A Generalized Pilot Wave Model of Quantum Tunneling in a Dynamic Vacuum

International Journal of Applied Physics
© 2021 by SSRG - IJAP Journal
Volume 8 Issue 2
Year of Publication : 2021
Authors : Gianpaolo Bei

pdf
How to Cite?

Gianpaolo Bei, "A Generalized Pilot Wave Model of Quantum Tunneling in a Dynamic Vacuum," SSRG International Journal of Applied Physics, vol. 8,  no. 2, pp. 59-63, 2021. Crossref, https://doi.org/10.14445/23500301/IJAP-V8I2P108

Abstract:

We discuss the old and modern experiments of quantum tunneling, and we illustrate a new proposal based on the hypothesis of a dynamic effect of vacuum polarization on tunneling probabilities. We apply it to explain by a classical electromagnetic framework the recent experiments on dynamically assisted nuclear tunneling effects. We propose, in particular, a vacuum-dependent pilot-wave model with backreaction for particles with variable mass. We suggest a self-consistent system of coupled equations that assumes that the pilot wave is a Klein-Gordon-like scalar electromagnetic potential which determines the relative trajectory of the tunneling accelerated particle with respect to the accelerated target. We deduce a generalized time-dependent tunneling probability which depends on the hidden vacuum index and on the variable mass. We compare our relationship with the standard one based on Gamow formalism of unstable decaying states. We conceive dynamical assisted quantum tunneling as a time-dependent irreversible process whose non-Hamiltonian dynamics are controlled by hidden vacuum energy fluctuations. Endly we argue that the generalized formula of our model may pave the way to a prediction of the path-dependent tunneling time determining the real trajectory followed by the particle during tunneling.

Keywords:

variable mass, hidden vacuum index, generalized pilot-wave models, vacuum-dependent tunneling probabilities, path-dependent tunneling time.

References:

[1] F. Queisser, R. Schützhold, Dynamically assisted nuclear fusion, Phys. Rev. C 100 (4) (2019) 041601.
[2] S. Kobzak, H.A. Weidenmüller, and A. Pálffy, Laser-nucleus interactions in the sudden regime, Phys. Rev. C 103 (4) (2021) 044616.
[3] N. Bolivar, I.T. Vasilev, Enhanced Fusion Mechanisms Towards Synthesizing Superheavy Elements, Ejers 6 (1) (2021) 19-30.
[4] J. Qi, Thermonuclear fusion and generalized Gamow penetrability factor in intense laser fields, arXiv: nucl-th/2104.06190v1, (2021).
[5] X. Wang Substantially enhanced deuteron-triton fusion probabilities in intense low-frequency laser fields, Phys. Rev. C 102(1) (2020) 011601.
[6] S.Liu, H.Duan, D. Ye and J-Liu, Deuterium-tritium fusion process in strong laser fields: Semiclassical simulation, arXiv: nucl-th/2103.14391v1, (2021).
[7] H. White, P.Bailey, J. Lawrence, J. George, and J.Vera, A discussion on a dynamic vacuum model: Derivation of Helmholtz equation from Schrödinger equation, Physics Open 1 (2019) 100009.
[8] S. M. Barnett, M. Sonnleitner, Vacuum friction, Journal of Modern Optics, 65 (5-6) (2018) 706-712.
[9] G. Bei, A Hidden Variable Model of Hydrogen Energy Spectra, IJAP, 8(1) (2021) 44-46.
[10] G. Bei, A Hidden Variable Model of Unstable Quantum States, Phys Sci & Biophys J. 5(1) (2021) 000171.
[11] G. Bei, A Hidden variable model of Nuclear Reactions, IJAP, 8(1) (2021) 1-4.
[12] G. Bei, A Deterministic Model of Path Memory Dependent Inter-Nucleon Forces, Phys Sci & Biophys J. 5(1) (2021) 000178.
[13] G. Gamow, Zur Quantentheorie des Atomkernes, Phys. Z. 51 (1928) 204-212.
[14] C.A. Bertulani, Tunneling of atoms, nuclei, and molecules, Few-Body Systems 56(11) (2015).
[15] D. Sokolovski, E. Akhmatskaya, No time at the end of the tunnel, Commun Phys.1 (2018) 47.
[16] C.A. Bertulani, D.T. de Paula and V.G. Zelevinsky, Bremsstrahlung radiation by a tunneling particle: A time-dependent description, Phys. Rev.C 60(3) (1999) 031602.
[17] J. Von Neumann, Mathematical Foundations of Quanatum Mechanics, Princeton University Press (1932).
[18] K. Jung, Is the de Broglie-Bohm interpretation of quantum mechanics really plausible?, J. Phys.: Conf. Ser. 442 (2013) 012060.
[19] M. Apostol, Giant Dipole Oscillations and Ionization of Heavy Atoms by Intense Electromagnetic Fields, Romanian Reports in Physics, 67(3) (2015) 837-853.
[20] A. Bassi, Models of spontaneous wave function collapse: what they are, and how they can be tested, J. Phys.: Conf. Ser. 701 (2016) 012012.
[21] L.A. Poveda, L. Grave de Peralta and A. Ruiz-Columbié, Relativistic corrections to the Diósi-Penrose model, arXiv: quant-ph/2103.00994v1 (2021).
[22] H.A. Bethe, L.W. Nordheim, On the Theory of Meson Decay, Phys.Rev.57 (11) (1940) 998-1006.
[23] S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, and M.G. Raizen, Experimental evidence for non-exponential decay in quantum tunneling, Nature 387 (1997) 575-577.
[24] K. Shukla, P.S. Chen, J.R. Chen, Y.H. Chang and Y.W. Liu, Macroscopic matter-wave quantum tunneling, Commun. Phys. 3 (2020) 101.