Calculate And Study The Structural, Electronic, And Mechanical Properties of Cubic Zirconia By Using First-Principles Calculations

International Journal of Applied Physics
© 2021 by SSRG - IJAP Journal
Volume 8 Issue 1
Year of Publication : 2021
Authors : Hasan Abdullah H. Ali, Abdullah Hamoud Mohammad

pdf
How to Cite?

Hasan Abdullah H. Ali, Abdullah Hamoud Mohammad, "Calculate And Study The Structural, Electronic, And Mechanical Properties of Cubic Zirconia By Using First-Principles Calculations," SSRG International Journal of Applied Physics, vol. 8,  no. 1, pp. 36-43, 2021. Crossref, https://doi.org/10.14445/23500301/IJAP-V8I1P106

Abstract:

In this study, we construct the crystal structure of cublic zirconia (c-ZrO2), then structural, electronic, and mechanical properties of cubic zirconia (c-ZrO2) were investigated using first-principles calculations by the Materials Studio software. Simulation of the X-ray diffraction of (c-ZrO2) showing the characteristic peaks that contain Miller indices [(111), (200), (220), (311), (222), (400), (331), (420)], and provided us with sufficient information to determine the inter distance between the crystal planes (dhkl). We were also able to calculate the density per unit cell, which was (6.094 g/cm3), unit cell size (134.297A3), and bond length (2.2174 A). The lattice constants were also studied using the materials studio 2017 software by approximating(LDA) (a=b=c=5.025 A), (a=r=B=90). We obtained the bandgap of (c-ZrO2) by Castep code using (LDA) the value is (3.345 eV), and we found the width upper valence band (WUVB) as electronic properties. Mechanical properties, including elasticity properties, as the elastic stiffness constants (Cij), elastic compliance constants (Sij), and elastic moduli. And the Debye temperature (645.34 k), average sound velocity (4765.11 m/s), and compressibility (0.004. 1/Gpa).

Keywords:

cubic zirconia, materials studio, first-principles calculations, elastic moduli, structural properties, electronic properties

References:

[1] I. D. Muhammad, M. Awang, and O. Mamat., Modelling the Elastic Constants of Cubic Zirconia Using Molecular Dynamics Simulations ., Adv. Mater. Res., 845(2014) 387–391 doi: 10.4028/www.scientific.net/AMR.845.387.
[2] J. Zhang, A. R. Oganov, X. Li, H. Dong, and Q. Zeng., Novel compounds in the Zr-O system, their crystal structures, and mechanical properties, Phys. Chem. Chem. Phys., (2015) doi: 10.1039/C5CP02252E.
[3] F. Qunbo, W. Fuchi, Z. Huiling, and Z. Feng, Study of ZrO 2 phase structure and electronic properties, Mol. Simul., 34(2008) 10–15,1099–1103, doi: 10.1080/08927020802101759.
[4] Y. Pan, Influence of Oxygen Vacancies on the Electronic and Optical Properties of Zirconium Dioxide from First-Principles Calculations, J. Electron. Mater., 48(8)(2019) 5154–5160, doi: 10.1007/s11664-019-07325-0.
[5] L. K. Dash, N. Vast, P. Baranek, M. Cheynet, and L. Reining, Electronic structure and electron energy-loss spectroscopy of ZrO 2 zirconia, Phys. Rev. B, 245116(2004) 1–17, doi: 10.1103/PhysRevB.70.245116.
[6] Z. Yang, L. Zhu, B. Lin, G. Zhang, C. Ni, and T. Sui, The grinding force modeling and experimental study of ZrO 2 ceramic materials in ultrasonic vibration-assisted grinding, Ceram. Int., 45(7)(2019) 8873–8889, doi: 10.1016/j.ceramint.2019.01.216.
[7] G. Fadda, G. Zanzotto, and L. Colombo, First-principles study of the effect of pressure on the five zirconia polymorphs . I. Structural, vibrational, and thermoelastic properties, Phys. Rev. B 82, 064105, (2010), doi: 10.1103/PhysRevB.82.064105.
[8] R. Terki, G. Bertrand, H. Aourag, and C. Coddet, Structural and electronic properties of zirconia phases: A FP-LAPW investigations, Mater. Sci. Semicond. Process., 9(6)(2006) 1006–1013, doi: 10.1016/j.mssp.2006.10.033.
[9] C. N. Mihai, L.L., Parlatescu, I., Gheorghe, C., Andreescu, C., Bechir, A., Pacurar, M., and Cumpata, In vitro study of the effectiveness to fractures of the aesthetic fixed restorations achieved from zirconium and alumina, Rev. Chim., 65(6)(2014) 725–729.
[10] S. R. Gul, M. Khan, and C. Tsai, Electronic Band Structure Variations in the Ceria Doped Zirconia : A First Principles Study, Mater. 11(7)(2018) 1238, doi: 10.3390/ma11071238.
[11] Q. Liu, Z. Liu, and L. Feng, Elasticity, electronic structure, chemical bonding and optical properties of monoclinic ZrO 2 from first-principles, Phys. B Phys. Condens. Matter, 406(3)(2011) 345–350, doi: 10.1016/j.physb.2010.10.057.
[12] Najat Ahmed Dahham, A. Hamoud, and S. S. Ali, A study of structural, mechanical, thermodynamics and electronic properties of Zinc sulpphide (ZnS) composite by using (materials studio) software, M.SC thesis, University of Tikrit, (2018).
[13] V. K. Pecharsky and P. Y. Zavalij, FUNDAMENTALS OF POWDER DIFFRACTION AND STRUCTURAL CHARACTERIZATION OF MATERIALS., Ames, IA, U.S.A. Peter, Binghamton, NY U.S.A., (2005).
[14] M. G. Mulaudzi, AB INITIO STUDY OF STRUCTURAL STABILITY AND ELECTRONIC PROPERTIES OF ZrO2 xSx FOR 0 ≤ x ≤ 2., M.SC thesis, Univ. LIMPOPO, (2015). 
[15] G. P. Cousland, X. Y. Cui, A. E. Smith, A. P. J. Stampfl, and C. M. Stampfl, Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles, J. Phys. Chem. Solids, (2018), doi: 10.1016/j.jpcs.2018.06.003.
[16] J. Lienemann and J. G. Korvink,Electrostatic Beam Model, Univ. Freibg. IMTEK,Technische Fak. Albert Ludwig Univ. Georg. Kohler Allee 103, D-79 110 Freiburg, Ger., (2003).
[17] X. Luan and H. Qin, The Mechanical Properties and Elastic Anisotropies of Cubic Ni 3 Al from First Principles Calculations, Crystals, 8.8(2018) 307, doi: 10.3390/cryst8080307.
[18] J. Zhao, X. Song, and B. Liu, Standardized Compliance Matrices for General Anisotropic Materials and a Simple Measure of Anisotropy Degree Based on Shear-Extension, Int. J. Appl. Mech., 8.06(2016) 1650076, doi: 10.1142/S1758825116500769.
[19] G. Cousland, Investigation of material properties of yttria-stabilized zirconia using experimental techniques and first-principles calculations, M.SC, thesis, The Faculty of Science The University of Sydney, Australia Investigation, (2014).
[20] Dengg and Thomas., Computation of Temperature-Dependent Elastic Constants within the Framework of Density-Functional Theory, PhD. THESIS, Karl-Franzens-Universität Graz,Austria, (2017) .
[21] W. Wang, Z. Liang, X. Han, J. Chen, C. Xue, and H. Zhao, Mechanical and Thermodynamic Properties of under High-Pressure Phase Transition : A First-Principles Study, J. Alloys Compd., (2014), doi: 10.1016/j.jallcom.2014.08.114.
[22] P. R. Rauta, P. Manivasakan, V. Rajendran, B. B. Sahu, B. K. Panda, and P. Mohapatra., Phase transformation of ZrO 2 nanoparticles produced from zircon, Phase Transitions, 85(2012) 1–2,13–26, doi: 10.1080/01411594.2011.619698.
[23] G. KATZ, X‐Ray Diffraction Powder Pattern of Metastable Cubic ZrO2, J. Am. Ceram. Soc., 54(10) (1971)531–531, doi: 10.1111/j.1151-2916.1971.tb12197.x.
[24] N. A. Dahham, A. Hamoud, and K. Abdullah, A study of structural, mechanical and electronic properties of Barium Orthotitanate (Ba2Tio4) composite using materials studio software, M.sc. Thesis, University of Tikrit, (2017).
[25] C. J. Howard, R. J. Hill, and B. E. Reichert., Structures of ZrO2 polymorphs at room temperature by high‐resolution neutron powder diffraction., Acta Crystallogr. Sect. B, 44(2)(1988) 116–120, doi: 10.1107/S0108768187010279.
[26] B. T. Wang, P. Zhang, H. Y. Liu, W. D. Li, and P. Zhang, First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium, J. Appl. Phys., 109(6)(2011) doi: 10.1063/1.3556753.
[27] R. H. French, S. J. Glass, F. S. Ohuchi, Y. Xu, and W. Y. Ching, Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2, Phys. Rev. B, 49(8)(1994).
[28] J. E. Medvedeva and A. J. Freeman., Screened-exchange Determination of the Electronic Properties of Monoclinic, Tetragonal and Cubic Zirconia, Phys. Rev. B, 76(2)(2007) 35115, doi: 10.1103/PhysRevB.76.235115.
[29] H. M. Kandil, J. D. Greiner, and J. F. Smith, Single-Crystal Elastic Constants of Yttria-Stabilized Zirconia in the Range 20 to 700 ° C, J. Am. Ceram. Soc. 67.5(1984) 341–346.
[30] Y. Yang, X. Fan, C. Liu, and R. Ran, First-principles study of structural and electronic properties of cubic phase of ZrO2 and HfO2, Phys. B Phys. Condens. Matter, (2013) doi: 10.1016/j.physb.2013.10.037.
[31] J. Robertson, K. Xiong, and S. J. Clark, Band structure of functional oxides by screened exchange and the weighted density approximation., phys. stat. sol., 2070(9)(2006) 2054–2070, doi: 10.1002/pssb.200666802.
[32] F. ZANDIEHNADEM, R. A. MURRAY, and W. Y. CHING, ELECTRONIC STRUCTURES OF THREE PHASES OF ZIRCONIUM OXIDE, Phys. B, 150(1988) 19–24.
[33] A. Van De Walle and G. Ceder, Correcting overbinding in local-density-approximation calculations, Phys. Rev. B, 59(23)(1999).
[34] Z. Liang et al., Author 's Accepted Manuscript Structural, Mechanical and Thermodynamic Properties of ZrO 2 Polymorphs by First-Principles Calculation,Phys. B Phys. Condens. Matter, (2017) doi: 10.1016/j.physb.2017.01.025.
[35] L. Jin, Q. Yu, A. Rauf, and C. Zhou, Elastic, electronic and thermal properties of YSZ from first principles, Solid State Sci., 14(1)(2012) 106–110, doi: 10.1016/j.solidstatesciences.2011.11.003.
[36] J. Yang, M. Shahid, C. Wan, F. Jing, and W. Pan, Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations, J. Eur. Ceram. Soc., (2016) doi: 10.1016/j.jeurceramsoc.2016.08.034.