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Abstract 

Hearing loss and hearing sensitivity to 

Frequencies have occupied the front burner in many 

recent researches. Frequencies are thought to affectthe 

ear; including the Vibration of the Tympanic membrane 

and the oscillation of the middle bones. The 

transduction of sound waves into electrical signals and 
many more. In this work, the Vibrational modes of the 

Tympanic membranewere derived. The Tympanic 

membrane was viewed as a circular Vibrating 

homogeneous membrane of Radius(a)under a Tension 

(T) and having a linear mass Density 𝜌. The 

Vibrational Frequency of the membrane was found to 

be directly proportional to the square root of the 

Tension 𝑇, inversely proportional to the  square root of 

the Density 𝜌, and inversely proportional to the 

Radius (𝑎). This suggests that the vibrational 

Frequencies of the membrane are high for a small 

Radius which suggestsa high sensitivity to high 

Frequency sound waves and Hearing loss at low 

Frequencies. 
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I. INTRODUCTION 
 Hearing is one of the major senses and like 

vision it is important for distant warning and 
communication. It is a conscious appreciation of 

vibration perceived as sound. It can be used to alert and 

to communicate pleasure and fear. The human ear 

serves as a transducer, converting sound energy into 

mechanical energy and then mechanical energy into a 

nerve impulse which is transmitted to the brain. The 

ear's ability to do this allows one to perceive the pitch 

of sounds by detection of the wave's frequencies. The 

ears detect loudness of sound by detecting the wave's 

amplitude and the timbre of the sound at various 

frequencies which make up a complex sound wave [1]. 
Most hearing loss problems are traceable to the 

vibrations of the tympanic membrane. From literatures, 

some tympanic membranesareperforated while others 

have density outside the normal range giving rise to 

abnormal vibrational frequencies of the tympanic 

membrane. Some of the problems could either be from 

the outer ear, middle ear or inner Ear. It could also be 

the fault of either of all these.The pinna, which is the 

visible portion of the ear, is composed of cartilage and 

attaches to the skull on the temporal bone above the 
external auditory canal, which is commonly referred to 

as the ear canal. The auditory ossicles, which include 

the malleus, incus, and stapes, are the smallest bones in 

the body and are essential in conducting sound from the 

tympanic membrane to the inner ear [2]. The middle 

ear, also known as the tympanic cavity, is an air-filled 

compartment surrounded by the temporal bone. It is 

lined with a mucosal skin layer that extends over the 

tympanic membrane, creating the innermost layer of the 

tympanic membrane [3].The inner portion of the ear is 

responsible for transforming mechanical vibrations 
produced by a sound into neural impulses which can be 

interpreted by the brain. The structure of the inner ear 

that is most essential to this process is the cochlea. The 

cochlea’s function is to convert sound waves to neural 

signals, but it is also responsible for breaking down 

Acoustical waveforms into more simplistic components 

[4]. The human cochlea is approximately 10mm wide 

and forms a shape which appears similar to the shell of 

a snail. The cochlea is a tube which is roughly 35mm 

long if outstretched [5]. The round window and the oval 

window are each covered by membranes and are 

located at the base of the cochlea. These membranes are 
the basilar membrane and the tectorial membrane 

respectively. Their functions are to vibrate and send 

pressure waves into the cochlea where approximately 

30,000 hair follicles are located. These hair follicles 

convert vibrations to nervous impulses, which are 

gathered by approximately 19,000endings and these 

endings transfer the nerve impulses to the brain [6]. The 

human tympanic membrane(TM) also called eardrum is 

a soft tissue membrane which separates the outer ear 

from the Meddle Ear (ME). It is placed in the ear canal 

with a particular inclination, which allows it to have a 
bigger surface than the ear canal section itself [7]. The 

angle between the eardrum and the superior and 
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posterior wall of the ear canal is 140°, while the angle 

between the eardrum and the inferior and anterior wall 

is 30° [8].It is slightly conically shaped with the apex 

pointing medially towards the ME. The sides of the 

cone formed by the eardrum are convex outwards. Its 

vertical axis ranges from 8.5 to 10.0 mm while the 
horizontal axis ranges from 8.0 to 9.0 mm and the total 

area is 85.0 mm2 while the physiologically active area 

is 55.0 mm2 [9]. It varies in elasticity and thickness, 

being thicker in the centre and in the periphery than in 

the intermediate zone, with an average thickness of 74 

µm (minimal thickness: ~50 µm, maximal thickness: 

