Electrical Conductivity Test For Predict Sunflower Seeds Vigor
International Journal of Agriculture & Environmental Science |
© 2019 by SSRG - IJAES Journal |
Volume 6 Issue 4 |
Year of Publication : 2019 |
Authors : Szemruch, C., Gallo, C., Murcia, M., Esquivel, M., García, F., Medina, J., Magnano L. |
How to Cite?
Szemruch, C., Gallo, C., Murcia, M., Esquivel, M., García, F., Medina, J., Magnano L., "Electrical Conductivity Test For Predict Sunflower Seeds Vigor," SSRG International Journal of Agriculture & Environmental Science, vol. 6, no. 4, pp. 118-127, 2019. Crossref, https://doi.org/10.14445/23942568/IJAES-V6I4P117
Abstract:
There is no standardised test for predicting sunflower seed vigor. The electrical conductivity test (EC) produces faster results. Before a test is standardised requires a validation process to ensure reliable and reproducible results. The aims were to analyse the repeatability and reproducibility of EC on sunflower seeds without pericarp and the association between EC and field emergence. Seeds with high (lots 3 and 4), intermediate (lots 1 and 5) and low vigor (lots 2 and 6) were distributed in four laboratories. In each laboratory, EC was measured after 24 h at 3, 6, 9, 13 and 19 months of storage and expressed as μS.cm-1. g-1. Field emergence was evaluated by diverse formulas including chronological days and thermal time. After 19 months, lots 3 and 4 presented high vigor (40.0 at 55.23 μs cm-1 g-1). Lots 1, 2, 5 and 6 ranged between 61.27 and 82.57 μs cm-1 g-1 indicating an intermediate vigor. Significant correlation coefficients (r = -0.67 and -0.72) were obtained between EC and percentage of emerged seedlings in the field and daily mean emergence, slightly improving with the use of thermal time. The EC test differentiated sunflower seed vigor through reproducible and repeatable results.
Keywords:
Electrical conductivity, field emergence, sunflower, seed vigor.
References:
[1] ISTA. 2014. International Seed Testing Association. 2014. Seed Vigor Testing. International Rules for Seed Testing, Zurich, Switzerland.
[2] ISTA. 2015. International Seed Testing Association International rules for seed testing. Ed. ISTA. Bassersdorf, Switzerland.
[3] ISTA. 2019. International Seed Testing Association International rules for seed testing. Ed. ISTA. Bassersdorf, Switzerland.
[4] Silva, S. S. D., Vieira, R. D., Grzybowski, C. R. D. S., Carvalho, T. C. D., Panobianco, M. 2013. Electrical conductivity of different common bean seeds genotypes. Journal of Seed Science, 35, 216-224. http://dx.doi.org/10.1590/S2317-15372013000200011
[5] Marcos-Filho. J. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72, 363-374. http://dx.doi.org/10.1590/0103-9016-2015-0007
[6] ISTA. 1995. International Seed Testing Association International. Handbook of Vigor Test Methods. 3rd Edition. Ed. Hampton J. G and TeKrony D.M. Zurich, Switzerland.
[7] Carvalho, L. F., Sediyama, C. S., Reis, M. S., Dias, D. C. F. S., Moreira, M. A. 2009. Influência da temperatura de embebição da semente de soja no teste de condutividade elétrica para avaliação da qualidade fisiológica. Revista Brasilera de Sementes, 31, 009-017. http://dx.doi.org/10.1590/S0101-31222009000100001
[8] Del Longo, O., Perez A. H., Murcia, M. 1999. Effect of the presence of pericarp on the conductivity values in sunflower (Helianthus annuus L.) with different levels of deterioration. Informativo Abrates, 9, 149-149.
[9] Queiroga, V. P. and Duran, J. M. 2010. Physiological quality analysis in sunflower seeds with and without pericarp. Proceedings of the 1st International Symposium of Energy Oilseeds. September 23-26, Campina Grande. Brasil. Pp.: 1944-1950.
