Mycobiota present in soils under two tillage systems in Buenos Aires province, Argentina
International Journal of Agriculture & Environmental Science |
© 2020 by SSRG - IJAES Journal |
Volume 7 Issue 1 |
Year of Publication : 2020 |
Authors : Mónica B. Barrios, María C. Sandoval, Ana C. Sokolowski, María S. Gilardino, Víctor R. Corcuera, Bárbara Prack Mc Cormick, Hernán A. Rodríguez, Javier De Grazia, Silvina P. Debelis, Angel D. Blasón, José E. Wolski, Ileana R. Paladino, Alfonso Buján |
How to Cite?
Mónica B. Barrios, María C. Sandoval, Ana C. Sokolowski, María S. Gilardino, Víctor R. Corcuera, Bárbara Prack Mc Cormick, Hernán A. Rodríguez, Javier De Grazia, Silvina P. Debelis, Angel D. Blasón, José E. Wolski, Ileana R. Paladino, Alfonso Buján, "Mycobiota present in soils under two tillage systems in Buenos Aires province, Argentina," SSRG International Journal of Agriculture & Environmental Science, vol. 7, no. 1, pp. 62-68, 2020. Crossref, https://doi.org/10.14445/23942568/IJAES-V7I1P112
Abstract:
The present study aimed to describe and compare the fungal soil community under two systems of tillage: direct sowing and conventional tillage. This work was performed in the context of a twelve-year long-term trial, where crops and pasture rotation as well as tillage systems were tested. It was conducted in the experimental field of the National Atomic Energy Commission, located in the province of Buenos Aires. Soil samples from each plot were collected separately. The Simpson Index (1-D) for each plot was also calculated separately. For plate fungus isolation, the plate dilution technique was used. The results were expressed in CFU g-1of soil. The fungal genera identified under both tillage systems were characterized by their degree of similarity through hierarchical cluster analysis. The total number of CFU g-1 of soil was higher in conventional tillage compared to direct sowing. The diversity index values were very similar for both tillage systems, with a slight difference in favor of direct sowing. The relatively high alfa diversity for both systems would indicate that the stability of the fungal community that presupposes the value obtained was not altered by conventional tillage.
Keywords:
Fungi, Soil, Tillage, Community, Diversity.
References:
[1] Pacasa-Quisbert, F., Loza-Murguia, M. G., Bonifacio-Flores, A., Vino-Nina, L., Serrano-Canaviri, T. 2017. Comunidad de hongos filamentosos en suelos del Agroecosistema K’iphak’iphani, Comunidad Choquenaira-Viacha. Journal of the SelvaAndina Research Society, vol. 8(1): 2-25.
[2] Hattaka, A. 2001. Biodegradation of lignin. En: Hofrichter M, Stenbuchel A. (eds) Lignin Humic Substances and Coal. Vol 1. Weinheim: Wiley-VCH. pp. 129-180.
[3] Ullé, J. A., Díaz, B. M. (eds). 2018. El suelo como reactor de los procesos de regulación funcional de los agroecosistemas. Buenos Aires: Ediciones INTA. [4] Coyne, M. Microbiología del Suelo. 2000. Un Enfoque Exploratorio. Madrid: Ed. Paraninfo. p. 416. [5] Benzina, A., Verlag, N., Villingen, S. 2001. Agricultura orgánica fundamentos para la región andina. Verlag: Editorial Neckar. 102-120, 831-837. [6] Cabello, M., Arambarri, A. 2002. Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res, vol. 157(2): 115-125.
[7] Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S., Paulitz, T. 2017. Long term no till: A major driver of fungal communities in dryland wheat cropping systems. PLOS|one 12(9): e0184611.https://doi.org/10.1371/journal. pone.0184611
[8] Sommermann, L., Geistlinger, J., Wibberg, D., Deubel, A., Zwanzig, J., Babin, D., Schlüter, A., Schellenberg, I. 2018. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analized by high-throughput ITS-amplicon sequencing. PLOS|One 5;13(4): e0195345. doi: 10.1371/journal.pone.0195345. eCollection 2018. [9] Barnett, H. L, Hunter, B. B. 1998. Illustrated genera of Imperfecti Fungi. St. Paul: APS Press.
[10] Domsch, K. H., Gams, W., Anderson, T. 2007. Compendium of Soil Fungi, 2nd edition, IHW Verlag: Eching.
[11] Marasas, W. F. O., Nelson, P. E., Tousson, T. A. (eds.) 1983. Fusarium species. An Illustrated Manual for Identification. Pennsylvania: Pennsylvania State University Press.
[12] Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., Robledo, C. W. 2011. Universidad Nacional de Córdoba. Recuperado de: URL http://www. infostat. com. ar
[13] Magurran, A. 2013. Measuring Biological Diversity. Hoboken:John Wiley & Sons.
