Cadmium, Nickel, Chromium, and Lead Accumulation in Roots, Shoots, and Leaves of Basil Plants (Ocinum Basilicum L.)

International Journal of Agriculture & Environmental Science
© 2022 by SSRG - IJAES Journal
Volume 9 Issue 2
Year of Publication : 2022
Authors : Christos Lykas, Maria Zografou, Martha Kazi
pdf
How to Cite?

Christos Lykas, Maria Zografou, Martha Kazi, "Cadmium, Nickel, Chromium, and Lead Accumulation in Roots, Shoots, and Leaves of Basil Plants (Ocinum Basilicum L.)," SSRG International Journal of Agriculture & Environmental Science, vol. 9,  no. 2, pp. 1-14, 2022. Crossref, https://doi.org/10.14445/23942568/IJAES-V9I2P101

Abstract:

This study aimed to investigate the accumulation of Cadmium(Cd), Nickel(Ni), Chromium(Cr) and Lead(Pb) in roots, shoots, and leaves of basil plants (Ocinum basilicum L.) grown in a greenhouse. for that reason, a) 10 mg L-1 Cd(ΝΟ3)24Η2Ο, 20 mg L-1 Ni(ΝΟ3)26Η2Ο, 20 mg L-1 Cr(NO3)39H2O and 20 mg L-1 Pb(NO3)2 respectively, were applied in nine plants per treatment every 2 weeks through irrigation, b) foliar applications were performed with 240 mg CdO, 450 mg NiO, 450 mg CrO and 450 mg PbO per plant respectively, in three plants per treatment and c) nine control plants were irrigated only with tap water. After watering applications, high Cd and Ni concentrations were measured in leaves (257 mg kg-1 d.w.) and shoots (762 mg kg-1 d.w.) respectively, Cr was accumulated in all organs. in contrast, leaves presented the highest Pb concentration. Foliar applications resulted in high Cd and Ni concentrations in new leaves (3722 mg kg-1 d.w) and shoots (5237 mg kg-1 d.w) respectively, high Cr concentrations in leaves (1772 mg kg-1 d.w), and accumulation of Pb both in leaves and shoots. in conclusion, basil plants can accumulate significant Cd, Ni, Cr, and Pb levels in their shoots and leaves via contaminated water irrigation or foliar deposition of heavy metals.

Keywords:

Pollution, Contaminants, Aromatic plants, Heavy metals, Phytoremediation.

References:

[1] C. Dinu, G. G. Vasile, M. Buleandra, D. E. Popa, S. Gheorghe, & E. M. Ungureanu, Translocation and Accumulation of Heavy Metals in Ocimum Basilicum L. Plants Grown in A Mining-Contaminated Soil. Journal of Soils and Sediments, 20 (2020) 2141–2154. www.Doi.Org/10.1007/S11368-019-02550-W.
[2] J. E. Simon, M. R. Morales, W. B. Phippen, R. F. Vieira, & Z. Hao, Basil: A Source of Aroma Compounds and a Popular Culinary and Ornamental Herb*. (1999).
[3] A. Akoumianaki-Ioannidou, K. Papadimitriou, P. Barouchas, & N. Moustakas, The Effects of Cd and Zn Interactions on the Concentration of Cd and Zn in Sweet Bush Basil (Ocimum Basilicum L.) and Peppermint (Mentha Piperita L.). Fresenius Environmental Bulletin, 24 (2015) 77–83.
[4] S. Chand, S. Singh, V. K. Singh, & D. D. Patra, Utilization of Heavy Metal-Rich Tannery Sludge for Sweet Basil (Ocimum Basilicum L.) Cultivation. Environmental Science and Pollution Research, 22 (2015) 7470–7475. www.Doi.Org/10.1007/S11356-015-4446-2.
[5] A. Patel, V. Pandey, & D. D. Patra, Influence of Tannery Sludge on Oil Yield, Metal Uptake and Antioxidant Activities of Ocimum Basilicum L. Grown in Two Different Soils. Ecological Engineering, 83 (2015) 422–430. www.Doi.Org/10.1016/J.Ecoleng.2015.06.046.