~100 µm) [10].Macroscopic observation reveals the 

existence of three different parts: pars tensa, pars 

flaccida and annular ligament. The differences in the 

pars tensa and pars flaccida lie in the structure of their 

lamina propria. The pars tensa is the inferior part and is 

also the most extended part, its lamina propria consists 
of two sub epidermal connective tissue layers, between 

which there are two collagenous layers with radial 

(outer) and circular (inner) fibre orientation [11]. The 

pars flaccida is the superior part of the TM, its lamina 

propria is made up with loose connective tissue 

containing collagen and elastic fibres. The abundance 

of elastic fibres may account for its flaccid nature. The 

tympanic membrane is approximately 10mm in 

diameter and 80 micrometres in thickness on average in 

human adults,it is instrumental in converting sound 

pressure waves into mechanical vibrations [12].The 
normal range of human hearing is from 0 to 100 dB(A), 

before sound becomes uncomfortably loud. 

The TM has been the subject of many studies, focusing 

mainly on its structure, composition, and mechanical 
properties.The tympanic membrane is primarily conical 

in shape with the apex forming an umbo [13]. The TM 

is divided into two main sections; the pars flaccidaa 

membrane, which is the upper level of the tympanic 

membrane which can be identified by a small inverted 

triangle which is above the short process of the malleus, 

and the pars tensa is the lower portion of the tympanic 

membrane which is located around the umbo [14].It is 

very important if experiments are conducted in the long 

term as data can be recorded with pictures at time 

intervals, as was done to view the TM healing time in 
rats when a perforation was made in the membrane 

[15]. The resolution of images captured with 

microscopes can be very high, on the order of 

submicron. The contrast, however, suffers from 

backscattering of light or over illumination depending 

on the type of microscopy being utilized. Direct 

microscopic observation is incapable of quantitatively 

measuring internal structures of samples[16].  

 The tympanic membrane was viewed as a 

rectangular model, assuming the tympanic membrane is 

homogeneous and that one point on the membrane can 

move in only one direction. The tympanic membrane 

has an approximately constant volume density, 

somewhere between that of water (1.0gcm-3) and that of 

undehydrated collagen (1.2 gcm
-3

) [17]. A perforated 

eardrum is considered as a hole in the tympanic 
membrane as a common consequences of ear injury or 

infection. A perforated eardrum is often accompanied 

by decreased hearing and occasional discharge. Pain is 

usually persistent.  The causes of perforated eardrum 

are usually from trauma (injury) or infection such as 

when the ear is struck squarely with an open hand or a 

skull fracture or after a sudden explosion[18]. 

This work aimed to obtain an expression for 

normal modes of operation of the tympanic membrane. 

The objectives are;to consider the tympanic membrane 

as a circular model with a radius, R; to generate an 

expression for the normal vibration of the tympanic 

membrane; to use the mathematical expressions to 

bring out important parameters of the tympanic 

membrane and to use the parameter above to guide 

audiologists, acousticians, surgeons, etc. 

II. METHOD 

 In this work, the basic assumptions are; 
the mass of the membrane per unit area (density) 

is constant; that is, the tympanic membrane is 

homogenous. The tympanic membrane is perfectly 
elastic and does not offer any resistance to 

bending; the effect of gravitational force on the 

membrane is negligible. The Motion of the 

membrane is small (transverse vibration); hence, 
the membrane is fixed at its circular boundary and 

therefore, the transverse displacement is zero at 

the boundary i.e.  u (a, θ, t); r = a.  
 

2D WAVE EQUATION 

Starting the derivation with the Newton second 

law of motion: 

𝐹 = 𝑚𝑎 = 𝑚
𝜕𝑣

𝜕𝑡
= 𝑚

𝜕2𝑢

𝜕𝑡 2         (1) 

Density(ρ) of the Membrane is define as mass per 

unit area express in Kg/m
2
. 

