Sol-Gel Synthesis of Dye–Inorganic Hybrid Materials Comprising Silica, Titania and Thiazole Dyes
International Journal of Applied Chemistry |
© 2020 by SSRG - IJAC Journal |
Volume 7 Issue 1 |
Year of Publication : 2020 |
Authors : Ming-Shien Yen |
How to Cite?
Ming-Shien Yen, "Sol-Gel Synthesis of Dye–Inorganic Hybrid Materials Comprising Silica, Titania and Thiazole Dyes," SSRG International Journal of Applied Chemistry, vol. 7, no. 1, pp. 25-30, 2020. Crossref, https://doi.org/10.14445/23939133/IJAC-V7I1P106
Abstract:
A series of novel hybrid materials were prepared via the sol-gel process from methyltrimethoxysilane (MTMS) and titanium-n-butoxide (TNB) with heterocyclic thiazole dyes. Heteroaryl 2-aminothiazoles were synthesized on the basis of previous literature, as coupling components that 2-aminothiazoles undergo a coupling reaction with diazonium components p-methoxyaniline in an ice bath to yield heteroaryl thiazole dyes. Sinica/titania/thiazole dye hybrid materials were synthesized via the sol-gel process with a precursor system. Heteroaryl thiazole dyes were also obtained via the hydrolysis-condensation reaction at a constant ratio of vinyltriethoxysilane (VTES), MTMS, and TNB in the presence of a catalyst. The structures of the hybrid materials were characterized using Fourier transform infrared (FTIR) spectroscopy, 29Si-nuclear magnetic resonance (NMR), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet (UV) analysis. According to the experimental results of FTIR, NMR, EDS, and ultraviolet spectra analysis, the MTMS and TNB in the hybrid material could bond thiazole dyes to form the Si–O–Si or Ti–O–Si network structures with a thiazole moiety.
Keywords:
titania, silica, thiazole dyes, hybrid materials
References:
[1] J. D. Mackenzie, ―Structures and properties of ormosils,‖ J. Sol-Gel Sci. Technol., vol. 2(1-3), pp. 81–86, 1994.
[2] D. A. Loy and K. J. Shea, ―Bridged polysilsesquioxanes highly porous hybrid organic- inorganic materials,‖ Chem. Rev., vol. 95(5), pp. 1431–1442, 1995.
[3] B. Ou and D. Li, ―The Effect of Functionalized-TiO2 on the Mechanical Properties of PP/PA6/Functionalized-TiO2 Nanocomposites Prepared by Reactive Compatibilization Technology,‖ J. Compos. Mater., vol. 43, pp. 1361–1372, 2009.
[4] T. Jeong et al., ―3-Aminopropyltriethoxysilane Effect on Thermal and Mechanical Properties of Multi-walled Carbon Nanotubes Reinforced Epoxy Composites,‖ J. Compos. Mater., vol. 43, pp. 2533–2541, 2009.
[5] S. Vives and C. Meunier, ―Mixed SiO2-TiO2 (1:1) sol-gel films on mild steel substrates: Sol composition and thermal
treatment effects,‖ Surf. Coat. Technol., vol. 202, pp. 2374–2378, 2008.
[6] P. Judeinstein and C. Sanchez, ―Hybrid organic-inorganic materials: A land of multidisciplinary,‖ J. Mater. Sci., vol. 6 (4), pp. 511–525, 1996.
[7] J. A. Wen and J. E. Mark, ―Synthesis, structure, and properties of poly(dimethylsiloxane) networks reinforced by in situ-precipitated silica-titania, silica-zirconia, and silica-alumina mixed oxides,‖ J. Appl. Polym. Sci., vol. 58(7), pp. 1135–1145, 1995.
[8] L. Matejka, O. Dukh and J. Kolarik, ―Reinforcement of crosslinked rubbery epoxies by in-situ formed silica,‖ Polymer, vol. 41(4), pp. 1449–1459, 2000.
[9] W. Zhou, J. E. Mark, M. R. Unroe and F. E. Arnold, ―Toughening of a high-temperature polymer by the sol-gel in situ generation of a rubbery silica-siloxane phase,‖ J. Appl. Polym. Sci., vol. 79(13), pp. 2326–2330, 2001.
[10] C. L. Jackson, B. J. Bauer and A. I. Nakatani, ―Synthesis of hybrid organic-inorganic materials from interpenetrating polymer network chemistry,‖ Chem. Mater., vol. 8(3), pp. 727–733, (1996).
[11] L. L. Hench and J. K. West, ―The sol-gel process,‖ Chem. Rev., vol. 90, pp.33–72, 1990.
[12] C. D. Chandler, C. Roger and M. J. Hampden-Smith, ―Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors,‖ Chem. Rev., vol. 93, pp. 1205–1241, 1993.
[13] M. Houmard et al., ―Morphology and natural wettability properties of sol-gel derived TiO2-SiO2 composite thin films,‖ Appl. Sur. Sci., vol. 254, pp. 1405–1414, 2007.
[14] Z. Jiwei, Y. Taob, Z. Liangying and Y. Xia, ―The optical waveguiding properties of TiO2-SiO2 composite films prepared by the sol-gel process,‖ Ceram. Int., vol. 25, pp. 667–670, 1999.
[15] H. You and M. Nogami, ―Persistent spectral hole burning of Eu3+ ions in TiO2-SiO2 glass prepared by sol-gel method,‖ J. Alloys Compd., vol. 408-412, pp. 796–799, 2006.
