Influence of Iron Availability on Nutrient Utilization and Phytoplankton Growth in the Syrian Coast

International Journal of Agriculture & Environmental Science
© 2018 by SSRG - IJAES Journal
Volume 5 Issue 6
Year of Publication : 2018
Authors : Hazem Krawi, Firuz Darwich, Hussam Eddin Laika, Samar Joulak
pdf
How to Cite?

Hazem Krawi, Firuz Darwich, Hussam Eddin Laika, Samar Joulak, "Influence of Iron Availability on Nutrient Utilization and Phytoplankton Growth in the Syrian Coast," SSRG International Journal of Agriculture & Environmental Science, vol. 5,  no. 6, pp. 45-53, 2018. Crossref, https://doi.org/10.14445/23942568/IJAES-V5I6P108

Abstract:

This research aims to study the effect of iron enrichment on the growth of phytoplankton and nutrients available in some areas of the Syrian coast. The experiment was conducted during the period from 3 to 24 April 2018. Samples were collected from the estuary of the Big Northern River and the marine area opposite the sports city. Samples then were transferred to laboratories of the Higher Institute of Marine Research, where semi of the water that was sampled from each site was enriched by iron and the other semi was kept as control samples. Samples were kept in laboratory conditions, and periodic samples were taken within 2-3 days with the aim of conducting measurements of nutrient concentrations and chlorophyll a. The experiment lasted 21 days. A small effect of iron enrichment was observed in both studied sites. Whereas the growth rates of phytoplankton biomass in control and enrichment flasks were close. The absence of response of the phytoplankton for the iron stress in the estuary of the Northern River can be explained by warmness this region in iron. But in the sports city area, this can be attributed to phosphate depletion. The application of this type of experiment to different areas of the Syrian coast considers an important point to determine the role of iron in influence on the primary productivity in our region.

Keywords:

Iron; Primary productivity; phytoplankton growth; Bottle incubation; Nutrient utilization; Syrian coast

References:

[1] VILMIN, L., MOGOLLÓN, J. M., BEUSEN, A.H.W., BOUWMAN, A. F. (2018). Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century. Global and Planetary Change.
[2] HOPPE, C.J.M.A., KLAAS, C., OSSEBAAR, S., SOPPA, M.A., CHEAH, W., LAGLERA, L.M., SANTOS-ECHEANDIA, J., ROST, B., WOLF-GLADROWA, D.A., BRACHER, A., HOPPEMA, M., STRASS, V., TRIMBORN, S. (2017). Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current. Deep-Sea Research II 138 63–73.
[3] SHAKED, Y., LIS, H. (2012). Disassembling iron availability to phytoplankton. frontiers in microbiology. Vol. 3.
[4] MOREL, F.M.M., PRICE, N. M. (2003). The biogeochemical cycles of trac emetals in the oceans. Science 300, 944–947
[5] SHCOLNICK, S.; KEREN, N. (2006). Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol. 141, 805–810.
[6] ZHAO, P.; GU, W.; HUANG, A.; WU, S.; LIU, C.; HUAN, L.; GAO, S.; XIE, X.; WANG, G. (2018). Effect of iron on the growth of phaeodactylum tricornutum via photosynthesis. J. Phycol. 54, 34–43.
[7] USSHER, S.J., E.P. ACHTERBERG and P.J. WORSFOLD. (2004). Marine biogeochemistry of iron. Environ. Chem. 1: 67–80.
[8] SEVERMANN, S., MCMANUS, J., BERELSON, W.M., HAMMOND, D.E., (2010). The continental shelf benthic iron flux and its isotope composition. Geochimica et Cosmochimica Acta 74, 3984–4004.
[9] TAGLIABUE, A., BOPP, L., DUTAY, J.-C., BOWIE, A.R., CHEVER, F., JEAN-BAPTISTE, P., BUCCIARELLI, E., LANNUZEL, D., REMENYI, T., SARTHOU, G., AUMONT, O., GEHLEN, M., JEANDEL, C., (2010). Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geoscience 3, 252–256. Takeda, S., 1998. Influence of iron availability.
[10] SCHOFFMAN H, LIS H, SHAKED Y and KEREN N (2016) Iron–Nutrient Interactions within Phytoplankton. Front. Plant Sci. 7:1223.
[11] MILLS,M.M.,RIDAME,C.,DAVEY,M.,LAROCHE,J.,ANDGEIDER,R.J.(2004). Ironand phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 232–292.doi:10.1038/nature02550
[12] ARMBRUST, E. V. (2009). The life of diatoms in the world’s oceans. Nature 459, 185–192.
[13] SONG, S.;XINMING, P.; YONGSHAN, Z. (2009), In vitro iron enrichment experiments in the Prydz Bay, the Southern Ocean: A test of the iron hypothesis. Sun S et al. Sci China Ser D-Earth Sci. vol. 52, no. 9, 1426-1435.
[14] COALE, K. H., JOHNSON, K. S., FITZWATER, S. E., GORDON, R. M., TANNER, S., CHAVEZ, F. P., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.
[15] MARTIN, J. H., COALE, K. H., JOHNSON, K. S., FITZWATER, S. E., GORDON, R. M., TANNER, S. J., et al. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123–129.
[16] TSUDA, A., TAKEDA, S., SAITO, H., NISHIOKA, J., NOJIRI, Y., KUDO, I., et al. (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science, 300, 958–961.
[17] SUGIE, K., NISHIOKA, J., KUMA, K. et al. (2013) Availability of particulate Fe to phytoplankton in the Sea of Okhotsk. Mar. Chem., 152, 20–31.
[18] JOHNSON, Z. I., SHYAM, R., RITCHIE, A. E. et al. (2010) The effect of iron-and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. J. Mar. Res., 68, 283–308.
[19] NOIRI, Y.; KUDO, I.; KIYOSAWA, H.; NISHIOKA, J.; TSUDA, A. (2005). Influence of iron and temperature on growth, nutrient utilization ratios and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment. Progress in Oceanography 64 149–166.
[20] MARTIN JH, FITZWATER S. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 947–975.
[21] MARTIN JH. (1990). Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5: 1–13.
[22] MARTIN JH, GORDON RM, FITZWATER SE. (1991). The case for iron. Limnol Oceanogr 36: 1793–1802.
[23] MOORE JK, DONEY SC, GLOVER DM, FUNG IY. (2001). Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res Pt II 49: 463–507.
[24] MCKAY RML, BULLERJAHN GS, PORTA D, BROWN ET, SHERRELL RM, SMUTKA TM et al. (2004). Consideration of the bioavailability of iron in the North American Great Lakes: development of novel approaches toward understanding iron biogeochemistry. Aquat Ecosyst Health 7: 475–490.
[25] BOYD PW, JICKELLS T, LAW CS, BLAIN S, BOYLE EA, BUESSELER KO et al. (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315: 612–617.
[26] NORTH RL, GUILDFORD SJ, SMITH REH, HAVENS SM, TWISS MR. (2007). Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52: 315–328.
