Sol–Gel Derived Inorganic–Organic Hybrid Materials Comprising Vanadia, Silica, and Thiazole Dyes
International Journal of Applied Chemistry |
© 2018 by SSRG - IJAC Journal |
Volume 5 Issue 2 |
Year of Publication : 2018 |
Authors : Ming-Shien Yen |
How to Cite?
Ming-Shien Yen, "Sol–Gel Derived Inorganic–Organic Hybrid Materials Comprising Vanadia, Silica, and Thiazole Dyes," SSRG International Journal of Applied Chemistry, vol. 5, no. 2, pp. 11-18, 2018. Crossref, https://doi.org/10.14445/23939133/IJAC-V5I2P103
Abstract:
Herein we report the synthesis of novel vanadia/silica/thiazole azo dye inorganic–organic hybrid materials by a sol–gel process using vinyltriethoxysilane (VTES) as a precursor. The materials were synthesized from vanadia and tetraethoxysilane (TEOS) with thiazole azo dyes, which were synthesized using 2-amino thiazole as the coupling component and then underwent a coupling reaction with the diazonium component, p-nitroaniline. Alternatively, the thiazole azo dyes were processed by a hydrolysis–condensation reaction with a constant ratio of VTES, vanadia and TEOS in appropriate proportions using a catalyst. The structures of these hybrid materials were examined by Fourier transform infrared analysis, 29Si nuclear magnetic resonance, X-ray diffraction, and energy-dispersive X-ray spectroscopy.
Keywords:
vanadia, silica, thiazole dyes, hybrid materials
References:
[1] T.Matsuo, ―Advanced technical textile products,‖ Text. Prog., vol. 40(3), pp. 123–181, 2008.
[2] M.Mohseni, P. F. James, and P. V. Wright, ―Vanadium-Based Organic-Inorganic Hybrid Materials Prepared by a Sol-Gel Method,‖ J. Sol-Gel Sci. Technol., vol. 13, pp. 495–497, 1998.
[3] K.Qi, J. H. Xin, W. A. Daoud, and C. L. Mak, ―Functionalizing Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment,‖ Int. J. Appl. Ceram. Technol., vol. 4(6), pp. 554–563, 2007.
[4] R.Kotek, ―Recent Advances in Polymer Fibers,‖ Polym. Rev., vol. 48, pp. 221–229, 2008.
[5] C.Sanchez, B. Julian, P. Belleville, and M. Popall, ―Applications of hybrid organic–inorganic nanocomposites,‖ J. Mater. Chem., vol. 15, pp. 3559–3592, 2005.
[6] S.Vives and C. Meunier, ―Mixed SiO2–TiO2 (1:1) sol–gel films on mild steel substrates Sol composition and thermal treatment effects,‖ Surf. Coat. Tech., vol. 202, pp. 2374– 2378, 2008.
[7] Z.Liu, X. Zhang, T. Murakami, and A. Fujishima, ―Sol–gel SiO2-TiO2 bilayer films with self-cleaning and antireflection properties,‖ Sol. Energ. Mat. Sol. C., vol. 92: pp. 1434–1438, 2008.
[8] A.A. Herrero, G. Ramos, F. D. Monte, E. Bernabeu, and D. Levy, ―Water adsorption in porous TiO2–SiO2 sol–gel films analyzed by spectroscopic ellipsometry,‖ Thin Solid Films, vol. 455, pp. 356–360, 2004.
[9] P.Judeinstein and C. Sanchez, ―Hybrid organic inorganic materials a land of multidisciplinarity,‖ J. Mater. Chem., vol. 6, pp. 511–525, 1996.
[10] L.Matejka, O. Dukh, and J. Kolarik, ―Reinforcement of crosslinked rubbery epoxies by in-situ formed silica,‖ Polymer, vol. 41, pp. 1449–1459, 2000.
[11] W.Zhou, J. E. Mark, M. R. Unroe, and F. E. Arnold, ―Toughening of a high-temperature polymer by the sol–gel, in situ generation of a rubbery silica–siloxane phase,‖ J. Appl. Polym. Sci., vol. 79, pp. 2326–2330, 2001.