 ρ =
m

A
 (2) 

Tension of the Membrane is the force F per unit 

length. 

𝑇 = 𝐹𝑑𝑙    

 𝑇 = 𝑚
𝜕2𝑢

𝜕𝑡 2 𝑑𝑙 (3) 

 

 𝐹 = 𝜌
𝜕2𝑢

𝜕𝑡 2 𝑑𝑥𝑑𝑧                                  (4) 
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The net force on the element𝑑𝑥𝑑𝑧 due to the pair 

of tensions 𝑇𝑑𝑧 is:- 

𝑇𝑑𝑧   
𝜕𝑢

𝜕𝑥
 
𝑥+𝑑𝑥

−  
𝜕𝑢

𝜕𝑥
 
𝑥
 = 𝑇

𝜕2𝑢

𝜕𝑥 2 𝑑𝑥𝑑𝑧  (5) 

 
And that due to the pair of tension given as 

𝑇𝑑𝑥 = 𝑇
𝜕2𝑢

𝜕𝑧 2 𝑑𝑥𝑑𝑧                           (6) 

 
 Equating the sum of equation (5) and (6) to the 

product of the element’s mass 𝜌𝑑𝑥𝑑𝑧 by its 

acceleration 
∂2u

∂t2  gives 

𝑇  
𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑧 2
 𝑑𝑥𝑑𝑧 = 𝜌𝑑𝑥𝑑𝑧

𝜕2𝑢

𝜕𝑡 2            (7) 

 

  
𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑧 2
 =

𝜌

𝑇

𝜕2𝑢

𝜕𝑡 2   (8) 

 

 
1

𝑐2 =
𝜌

𝑇
                (9) 

 

 
𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑧2
 =

1

𝑐2

𝜕2𝑢

𝜕𝑡 2              (10) 

 

This is the 𝟐𝑫 wave equation of a stretch 
membrane is in rectangular coordinate.  

In terms of its 𝟑𝑫 rectangular polar coordinate, 

it is given as: 
 

 
𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑦 2 +
𝜕2𝑢

𝜕𝑧 2
 =

1

𝑐2

𝜕2𝑢

𝜕𝑡 2               (11) 

 
 Equations (10) and (11) are time dependent that is 

in transient state which is called Poison’s 

equations and it can be reduced to Laplace’s 

equation where the time derivative
∂2u

∂t2 = 0, that is, 

in  a steady state. 

 To transform the rectangular polar 
coordinate to spherical coordinate, the spherical 

transformation operators was used which is given 

below. 

 
TRANSFORMATION OF LAPLACE’S 

EQUATION 

 The Cartesian form of Laplace’s equation 

for the stretch membrane in 3D was derived from 

the Newton second law of motion and was obtain 
as: 

𝑐2  
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
 = 0 

𝜕2𝑢

𝜕𝑡
= 0 and 𝑢 is Satisfies. 

The Laplace’s equation can be transformed to 

spherical polar form by using the Transformation 

 𝑥 = 𝑟𝑐𝑜𝑠𝜃  (12a) 

 𝑦 = 𝑟𝑠𝑖𝑛𝜃  (12b) 

 𝑧 = 𝑧   (12c) 

So that,  𝑟2 = 𝑥2 + 𝑦2𝑎𝑛𝑑 𝑡𝑎𝑛𝜃 =  
𝑦

𝑥
, 

And
𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= 𝑐𝑜𝑠𝜃,

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
= 𝑠𝑖𝑛𝜃 

𝜕𝜃

𝜕𝑥
= −

𝑠𝑖𝑛𝜃

𝑟
,
𝜕𝜃

𝜕𝑦
=

𝑐𝑜𝑠𝜃

𝑟
 (13) 

By the way of transforming for the x-component 

we have: 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+  

𝜕𝑢

𝜕𝜃

𝜕𝜃

𝜕𝑥
+  

𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑥
              (14) 

Substituting the values of the transforms into 

equation 14, it becomes: 

 