[16] H. J. Hah and S. M. Koo, ―Surface modification of PTMS particles with organosilanes: TEOS-, VTMS-, and MTMS-modified particles,‖ J. Sol-Gel Sci. Technol., vol. 31, pp. 117–121, 2004.
[17] D. S.Hinczewski, M. Hinczewski, F. Z. and G. G. Tepehan, ―Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method,‖ Sol. Energ. Mater. Sol. C., vol. 87, pp. 181–196, 2005.
[18] J. Castaneda-Contreras, M. A. Meneses-Nava, O. Barbosa-Garcıa, J. L. Maldonado-Rivera and J. F. Mosino, ―Dependence of Er3+ blue up-conversion on TiO2 contents in SiO2-TiO2 sol–gel powder,‖ Optic. Mater., vol. 27, pp. 301–305, 2004.
[19] B. Tyagi, K. B. Sidhpuria, B. Shaik and R. V. Jasra, ―Effect of Zr-Si molar ratio and sulfation on structural and catalytic properties of ZrO2-SiO2 mixed oxides,‖ J. Porous Mater., vol. 17, pp. 699–709, 2010.
[20] R. Linacero, M. L. Rojas-Cervantes and J. D. D. Lopez-Gonzalez, ―Preparation of xTiO2∙(1-x)Al2O3 catalytic supports by the sol-gel method: physical and structural characterization,‖ J. Mater. Sci., vol. 35, pp. 3279–3287, 2000.
[21] S. Sivakumar, C. P. Sibu, P. Mukundan, P. K. Pillai and K. G. K. Warrier, ―Nanoporous titania-alumina mixed oxides an alkoxide free sol-gel synthesis,‖ Mater. Lett., vol. 58, pp. 2664–2669, 2004.
[22] C. Shifu, Z. Wei, L. Wei and Z. Sujuan, ―Preparation, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO,‖ J. Sol-Gel Sci. Technol., vol. 50(3), pp. 387–396, 2009.
[23] S .A. Amin, M. Pazouki and A. Hosseinnia, ―Synthesis of TiO2-Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against,‖ Powder Technol., vol. 196, pp. 241–245, 2009.
[24] M. Houmard et al., ―Enhanced persistence of natural super-hydrophilicity in TiO2-SiO2 composite thin films deposited via a sol–gel route,‖ Surf. Sci., vol. 602, pp. 3364–3374, 2008.
[25] S. Ivanovici and G. Kickelbick, ―Synthesis of hybrid polysiloxane-MO2 (M = Si, Ti, Zr) nanoparticles through a sol–gel route,‖ J. Sol-Gel Sci. Technol., vol. 46, pp. 273–280, 2008.
[26] O. Kesmez, H. E. Camurlu, E. Burunkaya and E. Arpac, ―Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2-TiO2 double-layer nanometric films,‖ Sol. Energ. Mater. Sol. C., vol. 93, pp. 1833–1839, 2009.
[27] R. M. Mohamed and I. A. Mkhalid, ―The effect of rare earth dopants on the structure. surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method,‖ J. Alloys Compd., vol. 501, pp. 143–147, 2010.
[28] C. Anderson and A. J. Bard ―An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis,‖ J. Phys. Chem., vol. 99, pp. 9882–9885, 1995.
[29] C. Anderson and A. J. Bard, ―Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials,‖ J. Phys. Chem. B, vol. 101, pp. 2611–2616, 1997.
[30] X. Fu, L. A. Clark, Q. Xang and M. A. Anderson, ―Enhanced photocatalytic performance of titania based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2,‖ Environ. Sci. Technol., vol. 30, pp. 647–653, 1996.
[31] Y. Li and S. J. Kim, ―Synthesis and characterization of nano titania particles embedded in mesoporous silica with both
high photocatalytic activity and adsorption capability,‖ J. Phys. Chem. B, vol. 109(25), pp. 12309–12315, 2005.
[32] I. Zadrozna and E. Kaczorowska, ―Synthesis and characteristics of azo chromophores for nonlinear-optical application,‖ Dyes Pigm., vol. 71, pp. 207–211, 2006.
[33] M. S. Yen and I. J. Wang, ―Synthesis and absorption spectra of hetarylazo dyes derived from coupler 4-aryl-3-cyano-2-aminothiophenes,‖ Dyes Pigm., vol. 61, pp. 243–250, 2004.
[34] A.T. Peters and S. S. Yang, ―Monoazo disperse dyes derived from nitro-2-aminobenzothiazoles, Dyes and Pigments, vol. 28, pp. 151–164, 1995.
[35] G. Hallas and J. H. Choi, ―Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles,‖ Dyes Pigm., vol. 42, pp. 249–265, 1999.
[36] S. N. Pandeya, D. Sriram, G. Nath and E. DeClercq, ―Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4′-chlorophenyl)thiazol-2-yl] thiosemicarbazide,‖ Eur. J. Pharm. Sci., vol. 9, pp. 25–31, 1999.
[37] M. S. Yen and I. J. Wang, ―A facile syntheses and absorption characteristics of some monoazo dyes in bis-heterocyclic aromatic systems Part II:Syntheses of 4-(p-substituted) phenyl-2-(2-pyrido-5-yl and 5-pyrazolo-4-yl) azothiazole derivatives,‖ Dyes Pigm., vol. 63, pp. 1–9, 2004.