[12] C.L. Jackson, B. J. Bauer, and A. I. Nakatani, ―Synthesis of Hybrid Organic−Inorganic Materials from Interpenetrating Polymer Network Chemistry,‖ Chem. Mater., vol. 8, pp. 727–733, 1996.
[13] Z.Jiwei, Y. Taob, Z. Liangying, and Y. Xia, ―The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol–gel process,‖ Ceram. Int., vol. 25, pp. 667–670, 1999.
[14] D.S. Hinczewski, M. Hinczewski, F. Z. Tepehan, and G. G. Tepehan, ―Optical filters from SiO2 and TiO2 multi-layers using sol–gel spin coating method,‖ Sol. Energ. Mater. Sol. C., vol. 87, pp. 181–196, 2005.
[15] B.Tyagi, K. B. Sidhpuria, B. Shaik, and R. V. Jasra, ―Effect of Zr-Si molar ratio and sulfation on structural and catalytic properties of ZrO2–SiO2 mixed oxides,‖ J. Porous Mater., vol. 17, pp. 699–709, 2010.
[16] J.Livage, G. Guzman, and F. Bételle, ―Optical properties of sol-gel derived vanadium oxide films,‖ J. Sol-Gel Sci. Technol., vol.8, pp. 857–865, 1997.
[17] R.Linacero, M. L. Rojas-Cervantes, and J. D. D. Lopez-Gonzalez, ―Preparation of xTiO2 (1-x)Al2O3 catalytic supports by the sol-gel method: physical and structural characterization,‖ J. Mater. Sci., vol. 35, pp. 3279–3287, 2000.
[18] S.Sivakumar, C. P. Sibu, P. Mukundan, P. K. Pillai, and K. G. K. Warrier, ―Nanoporous titania–alumina mixed oxides—an alkoxide free sol-gelsynthesis,‖ Mater. Lett., vol. 58, pp. 2664–2669, 2004.
[19] Z.Liu, G. Fang, Y. Wang, Y. Bai, and K. L. Yao, ―Laser-induced colouration of V2O5,‖ J. Phys. D: Appl. Phys., vol. 33, pp. 2327–2332, 2000.
[20] F.Béteille and J. Livage, ―Optical Switching in VO2 Thin Films,‖ J. Sol-Gel Sci. Technol., vol. 13, pp. 915–921, 1998.
[21] O.Ya. Berezina, D. A. Kirienko, N. P. Markova, and A. L. Pergament, ―Synthesis of Vanadium Pentoxide Micro and Nanofibers by Electrospinning,‖ Tech. Phy., Vol. 60(9), pp. 1361–1366, 2015.
[22] P.Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, ―Vanadium pentoxide nanofibers by electrospinning,‖ Scripta Mater., vol. 49, pp. 577–581, 2003.
[23] Y.Liu, C. Jia, Z. Wan, X. Weng, J. Xie, and L. Deng, ―Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film,‖ Sol. Energ. Mater. Sol. C., vol. 132, pp. 467–475, 2015.
[24] M.Alsawafta, A. Almoabadi, S. Badilescu, and V. V. Truong, ―Improved Electrochromic Properties of Vanadium Pentoxide Nanorods Prepared by Thermal Treatment of Sol-Gel Dip-Coated Thin Films,‖ J. Electrochem. Soc., vol. 162 (7) pp. H466-H472, 2015.
[25] H.R. Patil and Z. V. P. Murthy, ―Vanadium-Doped Magnesium Oxide Nanoparticles Formation in Presence of Ionic Liquids and Their Use in Photocatalytic Degradation of Methylene Blue,‖ Acta Metall. Sin. (Engl. Lett.), vol. 29(3), pp. 253–264, 2016.
[26] Y.o Li, J. L. Kuang, Y. Lu, and W. B. Cao, ―Facile Synthesis of Flower-Like V2O5 Powders and their Photocatalyst Behavior,‖ Acta. Metall. Sin. (Engl. Lett.), vol. 30(10), pp. 1017–1026, 2017.