[14] Manoharachary, C., Kunwar, I. K., Tilak, K. V. 2013. Diversity and characterization of fungi and its relevance. Indian Phytopath 66:10–1
[15] [15] Žifcáková, L., Vetrovský, T., Howe, A., Baldrian, P. (2016). Microbial activity inforestsoilreflectsthechangesinecosystempropertiesbetweensummerand winter. Environ. Microbiol.18,288–301.doi:10.1111/1462-2920.13026
[16] [16] Boosalis, M. C. y Scharen, A. L. 1959. Methods for microscopic detection of Aphanomyces euteiches and Rhizoctonia solani associated with plant debris. Phytopathology 49:192-198.
[17] Ogoshi, A. ;Oniki, M. ; Sakai, R. y Ui, T. 1979. Anastomosis grouping among isolates of binucleate Rhizoctonia. Trans. mycol. Soc. Japan. 20: 33-39. [18] Burns, R, G., Dick, R. P. 2002. Enzymes in the environment. Activity, Ecology and Applications. Basel: New York. [19] Rodrigues Almeida, A. M., Ferreira Saraiva, O., BouçasFarias, J.R., Almeida Gaudêncio, C., Torres, E. 2000. Survival of pathogens on soybean debris under no-tillage and conventional tillage systems. Pesq. agropec. bras., Brasília, 36 (10): 1231-1238. [20] Workneh, F., Yang, X. B. 2000. Prevalence of Sclerotinia Stem Rot of Soybeans in the North-Central United States in Relation to Tillage, Climate, and Latitudinal Positions. . Phytopathology 90:1375-1382.
[21] Gómez, R. P., Aulicino, M. B., Mónaco, C., Kripelz, N., Cordo, C. A. 2016. Composition and dynamics of the fungal population in a typical Phaeozemluvico in Argentina. Cogent food & agricultura. 2: 1180965 http://dx.doi.org/10.1080/23311932.2016.1180965
[22] Frąc, M., Hannula, S. E., Belka, M., Jędryczka, M. 2018. Fungal Biodiversity and Their Rol in Soil Healht. Frontiers in Microbiology. 9: 707. doi: 10.3389/fmicb.2018.00707.
[23] Vargas Gil, S., Meriles, J., Conforto, C., Basanta, M., Radl, V., Hagn, A., Schloter, M., March, J. G. 2011. Soil microbial communities response to tillage and crop rotation in a soybean agroecosystems in Argentina. Eur. J. Soil Biol. 47:55-60.
[24] Patkowska, E., Błażewicz-Woźniak, M., Konopiński, M., Wach, D. 2016. The effect of cover crops on the fungal and bacterial communities in the soil under carrot cultivation. Plant Soil Environ. 62(5): 237-242-
[25] Mengistu, A., Arelli, P. R. 2015. Effects of tillage, cultivar and fungicide on Phomopsis longicolla and Cercospora kikuchii in soybean. Crop Protection, 72: 175-181.
[26] Penton, C. R., Gupta, V. V. S. R,, Tiedje, J. M., Neate, S. M., Ophel-Keller, K-, Gillings, M., Harvey, P, et al. 2014. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoSONE. 2014; 9: 1–12. [27] Martin D. 2019. Phytophthora Damping-off and Root Rot of Soybean. PLPATH-SOY-04. Ohioline. Recuperado de: https://ohioline.osu.edu/factsheet/plpath-soy-04
[28] Grijalba, P. E., Gally, M. E. 2015. Virulence of Phytophthora sojae in the Pampeana Subregion of Argentina from 1998 to 2004. J. Phytopathol. 163: 723-730.
[29] Dai, J., Hu, J. L., Zhu, A. N., Wang, R., Zhang, J. B., Wong, M. H. 2015. No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbón accumulation in soil macroaggregates. J.Soil.Sediment.15:1055–1062.doi:10.1007/s11368-015-1091-9.
[30] Degrune, F., Theodorakopoulos, N., Dufrene, M., Colinet, G., Bodson, B., Hiel, M. P., et al. 2016.No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium). AgrEcosyst Environ. 224: 2–21.
[31] Supronienė, S., Mankeviĉienė, A., Kadžienė, G., Kaĉergius, A., Feiza, V., Feizienė, D., Semaškienė, R., Dabkeviĉius, Z., Kęstutis, T., 2012. The impact of tillage and fertilization on Fusarium infection and mycotoxin production in wheat grains. Žemdirbystė Agriculture, 99 (3): 265-272.
[32] Schroeder, K. L. 2004. The dynamics of root diseases of wheat and barley in the transition from conventional tillage to direct seeding. PhD dissertation, Washington State University, Pullman.