[6] C. L. Boechat, F. S. Carlos, C. Gianello, & F. A. De Oliveira Camargo, Heavy Metals and Nutrients Uptake By Medicinal Plants Cultivated on Multi-Metal Contaminated Soil Samples From An Abandoned Gold Ore Processing Site. Water, Air, and Soil Pollution, 227 (2016) 1–11. www.Doi.Org/10.1007/S11270-016-3096-4.
[7] M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, & N. K. Niazi, Foliar Heavy Metal Uptake, Toxicity and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. Journal of Hazardous Materials, 325 (2017) 36–58.
www.Doi.Org/10.1016/J.Jhazmat.2016.11.063.
[8] WHO, Chromium in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality, (2020).
[9] T. T. Xiong, T. Leveque, A. Austruy, S. Goix, E. Schreck, V. Dappe, S. Sobanska, Y. Foucault, & C. Dumat, Foliar Uptake and Metal(Loid) Bioaccessibility in Vegetables Exposed To Particulate Matter. Environmental Geochemistry and Health, 36 (2014) 897–909. www.Doi.Org/10.1007/S10653-014-9607-6.
Christos Lykas et al. / IJAES, 9(2), 1-14, 2022
12
[10] F. Shinmachi, Y. Kumanda, A. Noguchi, & I. Hasegawa, Stem-Specific Cadmium Accumulation in Cadmium-Tolerant Polygonum Thunbergii. Soil Science and Plant Nutrition, 49 (2003) 363–368. www.Doi.Org/10.1080/00380768.2003.10410021.
[11] S. Pinho & B. Ladeiro, Phytotoxicity By Lead As Heavy Metal Focus on Oxidative Stress. Journal of Botany, 2012 (2012) 1–10. www.Doi.Org/10.1155/2012/369572.
[12] D. C. Sharma, C. Chatterjee, & C. P. Sharma, Chromium Accumulation and Its Effects on Wheat (Triticum Aestivum L. Cv. HD 2204) Metabolism. Plant Science, 111 (1995) 145–151. www.Doi.Org/10.1016/0168-9452(95)04230-R.
[13] J. R. Peralta-Videa, M.-L. Lopez, M. Narayan, G. Saupe, & J. Gardea-Torresdey, the Biochemistry of Environmental Heavy Metal Uptake By Plants: Implications for the Food Chain. the International Journal of Biochemistry& Cell Biology, 41 (2009) 1665–1677.
[14] Y. Song, L. Jin, & X. Wang, Cadmium Absorption and Transportation Pathways in Plants. International Journal of Phytoremediation, 19 (2017) 133–141. www.Doi.Org/10.1080/15226514.2016.1207598.
[15] O. D. Adeyolanu, O. J. Kadiri, K. S. Are, & G. A. Oluwatosin, Lead and Cadmium Contents in A Medicinal Plant/Spice Grown in An Urban City of Nigeria. Cogent Food and Agriculture, 2 (2016). www.Doi.Org/10.1080/23311932.2015.1136016.
[16] WHO, WHO Guidelines for Assessing the Quality of Herbal Medicines Concerning Contaminants and Residues. World Health Organization, (2007).
[17] P. O’Neill, Minor Element and Environmental Problems. Environ. Chem., Second, Taylor & Francis Group, (1993).
[18] T. Manios, E. I. Stentiford, & P. A. Millner, the Effect of Heavy Metals Accumulation on the Chlorophyll Concentration of Typha Latifolia Plants, Growing in A Substrate Containing Sewage Sludge Compost and Watered With Metaliferus Water. Ecological Engineering, 20 (2003) 65–74. www.Doi.Org/10.1016/S0925-8574(03)00004-1.
[19] A. Kubier, R. T. Wilkin, & T. Pichler, Cadmium in Soils and Groundwater: A Review. Applied Geochemistry, 108 (2019).
www.Doi.Org/10.1016/J.Apgeochem.2019.104388.