 
𝜕𝑢

𝜕𝑥
=  

𝜕𝑢

𝜕𝑟
𝑐𝑜𝑠𝜃 +

𝜕𝑢

𝜕𝜃
 −

𝑠𝑖𝑛𝜃

𝑟
             (15) 

Factor u, we have: 

 
𝜕𝑢

𝜕𝑥
= 𝑢  𝑐𝑜𝑠𝜃

𝜕

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕

𝜕𝜃
                       (16) 

This equation become: 

 
𝜕

𝜕𝑥
= 𝑐𝑜𝑠𝜃

𝜕

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕

𝜕𝜃
           (17) 

Equation 18 is called the operator equation in the 

x-direction 

 
𝜕2𝑢

𝜕𝑥2 =
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
                         (18) 

𝜕²𝑢

𝜕𝑥 ²
=  𝑐𝑜𝑠𝜃

𝜕

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕

𝜕𝜃
  

𝜕𝑢

𝜕𝑟
𝑐𝑜𝑠𝜃 +

𝜕𝑢

𝜕𝜃
 −

𝑠𝑖𝑛𝜃

𝑟
            (19) 

 

With similar expression for 
𝜕²𝑢

𝜕𝑦 ²
 and

𝜕²𝑢

𝜕𝑧 ²
, the 

Cylindrical coordinate is obtained as 
 

𝜵𝟐𝒖 = 𝒄𝟐  
𝝏𝟐𝒖

𝝏𝒓𝟐
+

𝟏

𝒓

𝝏𝒖

𝝏𝒓
+

𝟏

𝒓𝟐
𝝏𝟐𝒖

𝝏𝜽𝟐
           (20) 

 

The equation above is the wave equation for a 

circular membrane. Where𝛻2𝑢 = 0, the 3D 

circular equation reduces to Laplace’s equation. 

 

THE TYMPANIC AS A CIRCULAR 

MEMBRANE OF RADIUS 𝑹 

 

In circular coordinate (r, θ, t) 

𝜵𝟐𝒚 =
𝝏𝟐𝒚

𝝏𝒓𝟐
+

𝟏

𝒓

𝝏𝒚

𝝏𝒓
+

𝟏

𝒓𝟐
𝝏𝟐𝒚

𝝏𝜽𝟐
=

𝟏

𝒄𝟐
𝝏𝟐𝒚

𝝏𝒕𝟐
          (21) 

 
From equation (21), the membrane is assume to be 

thin and independent of the z coordinate 

𝑦 𝑎, 𝜃, 𝑡 = 0,   𝑟 = 𝑎 
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In other to solve (21); assuming  a harmonic 

solution which is a function of (r, 𝜃, 𝑡). 
𝒚 𝒂,𝜽, 𝒕 = 𝟎,                𝒓 = 𝒂 

 𝒚 𝒓,𝜽, 𝒕 = 𝑹 𝒓 𝜣 𝜽 𝒆𝒊𝝎𝒕    (22) 
This is a product solution which can be solved 

using separation of variables. Differentiating 

equation (22) twice with respect to time gives: - 

𝜕2𝑦

𝜕𝑡2
= −𝜔2𝑅 𝑟 𝛩 𝜃 𝑒𝑖𝜔𝑡  

Taking 

 y = 𝜑eiωt                                (23) 
 

 𝜑 𝑟, 𝜃 = 𝑅 𝑟 𝛩(𝜃)                  (24) 

 
Equation (23) becomes 

 𝑦 = 𝜑 𝑟, 𝜃 𝑒𝑖𝜔𝑡       (25) 

 

Putting (24) into (25),  

 𝑦 = 𝑅 𝑟 𝛩 𝜃 𝑒𝑖𝜔𝑡       (26) 

 

Putting equation (26) into (21) 

𝛩𝑒𝑖𝜔𝑡
𝑑2𝑅

𝑑𝑟2 +
𝛩𝑒 𝑖𝜔𝑡

𝑟

𝑑𝑅

𝑑𝑟
+

𝑅𝑒 𝑖𝜔𝑡

𝑟2

𝑑2𝛩

𝑑𝜃2 = 𝑅𝛩𝑒𝑖𝜔𝑡         (27) 

