Evaluation of Drone Migration on Mating Station Torfhaus (DE-6-14) in 2020 by Cubital Index Analysis

International Journal of Agriculture & Environmental Science
© 2020 by SSRG - IJAES Journal
Volume 7 Issue 5
Year of Publication : 2020
Authors : Hannes Beims, Martina Janke, Werner von der Ohe
pdf
How to Cite?

Hannes Beims, Martina Janke, Werner von der Ohe, "Evaluation of Drone Migration on Mating Station Torfhaus (DE-6-14) in 2020 by Cubital Index Analysis," SSRG International Journal of Agriculture & Environmental Science, vol. 7,  no. 5, pp. 38-42, 2020. Crossref, https://doi.org/10.14445/23942568/IJAES-V7I5P106

Abstract:

The western honeybee Apis mellifera can be subdivided into different subspecies, like carnica, and breeding lines, i.e. "Carnica-Troisek" (C-T). In order to safe this lines and subspecies, typical characteristics are determined for each. To prevent mating of queens with unspecific males, restricted
mating stations for breeding lines and subspecies exist. These mating stations are registered and protected by the local authorities. Consequently, the
setting of unfamiliar colonies in mating stations' protection zone is prohibited to prevent the mating of virgin queens with unfamiliar drones. We analyzed drones of 13 colonies, selected for the mating station Torfhaus (DE-6-14) in Lower Saxony by their cubital index. During the summer 2020 a shift in the drones' characteristics was obtained. The shift dynamic suggests the migration of external drones. Our results underline the expressiveness of a comfortable, reliable method to detect the migration of external drones in selected drone hives of mating stations. Moreover, we could show that migration of external drones decreases during the summer, according to the abundance of drones in typical hives, which are not specially prepared for mating stations. Finally, we assume that the early and late periods in the beekeeping season may promise a higher safety on emerged land mating places.

Keywords:

Cubital index, Apis mellifera subsp. carnica, breeding, mating station, morphometric analysis

References:

[1] C. J. Ritten, D. Peck, D. Ehmke, M. Buddhika-Patalee, “Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Service Industry”, J. Econ. Entomol., vol. 28, pp.1014-1022, 2018.
[2] F. Ruttner, “Naturgeschichte der Honigbienen”, 1st ed. München, Germany: Ehrenwirth, 1992.
[3] M. S. Engel, “The taxonomy of recent and fossil hey bees (Hymenoptera: Apidae: Apis”, J. Hymenopt. Res., vol. 8, pp. 165-196, 1999.
[4] D. Vanengeldorp, M. D. Meixner, “A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them”, J. Invertebr. Pathol., vol. 103, pp. 80-95, 2010.
[5] F.-K. Tiesler, K. Bienefeld, R. Büchler, “Selektion bei der Honigbiene”, 1st ed. Herten, Germany: Buschhausen Druck- und Verlagshaus, 2016.
[6] I. M. M. Heidinger, M. D. Meixner, S. Berg, R. Büchler, “Observations of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequency indentification (RFID): factors influencing the duration and frequency of nuptial flights”, Insects., vol. 5, pp. 513-527, 2014.
[7] G. Koeniger, N. Koeniger, F.-K. Tiesler, “Paarungsbiologie und Paarungskontrolle bei der Honigbiene”, 1st ed. Herten, Germany: Buschhausen Druck- und Verlagshaus, 2014.
[8] “Richtlinie & Leitfaden für die fachgerechte Betreibung & Benüützung einer CA Beleg- und Besamungsstelle”, Austrian Carnica Association – Verein zur Förderung der Zucht von bodenständigen Bienenrassen, Graz, 2019.
[9] “Richtlininen für das Zuchtwesen des Deutschen Imkerbundes (ZRL)”, Deutscher Imkerbund e.V., Wachtberg, 2017.
[10] “Imkerei in Deutschland, Zahlen-Daten-Fakten (D.I.B. Mitgliederstatistik)”, Deutscher Imkerbund e.V., Wachtberg, 2019.
[11] R. G. Danka, J. D. Villa, “Inheritance of resistance to Acarapis woodi (Acari: Tarsonemidae) in first-generation crosses of honey bees (Hymenoptera: Apidae”, J. Econ. Entomol., vol. 93, pp. 1602-1605, 2000.
[12] M. E. Nasr, G. W. Otis, C. D. Scott-Dupree, “Resistance to Acarapis woodi by honey bees (Hymenoptera: Apidae): divergent selection and evaluation of selection process”, J. Econ. Entomol., vol. 94, pp. 332-*338, 2001.
[13] T. Stachurska-Hagen, Z. Al-Touama, B. Dahle, L. J. Robertson, “Molecular methods indicate lack of spread of Acarapis woodi introduced to honey bees in western Norway”, Vet. Parasitol. Reg. Stud. Reports, vol. 11, pp.49-54, 2018.
[14] F. Ruttner, “Zuchttechnik und Zuchtauslese bei der Honigbiene”, 1st ed. München, Germany: Ehrenwith 1996.
[15] M. Förster, “DNA-Untersuchungen zur Biodiversität bei Buckfastbienen”, Der Buckfastimker, vol. 19, pp. 34-36, 2011.
[16] E. Genersch, “American Foulbrood in honeybees and its causative agent, Paenibacillus larvae”, J. Invertebr. Pathol., vol. 103, pp. 10-19, 2010.
[17] B. N. Metz, D. R: Tarpy, “Reproductive Senescence in drones of the honey bee (Apis mellifera)”, Insects., vol. 10, p. 11, 2019.
[18] A. N. Mortensen, C. J. Jack, J. D. Ellis, “The discovery of Varroa destructor in drone honey bees, Apis mellifera, at drone congregation areas”, Parasitol. Res., vol. 117, pp. 3337-3339, 2018.
[19] A. I. Harber, N. A. Steinhauer, D. vanEngelsdorp, “Use of chemical and nonchemical mathods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations”, J. Econ. Entomol., vol. 112, pp. 1509-1525, 2019.