[10] Albuquerque, M. C. F., Moro, F. V., Fagioli, M., Ribeiro, M. C. 2001. Electrical conductivity and potassium leaching tests in the evaluation of physiological quality of sunflower seeds Revista Brasileira de Sementes, 23, 1-8.
[11] Braz, M. R. S., Barros, C. S., Castro, F. P., Rossetto, C. A. V. 2008. Testes de envelhecimento acelerado e deterioração controlada na avaliação do vigor de aquênios de girassol. Ciência Rural, 38: 1857-1863. http://dx.doi.org/10.1590/S0103-84782008000700009
[12] de Oliveira, D. F. N., Torres, S. B., Vieira, F. E. R., de Paiva, E. P., Dutra, A. S. 2012. Qualidade fisiológica de sementes de girassol avaliadas por condutividade elétrica. Pesquisa Agropecuária Tropical, 42, 10-1590. http://dx.doi.org/10.1590/S1983-40632012000300007
[13] Szemruch, C., Rentería S., Moreira F., Cantamutto, M., Ferrari, L., Rondanini, D. 2014. Germination, vigor and dormancy of sunflower seeds following chemical desiccation of female plants. Seed Science and Technology, 42, 454-460. https://doi.org/10.15258/sst.2014.42.3.12
[14] Ribeiro, D. M., Bragança, S. M., Goneli, A. L. D., Dias, D. C. F. S., Alvarenga, E. 2009. Teste de condutividade elétrica para avaliar o vigor de sementes em milho-pipoca (Zea mays L.). Ceres, 56, 772-776.
[15] Brzezinski, C. R., Abati, J., Zucareli, C., Henning, F. A., Henning, A. A., Colombo, R. C., Krzyzanowski, F. C. 2015. Teste de condutividade elétrica para a determinação do vigor em sementes de soja tratadas e armazenadas.VII Congreso Brasilero de Soja. Mercosoja. Florianópolis. Brasil.
[16] Bajpai, R., Singh, P., Singh, D. P. 2015. Study on seed vigor and their correlation to field emergence in groundnut (Arachis Hypogea L.) Genotypes Indian Journal of Research Papirex, 4, 455-457.
[17] Szemruch, C., Del Longo, O., Ferrari, L., Renteria, S., Murcia. M., Cantamutto, M., Rondanini, D. 2015. Ranges of vigor based on the electrical conductivity test in dehulled sunflower seeds. Research Journal of Seed Science, 8, 12-21. https://doi.org/10.3923/rjss.2015.12.21
[18] Wei, J., Le, H., Pan, A., Xu, J. F., Li, F., Li, X., Quan, S., Guo, J.C., Yang, L. 2015. Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No. 1. Food Chemistry, 194:20–25. http://dx.doi.org/10.1016/j.foodchem.2015.07.010
[19] ISTA. 2007. International Seed Testing Association International. ISTA Online. ISTA Method Validation for Seed Testing. V1.01. Available in: https://www.seedtest.org/upload/cms/user/ISTAMethodValidationforSeedTesting-V1.01.pdf
[20] Zanobini, A., Sereni, B., Catelani, M., Ciani, L. 2016. Repeatability and reproducibility techniques for the analysis of measurement systems. Measurement, 86, 125-132. http://dx.doi.org/10.1016/j.measurement.2016.02.041
[21] Powell, A. A. 2009. Proposal for the addition of Phaseolus vulgaris as a species to which the conductivity test for seed vigor can be applied. Method Validation Reports 2009. International Seed Testing Association. http://dx.doi.org/10.13140/RG.2.2.28247.27040
[22] Powel , A. A. 2012. Proposal for the addition of Glycine max as a species to which the conductivity test for seed vigor can be applied. Method Validation Reports 2012. International Seed Testing Association.
[23] Khajeh-Hosseini, M., Gallo, C., Ilbi, H. 2015. Proposal for the addition of Cicer arietinum (Kabuli type) as a species to which the conductivity test for seed vigor can be applied. Method Validation Reports 2015. International Seed Testing Association.