[27] R.Jaiswala, N. Patelb, D. C. Kotharia, and A. Miotello, ―Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen,‖ Appl. Catal. B: Environ., vol. 126, pp. 47–54, 2012.
[28] Y.Qina, M. Cuia, and Z. Yeaa, ―Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation,‖ Appl. Surf. Sci., vol. 379, pp. 497–504, 2016.
[29] Á.Realpe, Y. Pino, and M. T. Acevedo, ―Synthesis of a Proton Exchange Membrane from Natural Latex Modified with Vanadium Pentoxide for Application in a Fuel Cell,‖ Inter. J. Chem. Tech. Res., Vol.9(6), pp. 524–529, 2016.
[30] R.S. Ingole and B. J. Lokhande, ―Electrochemical properties of dip-coated vanadium pentaoxide thin films,‖ Bull. Mater. Sci., Vol. 39(6), pp. 1603–1608, 2016.
[31] G.T. Mola, E. A. A. Arbab, B. A. Taleatu, K. Kaviyarasu, I. Ahmad, and M. Maaza, ―Growth and characterization of V2O5 thin film on conductive electrode,‖ J. Microsc., Vol. 265(2), pp. 214–221, 2017.
[32] Y.Yang, K. Shen, Y. Liu, Y. Tan,. X. Zhao, J. Wu, X. Niu, and F. Ran, ―Novel Hybrid Nanoparticles of Vanadium Nitride Porous Carbon as an Anode Material for Symmetrical Supercapacitor,‖ Nano-Micro Lett., vol. 9(6), pp. 1–15, 2017.
[33] J.Wu, I. Byrd, C. Jin, J. Li, H. Chen, T. Camp, R. Bujol, A. Sharma, and H. Zhang, ―Reinvigorating Reverse-Osmosis Membrane Technology to Stabilize the V2O5 Lithium-Ion Battery Cathode,‖ Chem. Electro. Chem., vol. 4, pp. 1181–1189, 2017.
[34] D.McNulty, D. N. Buckley, and C. O. Dwyer, ―Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes,‖ J. Power Sources, vol. 267, pp. 831–873, 2014.
[35] Y.Liu, W. Zhong, Y. Du, Q. X. Yuan, X. Wang, and R. Jia, ―Novel radial vanadium pentoxide nanobelt clusters for Li-ion batteries,‖ J. Alloys Compd., vol. 633, pp. 353–358, 2015.
[36] W.Feng, L. Zou, G. Gao, G. Wu, J. Shen, and W. Li, ―Gasochromic smart window optical and thermal properties, energy simulation and feasibility analysis,‖ Sol. Energ. Mater. Sol. C., vol. 144, pp. 316–323, 2016.
[37] J.L. Chen et al., ―Behind the color switching in gasochromic VO2,‖ Phys. Chem. Chem. Phys., vol. 17, pp. 3482–3489, 2015.
[38] J.Livage, ―Vanadium Pentoxide Gels,‖ Chem. Mater., vol. 3, pp. 578–593, 1991.
[39] M.G. Kanatzidis and C. G. Wu, ―Conductive Polymer Bronzes. Intercalated Polyaniline in V2O5 Xerogels,‖ J. Am. Chem. Soc., vol. 111(11), pp. 4139–4141, 1989.
[40] F.Bételle and J. Livage, ―Optical Switching in VO2 Thin Films,‖ J. Sol-Gel Sci. Technol., vol. 13, pp. 915–921, 1998.
[41] S.B. Zhang, D. W. Zuo, and W. Z. Lu, ―Influence of film thickness on structural and optical-switching properties of vanadium pentoxide films,‖ Surf. Eng., vol. 33(4), pp. 292–298, 2017.
[42] A.Mauger and C. M. Julien, ―V2O5 thin films for energy storage and conversion,‖ AIMS Mater. Sci., vol. 5(3), pp. 349–401, 2018.
