31] J. Nui, P. E. Rasmussen, N. M. Hassan, and R. Vincent, ―Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: influence of particle size,‖ Water Air Soil Pollut. Vol. 213, pp. 211-255, 2010.
[32] IRIS (Integrated Risk Information System). 1998. Toxicological information on Copper. U.S. EPA, Office of Health and Environmental Assessment.
[33] H. Prieditis, and I. Y. R. Adamson, ―Comparative pulmonary toxicity of various soluble metals found in urban particulate dust,‖ Exp Lung Res. Vol. 28, pp. 563–576, 2002.
[34] WHO, (2001). Regional Office for Europe. Air Quality Guidelines for Europe. Second ed. Copenhagen: WHO Regional Publications, European Series; No. 91 ISBN 92 4 890 1358 3 (NLM Classification: WA 754) ISSN 0378–2255.
[35] F. Monaci, and R. Bargagli, ―Barium and other trace metals as indicators of vehicular emissions,‖ Water Air Soil Pollut. Vol. 100, pp. 89–98, 1997.
[36] Agency for Toxic Substances and Disease Registry (ATSDR) U.S. Department of Health and Human Services, Atlanta, Georgia USA http://www.atsdr.cdc.gov/Accessed 25 July 2018.
[37] C. Radulescu, S. Iordache, D. Dunea, C. Stihi, and I. D. Dulama, ―Risks Assessment Of Heavy Metals On Public Health Associated With Atmospheric Exposure To PM2.5 In Urban Area,‖ Romanian J Phys. Vol. 60, pp. 1171–1182, 2015.
[38] Reports on Carcinogens. 2001. (12th ed.). U.S. Department of Health and Human Services Public Health Service National Toxicology Program.
[39] L. Friberg, G. F. Nordberg, and V. B. Vouk, Handbook on the toxicology of metals (2nd ed., pp. 5–6). Amsterdam: Elsevier Science and Technology, 1986.
[40] IARC (International Agency for Research on Cancer). 2004. Some drinking-water disinfectants and contaminants, including Arsenic (Vol. 84., pp. 1–479).
[41] A. S. Pipal, R. Jan, P. G. Satsangi, S. Tiwari, and A. Taneja, ―Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra,‖ India. Aerosol Air Qual Res. Vol. 14, pp. 1685–1700, 2014.
[42] D. A. Olson, J. Turlington, R. M. Durall, R. M. McDow, C. D. Stevens, and R. Williams, ―Indoor and outdoor concentrations of organic and inorganic molecular markers: source apportionment of PM2.5 using low volume samplers,‖ Atmos Environ. Vol. 42, pp. 1742–1751, 2008.
[43] X. Querol, A. Alastuey, S. Rodriguez, F. Plana, C. R. Ruiz, and N. Cots, ―PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain,‖ Atmos Environ. Vol. 35, pp. 6407–6419, 2001.
[44] T. A. Pakkanen, K. Loukkola, C. H. Korhonen, M. Aurela, T. Makela, R. E. Hillamo RE, ―Sources and chemical composition of atmospheric fine and coarse particles in Helsinki area,‖ Atmos Environ. Vol. 35, pp. 5381–5391, 2001.
[45] G. S.W. Hagler, M. H. Bergin, L. G. Salmon, J. Z. Yu, E. C. H. Wan, and M. Zheng M, ―Local and regional
anthropogenic influence on PM2.5 elements in Hong Kong,‖ Atmos Environ. Vol. 41, pp. 5994–6004, 2007.
[46] M. Ragosta, R. Caggiano, M. Macchiato, S. Sabia, and S. Trippetta, ―Trace elements in daily collected aerosol: Level characterization and source identification in a four year study,‖ Atmos Res. Vol. 89, pp. 206–217, 2008.