[24] Powell A. A. and Mavi, K. 2017. Application of the electrical conductivity test to radish seed (Raphanus sativus). Method Validation Reports 2017. International Seed Testing Association. https://doi:10.13140/RG.2.2.28247.27040
[25] Aliloo, A. and Shokati, B. 2011. Correlation between seed tests and field emergence of two maize hybrids (SC704 AND SC500). Online Journal of Animal and Feed Research, 6: 249-254.
[26] Kolasinska, K., Szyrmer, J., Dul., S. 2000. Relationship between laboratory seed quality tests and field emergence of common bean seed. Crop Science, 40, 470‒475. https://doi.org/10.2135/cropsci2000.402470x
[27] Soleymani, A. 2017. Safflower (Carthamus tinctorius L.) seed vigor tests for the prediction of field emergence. Industrial Crops and Products, 131, 378-386. doi.org/10.1016/j.indcrop.2017.03.022. https://doi.org/10.1016/j.indcrop.2017.03.022
[28] Lamichaney, A., Katiyar, P. K., Natarajan, S., Sripathy, K. V. 2016. Relationship among some seed characters, laboratory germination and field emergence in chickpea (Cicer arietinum L.) genotypes differing in testa colour. Journal of Food Legumes. 29, 29-33.
[29] Kaya, M. D., Kulan, E. G., Avci, S., Ileri, O. 2018. Potential of seed testing methods to identify viability and vigor in commercial seed lots of sunflower. Fresenius Environmental Bulletin, 27, 5295-5300
[30] Anfinrud, M. N. and Schneiter, A. A. 1984. Relationship of sunflower germination and vigor tests to field performance. Crop Science, 24, 341-344. https://doi:10.2135/cropsci1984.0011183X002400020031x
[31] Braz, M. R. S. and Rossetto, C. A. V. 2009. Correlation between sunflower seeds quality evaluation tests and seedling emergence in field. Ciência Rural, 39, 2004-2009. http://dx.doi.org/10.1590/S0103-84782009005000146
[32] Szemruch, C., Garcia, F., Aranguren, M. B. 2019. Field vigor of sunflower seeds after chemical treatment. Advances in Agricultural Science, 7, 40-50.
[33] Schneiter, A. A. and Miller J. F. 1981. Description of sunflower growth stages. Crop Science, 21, 901-903. https://doi:10.2135/cropsci1981.0011183X002100060024x
[34] Nakagawa J. 1999. Testes de vigor baseados na avaliação das plântulas. In: Krzyzanowski Fc; Vieira Rd; França-Neto Jb. Ed. Vigor de sementes: conceitos e testes. Londrina: ABRATES, 2,1-21.
[35] Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177. http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x
[36] Aguirrezábal, L. A. N., Lavaud, Y., Dosio, G. A. A., Izquierdo, N. G., Andrade, F. H., González, L. M. 2003. Intercepted solar radiation during seed filling determines sunflower weight per seed and oil concentration. Crop Science, 43, 152–161. https://doi.org/10.2135/cropsci2003.1520
[37] Abdi, H. 2007. Z-scores. In: Encyclopedia of Measurement and Statistics (Ed. By N. J. Salkind), pp. 1057–1058. Thousand Oaks, California: Sage
[38] ISO. 1994. ISO 5725-2. Accuracy (Trueness and Precision) of Measurement Methods and Results, Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; International Organization for Standardization: Geneva, Switzerland.
[39] Little, T. M. 1985. Analysis of percentage and rating scale date. Hortscience, 20:642-644.
[40] Di Rienzo, J.A., Robledo, C.W., Balzarini, M.G., Casanoves, F., Gonzalez. L., Tablada, M. 2008. InfoStat. Versión 2008. Grupo InfoStat. FCA. Universidad Nacional de Córdoba. Córdoba. Argentina. Available in http//www.infostat.com.ar
[41] Abreu, L. A. de S. 2010. Sistemas de armazenamiento e aplicabilidad do teste de condutividade e aplicabilidade do teste de condutividade eléctrica em sementes de giassol. Thesis of Doctor grade. Lavras National University, Lavras, MG. Brazil. 122 pp.
