Contribution of the Hydrological Model WEAP in the Evaluation and Planning of Water Resources in the Lobo subbasin in the South-West of Côte D'ivoire
International Journal of Agriculture & Environmental Science |
© 2021 by SSRG - IJAES Journal |
Volume 8 Issue 6 |
Year of Publication : 2021 |
Authors : Bi Djè Désiré Djè, Mahaman Bachir Saley, Homian Jean Danumah, Charly Fernand Agoh4 |
How to Cite?
Bi Djè Désiré Djè, Mahaman Bachir Saley, Homian Jean Danumah, Charly Fernand Agoh4, "Contribution of the Hydrological Model WEAP in the Evaluation and Planning of Water Resources in the Lobo subbasin in the South-West of Côte D'ivoire," SSRG International Journal of Agriculture & Environmental Science, vol. 8, no. 6, pp. 10-22, 2021. Crossref, https://doi.org/10.14445/23942568/IJAES-V8I6P104
Abstract:
The Lobo river basin has been the subject of several studies in the water resources framework. However, with WEAP (Water Evaluation and Planning system) a new approach experiments. WEAP model was used to assess the water resources and demands of the various sectors of activity in the Lobo basin from 2020 to 2050. According to the hydrological balance from 1980 to 2011 in both subbasins of Lobo, the comp multi-annual mean precipitation is estimated at 7,495 million Cubaicmeters(MCM) for the North Lobo and assessed to 8,448 MCM for the South Lobo. The mobilized surface water at both gauges of Nibehibe and Loboville are assessed be to 389 MCM and 1,140 MCM respectively. The groundwater potential is estimated at 1.9 and 2.83 billionCubaicmeters(BCM) respectively in North and South Lobo. The overall Water demand fluctuates between 26 MCM and 39.5 MCM from 2020 to 2050 in the baseline scenario. This demand reaches 46.15 MCM and 92.2 MCM at the end of the Rice Development Project and High population Growth scenarios respectively. in 2050, unmet demand is estimated at 17.59 MCM, 24.25 MCM, and 32.78 MCM in these three scenarios respectively.
Keywords:
Côte d’Ivoire, Hydrological modeling, Lobo basin, Water resources, WEAP.
References:
[1] A. Kouassi, K. Kouame, B. Saley, and Y. Koffi, Identification of Tendencies Within The Rainfall-Runoff Relation and Refill of The Tablecloths in A Context of Hydroclimatic Variability in The Catchment Area of N'zi (Bandama) in Ivory Coast, European Journal of Scientific Research, 16(3) (2007) 412-425.
[2] D. Yates, J. Sieber, D. Purkey, And A. Huber-Lee, Weap21—A Demand-, Priority-, And Preference-Driven Water Planning Model: Part 1: Model Characteristics, Water International, 30(4) (2005) 487500.
[3] M. Escobar and S. Vicuña, Guía Metodológico: Modelación Hidrológica Y De Recursos Hídricos Con El Modelo WEAP, A Joint Publication of Centro De Cambio Global-Universidad Católica De Chile and Stockholm Environment Institute, (2009).
[4] SEI, USER GUIDE For Water Evaluation and Planning System (WEAP) 2015. USA: Stockholm Environment Institute, (2015).
[5] W. H. Organization and Unicef, Global Water Supply and Sanitation Assessment Report, World Health Organization (WHO), (2000).
[6] B. Höllermann, S. Giertz, and B. Diekkrüger, Benin 2025—Balancing Future Water Availability and Demand Using The WEAP ‘Water Evaluation and Planning’System, Water Resources Management, 24(13) (2010) 3591-3613.
[7] C. Bhuiyan, R. P. Singh, and W.-A. Flügel, Modelling of Groundwater Recharge-Potential in The Hard-Rock Aravalli Terrain, India: A GIS Approach, Environmental Earth Sciences, 59(4) (2009) c929-858538.
[8] O. E. Meinzer, The Occurrence of Groundwater in The United States With A Discussion of Principles University of Chicago, (1923).
[9] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, Model Evaluation Guidelines For Systematic Quantification of Accuracy in Watershed Simulations, Transactions of The ASABE, 50(3) (2007) 885-900.
[10] D. N. Moriasi, M. W. Gitau, N. Pai, and P. Daggupati, Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria, Transactions of The ASABE, 58(6) (2015)1763-1785. Doi:Https://Doi.Org/10.13031/Trans.58.10715.
[11] M. Lage and M. El Mourid, Besoins En Eau Et Quelques Méthodes De Gestion De L'irrigation Au Niveau De La Parcelle Du Riz (Oryza Sativa L.) Irrigué (Revue Bibliographique), Al Awamia (MA), 94 (1996) 65-86.[Online]. Available: Https://Www.Inra.Org.Ma/Fr/Content/Besoins-En-Eau-Et-QuelquesM%C3%A9thodes-De-Gestion-De-L%E2%80%99irrigation-AuNiveau-De-La-Parcelle-Du.
[12] JICA, Plan Directeur De Gestion Intégrée Des Ressources En Eau En République De Côte d'Ivoire, Sanyu Consultants Inc. Katahira Et Ingeneers International, Rapport Principal - Rapport Final (2001). [Online]. Available: Https://Openjicareport.Jica.Go.Jp/617/617/617_515_11634276.Html
[13] INS, Répertoire Des Localités: Région Du Haut-Sassandra, Institut National De La Statitistique (INS), Abidjan, Côte d'Ivoire, Rapport, (2014). [Online]. Available: Https://Www.Ins.Ci/Documents/Rgph/HAUT_SASSANDRA.Pdf
[14] INS, Répertoire Des Localités: Région De La Marahoué, Institut National De La Statistique (INS), Abidjan, Côte d'Ivoire, Rapport, (2014). [Online]. Available: Https://Www.Ins.Ci/Documents/Rgph/MARAHOUE.Pdf
[15] INS, Répertoire Des Localités: Région Du Worodougou, Institut National De La Statistique (INS), Abidjan, Côte d'Ivoire, Rapport, (2014). [Online]. Available: Https://Www.Ins.Ci/Documents/Rgph/WORODOUGOU.Pdf
[16] INS, Répertoire Des Localités: Région De La Nawa, Institut National De La Statistique (INS), Abidjan, Côte d'Ivoire, 2014. [Online]. Available: Https://Www.Ins.Ci/Documents/Rgph/NAWA.Pdf
[17] C. Almestad, Modelling of Water Allocation and Availability in Devoll River Basin, Albania, Master's Thesis, Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway, (2015).
[18] A. B. Yao, Evaluation Des Potentialités En Eau Du Bassin Versant De La Lobo En Vue D'une Gestion Rationnelle (Centre-Ouest De La Cote D'ivoire), Thèse Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire, (2015).