[20] ATSDR, Toxicological Profile for Nickel (Atlanta, 2005).
[21] WHO, Permissible Limits of Heavy Metals in Soil and Plants. (1996).
[22] S. Martin & W. Griswold, Human Health Effects of Heavy Metals, (2009) 2009.
[23] R. Levin, M. Schock, & A. Marcus, Exposure To Lead in US Drinking Water. 23rd Annu. Conf. Trace Subst. Environ. Heal. (Cincinnati, OH, US: Environmental Protection Agency, 1989).
[24] E. Smolders & J. Mertens, Trace Metals and Metalloids in Soils and Their Bioavailability. Heavy Met. Soils, Third, Springer, (2013) 283–299.
[25] S. Naseem, S. Hamza, S. Nawaz-Ul-Huda, E. Bashir, & Q. Ul-Haq, Geochemistry of Cd in Groundwater of Winder, Balochistan and Suspected Health Problems. Environmental Earth Sciences, 71 (2014) 1683–1690. www.Doi.Org/10.1007/S12665-013-2572-Z.
[26] EU, European Union Risk Assessment Report – Cadmium Oxide and Cadmium Metal (2007).
[27] ATSDR, Toxicological Profile for Cadmium (2012).
[28] P. Chandra, S. Sinha, & U. N. Rai, Bioremediation of Cr From Water and Soil By Vascular Aquatic Plants, in Phytoremediation of Soil and Water Contaminants, Kru Ger E. L., Anderson T. A., and Coats J. R., Eds., ACS Symposium, Στο E.L. Kruger, T.A. Anderson, & J.. Coats,Επιμ., Phytoremediation Soil Water Contam. (Washington, DC, USA: American Chemical Society, 664 (1997) 274–282.
[29] EPA, Method 7199: Determination of Hexavalent Chromium in Drinking Water, Groundwater, and Industrial Wastewater Effluents By Ion Chromatography. Test Methods Eval. Solid Waste, 3rd Έκδ, Washington, DC: US: Environmental Protection Agency, Office of Solid Waste and Emergency Response, (1996).
[30] N.-C. Chen, S. Kanawaza, & T. Horiguchi, Effect of Chromium on Some Enzyme Activities in the Wheat Rhizosphere. Soil Microo]’Gani, 55 (2001) 3–10.
[31] T. M. Chiroma, R. O. Ebewele, & F. K. Hymore, Comparative Assessment of Heavy Metal Levels in Soil, Vegetables and Urban Grey Waste Water Used for Irrigation in Yola and Kano. International Refereed Journal of Engineering and Science, 3 (2014) 1–09.
[32] J. O. Nriagu & J. M. Pacyna, Quantitative Assessment of Worldwide Contamination of Air, Water and Soils By Trace Metals. Nature, 333 (1988) 134–139. www.Doi.Org/10.1038/333134a0.
[33] L. Alamo-Nole & Y. F. Su, Translocation of Cadmium in Ocimum Basilicum At Low Concentration of Cdsse Nanoparticles. Applied Materials Today, 9 (2017) 314–318.
www.Doi.Org/10.1016/J.Apmt.2017.08.014.
[34] M. John, Cadmium Uptake By Eight Food Crops As Influenced By Various Soil Levels of Cadmium. Environmental Pollutionn, (1973).
[35] T. Sterckeman & S. Thomine, Mechanisms of Cadmium Accumulation in Plants. Critical Reviews in Plant Sciences, 39 (2020) 322–359. www.Doi.Org/10.1080/07352689.2020.1792179.
[36] D. E. Salt, R. C. Prince, I. J. Pickering, & I. Raskin, Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard. Plant Physiology, 109 (1995) 1427–1433.
www.Doi.Org/10.1104/Pp.109.4.1427.
[37] J. F. Ma & S. Hiradate, Form of Aluminium for Uptake and Translocation in Buckwheat (Fagopyrum Esculentum Moench). Planta, 211 (2000) 355–360. www.Doi.Org/10.1007/S004250000292.