[43] L.Y. L. Wu, Q. Zhao, H. Huang, and R. J. Lim, ―Sol-gel based photochromic coating for solar responsive smart window,‖ Surf. Coat. Technol., vol. 320, pp. 601–607, 2017.
[44] M.Benmoussa, A. Outzourhit, A. Bennouna, and E. L. Ameziane, ―Electrochromism in sputtered V2O5 thin films structural and optical studies,‖ Thin Solid Films, vol. 405, pp. 11–16, 2002.
[45] R.Ceccato, and G. Carturan, ―Sol–Gel Synthesis of Vanadate-Based Thin Films as Counter Electrodes in Electrochromic Devices,‖ J. Sol-Gel Sci. Technol., vol. 26, pp. 1071–1074, 2003.
[46] A.Cremonesi, D. Bersani, P. P. Lottici, Y. Djaoued, and R. Brüning, ―Synthesis and structural characterization of mesoporous V2O5 thin films for electrochromic applications,‖ Thin Solid Films, vol. 515, pp. 1500–1505, 2006.
[47] K.Senthila, G. Kwak, and K. Yong, ―Fabrication of superhydrophobic vanadium pentoxide nanowires surface by chemical modification,‖ Appl. Surf. Sci., vol. 258, pp. 7455–7459, 2012.
[48] W.Zhou, J. E. Mark, M. R. Unroe, and F. E. Arnold, ―Toughening of a high-temperature polymer by the sol–gel, in situ generation of a rubbery silica–siloxane phase,‖ J. Appl. Polym. Sci., vol. 79, pp. 2326–2330, 2001.
[49] N.D. Hegde and A. V. Rao, ―Physical properties of methyltri-methoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process,‖ J. Mater. Sci., vol. 42, pp. 6965–6971, 2007.
[50] Y.Dimitriev, Y. Ivanova, and R. Iordanova,‖ History of sol–gel science and technology,‖ J. Univ. Chem. Technol. Metall., vol. 43(2), pp. 181–192, 2008.
[51] X.Du and J. He, ―A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings,‖ ACS Appl. Mater. Interfaces, vol. 3, pp. 1269–1276, 2011.
[52] A.D. Towns, ―Developments in azo disperse dyes derived from heterocyclic diazo components,‖ Dyes Pigm., vol. 42, pp. 3–28, 1999.
[53] I.Zadrożna and E. Kaczorowska, ―Synthesis and absorption spectra of hetarylazo dyes derived from coupler 4-aryl-3-cyano-2-aminothiophenes,‖ Dyes Pigm., vol. 71, pp. 207–211, 2006.
[54] M.S. Yen and I. J. Wang, ―A facile syntheses and absorption characteristics of some monoazo dyes in bis-heterocyclic aromatic systems part II: syntheses of 4-(p-substituted) phenyl-2- (2-pyrido-5-yl and 5-pyrazolo-4-yl) azo-thiazole derivatives,‖ Dyes Pigm., vol. 63, pp. 1–9, 2004.
[55] I.Zadrożna and E. Kaczorowska, ―Synthesis and characteristics of azo chromophores for nonlinear-optical application,‖ Dyes Pigm., vol. 71, pp. 207–211, 2006.
[56] A.T. Peters and S. S. Yang, ―Monoazo disperse dyes derived from mononitro-dichloro-2-aminobenzothiazoles,‖ Dyes Pigm., vol. 30, pp. 291–299, 1996.
[57] G.Hallas and A. D. Towns, ―A comparison of the properties of some 2-aminothiophene-derived disperse dyes,‖ Dyes Pigm., vol. 31, pp. 273–289, 1996
[58] A.T. Peters and S. S. Yang, ―Monoazo disperse dyes derived from nitro-2-aminobenzothiazoles,‖ Dyes Pigm., vol. 28, pp. 151–164, 1995.
[59] G.Hallas and J. H. Choi, ―Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles,‖Dyes Pigm., vol. 42, pp. 249–265, 1999.