 

Divide through by eiωt  

𝛩
𝑑2𝑅

𝑑𝑟2 +
𝛩

𝑟

𝑑𝑅

𝑑𝑟
+

𝑅

𝑟2

𝑑2𝛩

𝑑𝜃2 =
−𝜔2

𝑐2 𝑅𝛩 = 0           (28) 

Recall, 

𝒌 =
𝝎

𝒄
; 𝒌𝟐 =

𝝎𝟐

𝒄𝟐
 

Equation (28) becomes 

𝛩
𝑑2𝑅

𝑑𝑟2 +
𝛩

𝑟

𝑑𝑅

𝑑𝑟
+

𝑅

𝑟2

𝑑2𝛩

𝑑𝜃2 + 𝑘2𝑅𝛩 = 0              (29) 

 

Multiply (29) by 
𝑟2

RΘ
;  

𝑟2

𝑅

𝑑2𝑅

𝑑𝑟2 +
𝑟

𝑅

𝑑𝑅

𝑑𝑟
+

1

𝛩

𝑑2𝛩

𝑑𝜃2 + 𝑘2𝑟2 = 0                (30) 

 
𝑟2

𝑅
 
𝑑2𝑅

𝑑𝑟2 +
1

𝑟

𝑑𝑅

𝑑𝑟
 + 𝑘2𝑟2 = −

1

𝛩

𝑑2𝛩

𝑑𝜃2      (31) 

 
It can be seen clearly, LHS of (31) is a 

function of  r only while the RHS is a function 

of𝜃. This is only possible if both functions are 
equal to some constant, say m

2
 i.e. 

−
1

𝜃

𝑑2𝛩

𝑑𝜃2
= 𝑚2 

And 

𝑑2𝛩

𝑑𝜃2
= −𝑚2𝛩 

And 

𝛩 𝜃 = 𝑐𝑜𝑠(𝑚𝜃 + 𝜑) 

φ, is the phase angle. 

Re-writing  𝑌(𝑟, 𝜃, 𝑡) as 𝑌(𝑟, 𝜃 + 2𝜋, 𝑡), and this 

becomes a periodicity; restricting m to 

integersvalues, i.e. 𝑚 = 0,1,2,3… 

Rearranging equation (30) 
 

𝑟2

𝑅
 
𝑑2𝑅

𝑑𝑟2 +
1

𝑟

𝑑𝑅

𝑑𝑟
 + 𝑘2𝑟2 = m2               

(32) 

 

Multiply equation (32) by 
𝑅

𝑟2  

𝑑2𝑅

𝑑𝑟2
+

1

𝑟

𝑑𝑅

𝑑𝑟
+ 𝑘2𝑅2 =

𝑚2𝑅

𝑟2
 

And 
𝑑2𝑅

𝑑𝑟2 +
1

𝑟

𝑑𝑅

𝑑𝑟
+  𝑘2 −

𝑚2

𝑟2
 𝑅 = 0                    (33) 

 

This is  a Bassel equation where the solutions are 

the transcendental function of the first kind 

𝑱𝒎(𝐤𝐫) and second kind 𝒀𝒎(𝐤𝐫) of order 𝑚 

written: 

𝑅(𝑟) = 𝐴𝐶1𝐽𝑚 (𝑘𝑟)  +  𝐶2𝐽𝑚 (𝑘𝑟)     (34) 

The solution𝑱𝒎(𝒌𝒓) which has a finite limit as kr 

approaches zero is called Bassel function of the 

first kind and order m. The solution 𝒀𝒎(𝒌𝒓) 

which has no limit (i.e. unbounded) as 𝒌𝒓 
approaches zero in the Bassel function of the 

second kind and order m or Neuman function. The 

Bassel function of the first kind of order m is 
defined as: 

𝑱𝒎 = (𝒓) =
 −𝟏 𝒙 

𝒓

𝟐
 
𝒎+𝟐𝒙

𝒙!  𝒎+𝒙+𝟏 

∞
𝒙=𝟎                 (35) 

 
Bassel functions are oscillating functions whose 

amplitudes diminish as krincreases, and 𝐘𝐦(𝐤𝐫) 

become unbounded in the limit 𝒌𝒓 → 𝟎. 