[38] U. Krämer, J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker, & J. A. C. Smith, Free Histidine As A Metal Chelator in Plants That Accumulate Nickel. Nature, 379 (1996) 635–638.
www.Doi.Org/10.1038/379635a0.
[39] T. H. B. Deng, Y. T. Tang, A. Van Der Ent, T. Sterckeman, G. Echevarria, J. L. Morel, & R. L. Qiu, Nickel Translocation Via the Phloem in the Hyperaccumulator Noccaea Caerulescens (Brassicaceae). Plant and Soil, 404 (2016) 35–45.
www.Doi.Org/10.1007/S11104-016-2825-1.
[40] M. Amjad, H. Raza, B. Murtaza, G. Abbas, M. Imran, M. Shahid, M. A. Naeem, A. Zakir, & M. M. Iqbal, Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea Mays L.) Hybrids. Plants, 9 (2020) 1–15.
www.Doi.Org/10.3390/Plants9010005.
[41] X. E. Yang, V. C. Baligar, J. C. Foster, & D. C. Martens, Accumulation and Transport of Nickel About Organic Acids in Ryegrass and Maize Grown With Different Nickel Levels. Στο T. Ando, K. Fujita, T. Mae, H. Matsumoto, S. Mori, & J. Sekiya,Επιμ., Plant Nutr. Sustain. Food Prod. Environ. Dev. Plant Soil Sci. (Dordrecht: Springer, 1997).
www.Doi.Org/10.1023/A:1004270528532.
[42] Y. Kalmykova, A. M. Strömvall, & B. M. Steenari, Alternative Materials for Adsorption of Heavy Metals and Petroleum Hydrocarbons From Contaminated Leachates. Environmental Technology, 29 (2008) 111–122.
www.Doi.Org/10.1080/09593330802009444.
[43] F. X. Han, B. B. M. Sridhar, D. L. Monts, & Y. Su, Phytoavailability and Toxicity of Trivalent and Hexavalent Chromium To Brassica Juncea. New Phytologist, 162 (2004) 489–499.
www.Doi.Org/10.1111/J.1469-8137.2004.01027.X.
[44] V. Rai, P. Vajpayee, S. N. Singh, & S. Mehrotra, Effect of Chromium Accumulation on Photosynthetic Pigments, Oxidative Stress Defense System, Nitrate Reduction, Proline Level and Eugenol Content of Ocimum Tenuiflorum L. Plant Science, 167 (2004) 1159–1169. www.Doi.Org/10.1016/J.Plantsci.2004.06.016.
[45] P. A. Brown, S. A. Gill, & S. J. Allen, Metal Removal From Wastewater Using Peat. Water Research, 34 (2000) 3907–3916. www.Doi.Org/10.1016/S0043-1354(00)00152-4.
[46] J.-H. Qian, A. Zayed, Y.-L. Zhu, M. Yu, & N. Terry, Phytoaccumulation of Trace Elements By Wetland Plants: III. Uptake and Accumulation of Ten Trace Elements By Twelve Plant Species. Journal of Environmental Quality, 28 (1999) 1448–1455.
[47] B. Dheeba, P. Sampathkumar, & K. Kannan, Chromium Accumulation Potential of Zea Mays Grown Under Four Different Fertilizers. Indian J Exp Biol., 52 (2014) 1206–10.
[48] S. K. Kohli, N. Handa, A. Sharma, V. Gautam, S. Arora, R. Bhardwaj, M. N. Alyemeni, L. Wijaya, & P. Ahmad, Combined Effect of 24-Epibrassinolide and Salicylic Acid Mitigates Lead (Pb) Toxicity By Modulating Various Metabolites in Brassica Juncea L. Seedlings. Protoplasma, 255 (2018) 11–24. www.Doi.Org/10.1007/S00709-017-1124-X.
[49] P. A. Mangabeira, A. S. Ferreira, A. A. F. De Almeida, V. F. Fernandes, E. Lucena, V. L. Souza, A. J. Dos Santos Júnior, A. H. Oliveira, M. F. Grenier-Loustalot, F. Barbier, & D. C. Silva, Compartmentalization and Ultrastructural Alterations Induced By Chromium in Aquatic Macrophytes. Biometals, 24 (2011) 1017–1026. www.Doi.Org/10.1007/S10534-011-9459-9.