[42] Lins, S. R. de Oliveira, Moreira de Carvalho, M. L., Cardoso, M., Miranda, D. H. De Andrade, J. 2014. Physiological, enzymatic, and microstructural analyses of sunflower seeds during storage. Australian Journal of Crop Science, 8, 1038-1048.
[43] Al-Chaarani, G. R., Gentzbittel, L., Wedzony, M., Sarrafi, A. 2005. Identification of QTLs for germination and seedling development in sunflower (Helianthus annuus L.). Plant Science, 169, 221–227. https://doi:10.1016/j.plantsci.2005.03.016
[44] Lima, D. C. Dutra, A. L., Pontes, F. M, Coelho Bezerra, F. T. 2014. Storage of sunflower seeds. Ciência Agronômica, 45, 361-369. http://dx.doi.org/10.1590/S1806-66902014000200018
[45] Balešević-Tubić, S., Malenčić, Ð., Tatić, M., Miladinović, J. 2005. Influence of aging process on biochemical changes in sunflower seed. Helia, 28, 107-114. https://doi:10.2298/HEL0542107B
[46] Mohammadi, H, Soltani, A, Sadeghipour, H. R., Zeinali, H. 2011. Effects of seed aging on subsequent seed reserve utilization and seedling growth in soybean. International Journal of Plant Production, 5, 65-70. http://dx.doi.org/10.22069/IJPP.2012.720
[47] Bailly, C., Benamar, A., Corbineau, F., Come, D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum, 97, 104:110. https://doi.org/10.1111/j.1399-3054.1996.tb00485.x
[48] Kibinza, S., Vinel, D., Coˆ me, D., Bailly, C., Corbineau, F. 2006. Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. Physiologia Plantarum, 128, 496–506. https://doi.org/10.1111/j.1399-3054.2006.00771.x
[49] Balešević-Tubić, S., Tatić, M., Ðorđević, V., Nikolić, Z. y Ðukić, V. 2010. Seed viability of oil crops depending on storage conditions. Helia, 33, 153-160. https://doi.org/10.2298/hel1052153b
[50] Ducatti, K. R., Boeno, R. S., Arantes, K. R. Coimbra, R. A. 2014. Accelerated aging test in determining the vigor of sunflower seeds with and without Pericarp. Scientific Electronic Archives, 7, 39- 43
[51] Vijay, K., Lokesh, G. Y., Basave, G., Patil, S. B., Ganiger, B. S. Rakesh ,C. M. 2015. Accelerated ageing test to study the relative storage potential of hybrid sunflower-RSFH-130 (Helianthus annuus). African Journal of Agricultural Research, 10, 3502-3506. https://doi.org/10.5897/AJAR2015.9822
[52] Manjunatha, B. and Channakeshava B.C. 2016. Prediction of storability of sunflower (Helianthus annuus L) hybrid kbsh-53 seeds through accelerated ageing test. Advances in Life Sciences, 5, 5447-5450.
[53] Walters, C., Landre´, P., Hill, L., Corbineau, F., Bailly, C. 2005. Organization of lipid reserves in cotyledons of primed and aged sunflower seeds. Planta, 222, 397–407. https://doi.org/10.1007/s00425-005-1541-
[54] Rajjou, L., Lovigny, Y., Groot, S. P.C., Belghazi, M., Job, C., Job, D. (2008). Proteome-Wide Characterization of seed aging in arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology, 148, 620–641. https://doi.org/10.1104/pp.108.123141
[55] Seiler, G. J. 1997. Anatomy and morphology of sunflower. Sunflower technology and production. Ed. American Society of Agronomy, Crop Society of America, Soil Science Society of America. Madison, Wisconsin, USA. 834 pp
[56] Franchini, M. C., Hernández, L. F., Lindström, L. 2010. Cuticle and cuticular wax development in the sunflower (Helianthus annuus L.) pericarp grown at the field under a moderate water deficit. International Journal of Experimental Botany, 79, 153-161.
[57] Finch-Savage, W. E. and Bassel, G. W. 2016. Seed vigor and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67, 567–591. http://doi.org/10.1093/jxb/erv490