Since the circular membrane extends across the 

origin (𝑟 = 0), the solution y must be finite 

at𝒓 = 𝟎. This means 

𝑩 = 𝟎 
And equation (34) becomes 

 𝑹 𝒓 = 𝑨𝑪𝟏𝑱𝒎(𝒌𝒓)       (36) 

 

 𝑱𝒎 𝒌𝒂 = 𝟎                     (37) 

Since 𝑅 𝑎 = 0 

If the values of m cause the function 𝐽𝑚  to be 

equal to zero is designated by  𝒋𝒎𝒏 , then we have 

 

 𝐽𝑚  𝑗𝑚𝑛  = 0                      (38) 

so that 𝑘 again assume discrete values given by: 
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 𝑘𝑚𝑛 =
𝑗𝑚𝑛

𝑎
             (39) 

Values of 𝑗𝑚𝑛  for some of the zeros of Bessel 

function are normally given. 
The normal modes of vibration are therefore given 

as; 
𝑦𝑚𝑛  𝑟, 𝜃, 𝑡 = 𝐴𝑚𝑛 𝐽𝑚  𝑘𝑚𝑛 𝑟 𝑐𝑜𝑠(𝑚𝜃 + Ø) 𝑒𝑖𝜔𝑚𝑛 𝑡(40) 

Where 

  𝒌𝒎𝒏𝒂 = 𝒋𝒎𝒏  (41) 

 

And the natural frequencies 

  𝒇𝒎𝒏 =
𝟏

𝟐𝝅

𝒋𝒎𝒏

𝒂
 
𝑻

𝝆
 (42) 

 
III. RESULTS AND DISCUSSION 

It should be noted from the derived equation, that 

the frequency (f)of the tympanic membrane is directly 

proportional to the square root of the tension (T). 

Reduction in the Tension T, of the tympanic membrane 

due to perforation or other anomalies will result in 
decrease in the vibrational frequency of the membrane 

resulting to the inability of the ear to be adequately 

sensitive to high frequency sound waves. This implies 

that the ear will be deaf to high frequency sound waves 

or there will be high frequency hearing loss. On the 

other hand, if the tension increases either due to a mass 

or tumour on the middle ear or due to other anomalies, 

then the vibrational frequency of the membrane will 

increase and the ear would be sensitive to high 

frequency sound waves. In other words, the ear will 

have low-frequency hearing loss.It may also be noted 

that the vibrational frequency of the membrane is 
inversely proportional to the radius ‘a’ of the 

membrane, clearly as the radius of the membrane 

increases, the vibrational frequency of the membrane 

reduces. Perhaps, this suggests why children who have 

smaller radii are sensitive to highfrequency sound 

waves than adults. Also the vibrational frequency of the 

tympanic membrane is inverse proportional to the 

square root of the density.Fig. 1; Fig. 2 and Fig. 3 

shows; The outer ear; Anatomy of the Human Ear and 

Anatomy of the Human Tympanic Membrane 

respectively.  

 

 

 

 

 

 

 

Figure 1: The outer ear [19] 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Anatomy of the Human Ear[20] 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Anatomy of the Human Tympanic Membrane [21] 

IV. CONCLUSION 

𝒇𝒎𝒏 =
𝟏

𝟐𝝅

𝒋𝒎𝒏

𝒂
 
𝑻

𝝆
 

From the above equationit can be seen that the 

vibrational frequency(f) is inversely proportional to the 

radius(a) of the membrane. The vibrational frequency is 

inversely proportional to the square root of the Density ρ. 
The vibrational frequency is also directly proportional to 

the square root of the tension T. From the solutions of 

circular model, it can see that the radius ‘a’ of the 

membrane is inversely proportional to the frequency (f) of 

its oscillation. Moreover, if the radius of the membrane is 

increased, the frequencies of vibration decreases. 

Therefore, a child’s tympanic membrane of small radius 
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vibrates at higher frequencies when compared to an 

adult’s tympanic membrane with a bigger radius. 
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