[50] A. Kabata-Pendias & B. Szteke, Trace Elements in Abiotic and Biotic Environments ,Boca Raton: Taylor & Francis Group, (2015).
[51] B. Pourrut, M. Shahid, C. Dumat, P. Winterton, & E. Pinelli, Lead Uptake, Toxicity, and Detoxification in Plants Open Archive Toulouse Archive Ouverte (OATAO). Reviews of Environmental Contamination and Toxicology Environmental Contamination and Toxicology, 213 (2011) 113–136. www.Doi.Org/10.1007/978-1-4419-9860-6.
[52] D. K. Gupta, F. T. Nicoloso, M. R. C. Schetinger, L. V. Rossato, L. B. Pereira, G. Y. Castro, S. Srivastava, & R. D. Tripathi, Antioxidant Defense Mechanism in Hydroponically Grown Zea Mays Seedlings under Moderate Lead Stress. Journal of Hazardous Materials, 172 (2009) 479–484. www.Doi.Org/10.1016/J.Jhazmat.2009.06.141.
[53] M. Arshad, J. Silvestre, E. Pinelli, J. Kallerhoff, M. Kaemmerer, A. Tarigo, M. Shahid, M. Guiresse, P. Pradere, & C. Dumat, A Field Study of Lead Phytoextraction by Various Scented Pelargonium Cultivars. Chemosphere, 71 (2008) 2187–2192.
[54] S. D. Lane & E. S. Martin, A Histochemical Investigation of Lead Uptake in Raphanus Sativus. New Phytol, 79 (1977) 281–286.
[55] J. A. Arias, J. R. Peralta-Videa, J. T. Ellzey, M. Ren, M. N. Viveros, & J. L. Gardea-Torresdey, Effects of Glomus Deserticola Inoculation on Prosopis: Enhancing Chromium and Lead Uptake and Translocation as Confirmed by X-Ray Mapping, ICP-OES, and TEM Techniques. Environmental and Experimental Botany, 68 (2010) 139–148. www.Doi.Org/10.1016/J.Envexpbot.2009.08.009.
[56] P. Vollenweider, C. Cosio, M. S. Günthardt-Goerg, & C. Keller, Localization and Effects of Cadmium in Leaves of A Cadmium-Tolerant Willow (Salix Viminalis L.). Part II Microlocalization and Cellular Effects of Cadmium. Environmental and Experimental Botany, 58 (2006) 25–40.
www.Doi.Org/10.1016/J.Envexpbot.2005.06.012.
[57] D. H. Khan, J. G. Duckett, B. Frankland, & J. Brian Kirkham, An X-Ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea Mays L. Journal of Plant Physiology, 115 (1984) 19–28. www.Doi.Org/10.1016/S0176-1617(84)80047-4.
[58] I. V Seregin & V. B. Ivanov, Histochemical Investigation of Cadmium and Lead Distribution in Plants. Russ. J. Plant Physiol, 44 (1997) 791–796.
[59] P. Carrier, A. Baryla, & M. Havaux, Cadmium Distribution and Micro Localization in Oilseed Rape (Brassica Napus) After Long-Term Growth on Cadmium-Contaminated Soil. Planta, 216 (2003) 939–950. www.Doi.Org/10.1007/S00425-002-0947-6.
[60] M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, & N. K. Niazi, Foliar Heavy Metal Uptake, Toxicity and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. Journal of Hazardous Materials, 325 (2017) 36–58.
www.Doi.Org/10.1016/J.Jhazmat.2016.11.063.
[61] M. Nazarian, D. Amouzgar, & H. Sedghianzadeh, Effect of Different Concentrations of Cadmium Growth and Morphological Changes in Basil (Ocimum Basilicum). Pakistan Journal of Botany, 48 (2016) 945–952.