[27] LIS, H.; SHAKED, Y.; KRANZLER, C.; KEREN, N.; MOREL, F. M. (2015). Iron bioavailability to phytoplankton: an empirical approach. The ISME Journal 9, 1003–1013.
[28] GRASSHOFF, K.; KREMLING, K., EHRHARDT, M. (1999), Methods of Seawater Analysis. 3nd. ed., Wiley-VCH, New York, 634.
[29] JEFFREY, S. W.; HUMPHREY, G. F. (1975), New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz, Vol. 167, 191-194.
[30] U.S. Environmental Protection Agency. (1983). General procedure for analysis by atomic absorption. P: 58-70.
[31] OMRAN, M. Y. (1995). Investigation of nitrogen inorganic ions in Syrian coastal water. Master thesis, Tishreen University, 92pp. In Arabic.
[32] JOLAK, S. K. (2013). Nutrient distribution in variable coastal waters and the effect of hydrochemical properties. Master thesis. Tishreen University, 103pp. In Arabic.
[33] SULAIMAN, N. G. (2013). The role of nutrients (NO3, PO4, SiO4) on phytoplankton growth in Lattakia coastal water. Master thesis, Tishreen University, 87pp. In Arabic.
[34] SALMAN, M. DARWICH, F. KRAWI, H. (2017). Investigation of spatial and temporal variations of nutrient in the coastal water of Banias city. Tishreen University Journal for Research and Scientific Studies Biological Sciences Series, 39 (5). In Arabic.
[35] JOULAK, S. LAIKA, H. E. KRAWI, H. (2003). Influence of iron availability on nutrient utilization and phytoplankton growth in the Syrian coast. Tishreen University Journal for Research and Scientific Studies Biological Sciences Series, 35 (2). 171- 189. In Arabic.
[36] LEWIN, J. C. (1961). The dissolution of silica from diatom walls. Geochimica et Cosmochimica Acta., Vol. 21, 1961, 182 – 198.
[37] LAGUS, A.; SUOMELA, J.; WEITHOFF, G.; HEIKKILA, K.; HELMINEN, H.; SIPURA, J. (2004) Speciesspecific differences in phytoplankton responses to N and P enrichment and N:P ratio in the Archipelago Sea, northern Baltic Sea. J. Plankton Res., Vol. 26 779 – 798.
[38] SULLIVAN, C. W. (1976). Diatom mineralization of silicic acid I. Si(OH)4 transport characteristics in Navicula pelliculosa. Journal of Phycology, Vol. 12, 390 – 396.
[39] TAKEDA, S.; KAMATANI, A.; KAWANOBE, K. (1995). Effects of nitrogen and iron enrichments on phytoplankton communities in the northwestern Indian Ocean. Marine Chemistry 50 229-241.
[40] HUTCHINS, D.; BRULAND, K. (1998). Iron-limited diatom growth andSi:N uptake ratios in a coastal upwelling regime. NATURE, VOL 393.
[41] TAKEDA, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanicwaters. NATURE. VOL 393.
[42] RAGUENEAU, O.; LANCELOT, C.; EGOROV, V.; VERVLIMMEREN, J.; COCIASU, A.; DELIAT, G.; KRASTEV, A.; DAOUD,N.;ROUSSEAU,V.;APOPOVITCHEV, V.; BRION, N.; POPA, L.; CAUWET, G. (2002). Biogeochemical Transformations of Inorganic Nutrients in the Mixing Zone between the Danube River and the Northwestern Black Sea. Estuarine, Coastal and Shelf Science, Vol. 54, 321- 336.
[43] GOLTERMAN, H. L.; De OUDE, N. T. (1991). Eutrophication of lakes, rivers and coastal seas. The handbook of environmental chemistry, Vol. 5, (Part A), 79 – 124.
[44] TRÉGUER, P. J., AND DE LA ROCHA, C. L. (2013). The world ocean silica cycle. Ann. Rev. Mar. Sci. 5, 477–501.
[45] SOMMER, U. (1994). Are marine diatoms favoured by high Si:N ratios?. Mar. Ecol. Prog. Ser., Vol. 115, 309 – 315.
[46] DARWICH, F. (2006). Die untersuchung des wachstums der kieselalgen in abhängigkeit von verschiedenen nährstoffkonzentrationen und verhältnissen. Dr. rer. nat., Rostock, Germany, 101p.
[47] BRODHERR, B. H. (2006). Nutrient dependent growth dynamics of diatom spring populations in the southern Baltic Sea. Rostock, Germany, 132p.
[48] PANĖ‡CI´C, M.; KIØRBOE, T. (2018). Phytoplankton defence mechanisms: traits and trade-offs. Biol. Rev.
[49] Brzezinski, M. A., Baines, S. B., Balch, W. M. et al. (2011) Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Res. Pt II, 58, 493–511.
[50] Badejo, A.; Seo, I.; Kim, W.; Hyeong, K.; Ju,S. Effect of eolian Fe-supply change on the phytoplankton productivity and community in central equatorial Pacific Ocean during the Pleistocene: A lipid biomarker approach. Organic Geochemistry 112 (2017) 170–17