The Influence of Precursor Temperature on The Properties of Erbium-Doped Zirconium Telluride Thin Film Material Via Electrochemical Deposition

International Journal of Applied Physics
© 2020 by SSRG - IJAP Journal
Volume 7 Issue 1
Year of Publication : 2020
Authors : Ikhioya I. Lucky, Ezeorba M. Chigozirim, Okoroh Doris, , Anene C. Rita, Obasi C. Ogonnaya

pdf
How to Cite?

Ikhioya I. Lucky, Ezeorba M. Chigozirim, Okoroh Doris, , Anene C. Rita, Obasi C. Ogonnaya, "The Influence of Precursor Temperature on The Properties of Erbium-Doped Zirconium Telluride Thin Film Material Via Electrochemical Deposition," SSRG International Journal of Applied Physics, vol. 7,  no. 1, pp. 102-109, 2020. Crossref, https://doi.org/10.14445/23500301/IJAP-V7I1P115

Abstract:

The study of the influence precursor temperature on the structural, morphological and optical properties of erbium doped zirconium telluride using ECD method where the aqueous solution of the cationic precursor was 0.1 mol solution of ZrOCl2.8H2O and the anionic precursor was 0.01 mol solution of Tellurdioxide (TeO2) was prepared by dissolving with 7 ml of Hydrochloric acid (HCl), and then 0.05 mol solution of Erbium trioxide (Er2O3) was used as the dopant. The films were characterized via UV-1800 Visible Spectrophotometer, Bruker D8 Advance X-ray diffractometer with Cu Kα line (λ = 1.54056Å) in 2θ range from 10° - 90°and Scanning Electron Microscopy. The X-ray diffractometer pattern of ZrTe and Er-ZrTe thin film showed prominent crystalline peaks that are in agreement with the JCPDS card number 046-1088 and 041-1445 for ZrTe and Er-ZrTe thin film with a cubic phase indexed at (111), (200), (201), and (210) orientations and ZrTe and Er-ZrTe Films are polycrystalline with intense peaks at (111) and (210) planes at 2θ value of 26.354o and 51.360o respectively. Higher precursor temperature decreases peak intensity towards amorphous phase. The surface morphology of ZrTe thin films shows the particles are agglomerated which resulted from the formation of large grains due to effect of carbon electrode used in the process of deposition and energy band gap of 1.55 – 1.51 eV was obtained.

Keywords:

Er doped ZrTe; ECD; EDX; XRD; SEM; Optical Properties

References:

[1]S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, "2D Transition 2D Transition," Nat. Rev. Mater, vol. 2, p. 17033, 2017.
[2]S. Okada, T. Sambongi and M. Ido, "Giant Resistivity Anomaly in ZrTe5.," J. Phys. Soc. Jpn., vol. 49, pp. 839-840, 1980.
[3]G. N. Kamm, D. J. Gillespie, A. C. Ehrlich, T. J. Wieting and F. Levy, "Fermi Surface, Effective Masses, and Dingle Temperatures of ZrTe5 as Derived from the Shubnikov–de Haas Effect,," Phys. Rev. B, vol. 31, p. 7617, 1985.
[4]M. Izumi, T. Nakayama, K. Uchinokura, S. Harada, R. Yoshizaki and E. Matsuura, "Shubnikov-de Haas Oscillations and Fermi Surfaces in Transition-Metal Pentatellurides ZrTe5 and HfTe5.," J. Phys. C: Solid State Phys., vol. 20, pp. 3691-3705, 1987.
[5]Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu and T. Valla, "Chiral Magnetic Effect in ZrTe5.," Nat. Phys., vol. 12, pp. 550-554, 2016.
[6]Y. Zhang, C. Wang, L. Yu, G. Liu, A. Liang, H. J., S. Nie, X. Sun, Y. Zang, B. Shen, J. Liu, H. Weng, L. Zhao, G. Chen, X. Jia, C. Hu, Y. Ding, W. Zhao, Q. Gao, C. Li and e. al., "Electronic Evidence of Temperature-Induced Lifshitz Transition and Topological Nature in ZrTe5.," Nat. Commun., vol. 8, p. 15512, 2017.
[7]R. Y. Chen, Z. G. Chen, X. Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang and N. L. Wang, "Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5.," Phys. Rev. Lett., vol. 115, p. 176404, 2015.
[8]G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang and M. Tian, "Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in ZrTe5.," Phys. Rev. B, vol. 93, p. 115414, 2016.
[9]G. Manzoni, L. Gragnaniello, G. Autès, T. Kuhn, A. Sterzi, F. Cilento, M. Zacchigna, V. Enenkel, I. Vobornik, L. Barba, F. Bisti, P. Bugnon, A. Magrez, V. Strocov, H. Berger, O. Yazyev, M. Fonin, F. Parmigiani and A. Crepaldi, "Evidence for a Strong Topological Insulator Phase in ZrTe5.," Phys. Rev. Lett., vol. 117, p. 237601, 2016.
[10]Y. Jiang, Z. L. Dun, H. D. Zhou, Z. Lu, K. W. Chen, S. Moon, T. Besara, T. M. Siegrist, R. E. Baumbach, D. Smirnov and Z. Jiang, "Landau-Level Spectroscopy of Massive Dirac Fermions in Single-Crystalline ZrTe5 Thin Flakes.," Phys. Rev. B, vol. 96, p. 04111, 2017.
[11]Z. Fan, Q. F. Liang, Y. B. Chen, S. H. Yao and J. Zhou, "Transition between Strong and Weak Topological Insulator in ZrTe5 and HfTe5.," Sci. Rep, p. 45667, 2017.
[12]Y. Sun, S. C. Wu, M. N. Ali, C. Felser and B. Yan, "Prediction of Weyl Semimetal in Orthorhombic MoTe2," Phys. Rev. B, vol. 92, p. 161107, 2015.
[13]Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava and B. A. Bernevig, "MoTe2: A Type-II Weyl Topological Metal.," Phys. Rev. Lett., p. 056805, 2016.
[14]C. H. C. C. H. S. S. P. L. a. J.-Y. D. Huichao Wang, "Magnetotransport Properties of Layered Topological Material ZrTe2 Thin Film," ACS NANO, pp. 1-27, 2019.
[15]Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang and F. Xiu, "Zeeman Splitting and Dynamical Mass Generation in Dirac Semimetal ZrTe5.," Nat. Commun., vol. 7, p. 12516, 2016.
[16]I. L. IKHIOYA, "OPTICAL AND ELECTRICAL PROPERTIES OF ZnTe THIN FILMS USING ELECTRODEPOSITION TECHNIQUE," International Journal of Innovation and Applied Studies, vol. 12, no. 2, pp. 369-373, 2015.
[17]I. L. e. a. Ikhioya, "Effect Of Temperature On SnZnSe Semiconductor Thin Films For Photovoltaic Application," SSRG International Journal of Applied Physics (SSRG-IJAP), vol. 6, no. 2, pp. 55-67, 2019.
[18]W. L. Zhu, J. B. He, S. Zhang, D. Chen, L. Shan, Z. A. Ren and G. F. Chen, "Magnetotransport Properties of the New-Type Topological Semimetal ZrTe.," arXiv:1707.00942., pp. 432-442, 2016.
[19]P. Tsipas, D. Tsoutsou, S. Fragkos, R. Sant, C. Alvarez, H. Okuno, G. Renaud, R. Alcotte, T. Baron and A. Dimoulas, "Massless Dirac Fermions in ZrTe2 Semimetal Grown on InAs (111) by Van Der Waals Epitaxy.," ACS Nano, vol. 12, pp. 1689-1703, 2018.
[20]Y. M. A. D. P. S. CAUNE, "DEPOSITION AND CHARACTERIZATION OF ZrTex THIN FILMS," Thm Solid Films, vol. 174, pp. 289-293, 1989.
[21]X. B. Li, W. K. Huang, Y. Y. Lv, K. W. Zhang, C. L. Yang, B. B. Zhang, Y. B. Chen, S. H. Yao, J. Zhou, M. H. Lu, L. Sheng, L. S. C., J. F. Jia, Q. K. Xue, Y. F. Chen and D. Y. Xing, "Experimental Observation of Topological Edge States at the Surface Step Edge of the Topological Insulator ZrTe5.," Phys. Rev. Let, p. 176803, 2016.
[22]R. Wu, J. Z. Ma, S. M. Nie, L. X. Zhao, X. Huang, J. X. Yin, B. B. Fu, P. Richard, G. F. Chen, Z. Fang, X. Dai, H. M. Weng, T. Qian, H. Ding and S. H. Pan, "Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5.," Phys. Rev. X, vol. 6, p. 021017, 2016.
[23]M. F. P. a. G. C. Birkholz, "Thin film analysis by X-ray scattering," Weinhein: Wiley-VCH Boston: Academic Press. , pp. 466-478, 2015.