[62] A. Lux, M. Martinka, M. Vaculík, & P. J. White, Root Responses To Cadmium in the Rhizosphere: A Review. Journal of Experimental Botany, 62 (2011) 21–37. www.Doi.Org/10.1093/Jxb/Erq281.
[63] M. K. Souri, M. Hatamian, & T. Tesfamariam, Plant Growth Stage Influences Heavy Metal Accumulation in Leafy Vegetables of Garden Cress and Sweet Basil. Chemical and Biological Technologies in Agriculture, 6(2019)1–7. www.Doi.Org/10.1186/S40538-019-0170-3.
[64] M. Zahedifar, A. A. Moosavi, Z. Zarei, M. Shafigh, & F. Karimian, Heavy Metals Content and Distribution in Basil (Ocimum Basilicum L.) as Influenced by Cadmium and Different Potassium Sources. International Journal of Phytoremediation, 21 (2019) 435–447. www.Doi.Org/10.1080/15226514.2018.1537253.
[65] O. Riesen & U. Feller, Redistribution of Nickel, Cobalt, Manganese, Zinc, and Cadmium Via the Phloem in Young and Maturing Wheat. Journal of Plant Nutrition, 28 (2005) 421–430.
www.Doi.Org/10.1081/PLN-200049153.
[66] J. Fismes, G. Echevarria, E. Leclerc-Cessac, & J. L. Morel, Uptake and Transport of Radioactive Nickel and Cadmium Into Three Vegetables After Wet Aerial Contamination. Journal of Environmental Quality, 34 (2005) 1497–1507. www.Doi.Org/10.2134/Jeq2004.0274.
[67] P. S. Patil, P. A. Take, & S. Y. Gabhe, in Vitro Antioxidant and Free Radical Scavenging Activity of Extracts of Rosa Damascena Flower Petals. American Journal of Phytomedicine and Clinical Therapeutics, (2015) 589–601.
[68] S. A. Bhalerao, A. S. Sharma, & A. C. Poojari, Toxicity of Nickel in Plants. International Journal of Pure and Applied Bioscience, 3 (2015) 345–355.
[69] B. J. Alloway, Heavy Metals in Soils, 2nd Έκδ (Llondon: Blackie Academic and Professional, 1995). www.Doi.Org/10.1016/S0165-9936(96)90032-1.
[70] C. W. Gray & R. G. Mclaren, Soil Factors Affecting Heavy Metal Solubility in Some New Zealand Soils. Water, Air, and Soil Pollution, 175 (2006) 3–14. www.Doi.Org/10.1007/S11270-005-9045-2.
[71] L. Taiz, Eduardo Zeiger. Plant Physiology, (2009) 522–550.
[72] A. Banerjee & A. Roychoudhury, Micronutrients. Στο T. Aftab, & K.R. Hakeem,Επιμ., Plant Micronutr. Defic. Toxic. Manag. (2020).
[73] S. H & M. D. Cohen, Chromium. Στο M. Lippmann, & G.D. Leikauf,Επιμ., Environ. Toxicants Hum. Expo. Their Heal. Eff., 4th John Wiley & Sons, (2020) 487–513.
www.Doi.Org/10.1002/9781119438922.
[74] T. Aftab & K. R. Hakeem, Επιμ., Medicinal, and Aromatic Plants, 1η Έκδ (Springer, 2021).
[75] H. P. Singh, P. Mahajan, S. Kaur, D. R. Batish, & R. K. Kohli, Chromium Toxicity and Tolerance in Plants. Environmental Chemistry Letters, 11 (2013) 229–254. www.Doi.Org/10.1007/S10311-013-0407-5.
[76] A. Brune, W. Urbach, & K.-J. Dietz, Differential Toxicity of Heavy Metals is Partly Related to A Loss of Preferential Extraplasmic Compartmentation: A Comparison of Cd-, Mo-, Ni- and Zn- Stress. the New Phytologist, 129 (1995) 403–409.
[77] J. Liu, C. Q. Duan, X. H. Zhang, Y. N. Zhu, & C. Hu, Subcellular Distribution of Chromium in Accumulating Plant Leersia Hexandra Swartz. Plant and Soil, 322 (2009) 187–195.
www.Doi.Org/10.1007/S11104-009-9907-2.
[78] F. Ahmed, A. N. M. Fakhruddin, Z. Fardous, M. A. Z. Chowdhury, M. M. Rahman, & M. M. Kabir, Accumulation and Translocation of Chromium (Cr) and Lead (Pb) in Chilli Plants (Capsicum Annuum L.) Grown on Artificially Contaminated Soil. Nature Environment and Pollution Technology, 20 (2021) 63–70.
www.Doi.Org/10.46488/NEPT.2021.V20I01.007.
[79] H. Oliveira, Chromium As An Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012 (2012) 1–8. www.Doi.Org/10.1155/2012/375843.
[80] B. V. Tangahu, S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, & M. Mukhlisin, A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants Through Phytoremediation. International Journal of Chemical Engineering, 2011 (2011). www.Doi.Org/10.1155/2011/939161.
[81] M. J. Blaylock & J. W. Huang, Phytoextraction of Metals. Στο I. Raskin, & BD. Ensley,Επιμ., Phytoremediation Toxic Met. Using Plants To Clean Up Environ. New York, NY, USA: John Wiley & Sons, (2000).
[82] H. Liu, H. Wang, Y. Ma, H. Wang, & Y. Shi, Role of Transpiration and Metabolism in Translocation and Accumulation of Cadmium in Tobacco Plants (Nicotiana Tabacum L.). Chemosphere, 144 (2016) 1960–1965. www.Doi.Org/10.1016/J.Chemosphere.2015.10.093.
[83] T. Xiong, T. Zhang, C. Dumat, S. Sobanska, V. Dappe, M. Shahid, Y. Xian, X. Li, & S. Li, Airborne Foliar Transfer of Particular Metals in Lactuca Sativa L.: Translocation, Phytotoxicity, and Bioaccessibility. Environmental Science and Pollution Research, 26 (2019) 20064–20078. www.Doi.Org/10.1007/S11356-018-3084-X.
[84] P. M. Neumann & A. Chamel, Comparative Phloem Mobility of Nickel in Nonsenescent Plants. Plant Physiology, 81 (1986) 689–691. www.Doi.Org/10.1104/Pp.81.2.689.
[85] V. Page & U. Feller, Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy, 5 (2015) 447–463. www.Doi.Org/10.3390/Agronomy5030447.
[86] G. A. Meindl, D. J. Bain, & T. L. Ashman, Nickel Accumulation in Leaves, Floral Organs, and Rewards Varies By Serpentine Soil Affinity. Aob PLANTS, 6 (2014) 1–9.
www.Doi.Org/10.1093/Aobpla/Plu036.
[87] M. Mourato, R. Reis, & L. Louro, Characterization of Plant Antioxidative System in Response To Abiotic Stresses: A Focus on Heavy Metal Toxicity. Advances in Selected Plant Physiology Aspects, (2012). www.Doi.Org/10.5772/34557.
[88] V. Vidayanti, D. N. Choesin, & I. Iriawati, Phytoremediation of Chromium: Distribution and Speciation of Chromium in Typha Angustifolia. International Journal of Plant Biology, 8 (2017) 14–18. www.Doi.Org/10.4081/Pb.2017.6870.
[89] G. Uzu, S. Sobanska, M. Moreau, M. Choël, & C. Dumat, Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts: Raman Imaging Study. Environ. Sci. Technol., 44 (2010) 1036–1042.
www.Doi.Org/10.1063/1.3482642.
[90] E. Schreck, V. Dappe, G. Sarret, S. Sobanska, D. Nowak, J. Nowak, E. A. Stefaniak, V. Magnin, V. Ranieri, & C. Dumat, Foliar Or Root Exposures to Smelter Particles: Consequences for Lead Compartmentalization and Speciation in Plant Leaves. Science of the Total Environment, 476–477 (2014) 667–676.
www.Doi.Org/10.1016/J.Scitotenv.2013.12.089.