Thermoelectric Power in wide bandgap Semiconductor ZnO Nanowire

International Journal of Applied Physics
© 2022 by SSRG - IJAP Journal
Volume 9 Issue 1
Year of Publication : 2022
Authors : Kasala Suresha

pdf
How to Cite?

Kasala Suresha, "Thermoelectric Power in wide bandgap Semiconductor ZnO Nanowire," SSRG International Journal of Applied Physics, vol. 9,  no. 1, pp. 9-11, 2022. Crossref, https://doi.org/10.14445/23500301/IJAP-V9I1P102

Abstract:

Nanostructures have a significant promise as potential building blocks for the next generation of thermoelectric devices. While the thermal transport properties of bulk materials have been intensely studied, the understanding of nanostructure thermoelectric properties and their interrelation is still incomplete. In the calculated temperature range, the thermoelectric power (TEP) was linearly dependent on temperature, suggesting the degenerate nature of the ZnO semiconductor nanowire similar to that of the GaN semiconductor nanowire. Observed negative values of TEP indicating that majority charge carriers are electrons in ZnO semiconductor. Linear dependence of TEP with temperature shows that TEP is only due to electron diffusion and not due to the phonon-drag effect. Also observed, the calculated TEP values agree with the experimental results in the overall temperature range 10 – 300 K.

Keywords:

Thermoelectric power, Seebeck effect, Semiconductor nanowire, ZnO, Mottrelation, Wide bandgap semiconductor.

References:

[1] P J Pauzauskie and P Yang, Mater. Today, 9(36) (2006).
[2] C M Lieber and Z L Wang, MRS Bull, 32(99) (2007).
[3] G C Yi, C Wang and W I Park, Semicond. Sci. Technol. 20(S22) 205.
[4] Kuroki K, Arita R, J. Phys. Soc. Jpn. 76, (083707) (2007)
[5] Zhang Q et al., Proc Natl. Acad. Sci. USA, 110, 13261 (2013).
[6] P H Chang, M S Bahramy, N Nagaosa, B K Nikolic, Nano Lett, 14(3779) (2014).
[7] L D Hicks, M S Dresselhaus, Phys. Rev. B. 47 ( 12727) (1993).
[8] L D Hicks, T C Harman, X Sun, M S Dresselhaus, Phys. Rev. B, 53(R10493) (1996).
[9] H Ohta, et al., Nat. Mater. 6(129 ) (2007).
[10] R Takayanagi, T Fujii and A Asamitsu, Jpn. J. Appl. Phys. 53(111101) (2014)
[11] J O Sofo, G D Mahan, Appl. Phys. Lett. 65( 2690) (1994).
[12] D A Broido, T L Reinecke, Phys Rev B, 51(3797) (1995).
[13] T Koga, T C Harman, S B Cronin, M S Dresselhaus, Phys Rev B 60, 14286 (1999)
[14] S Bloom, I Ortenburger, Phys. Status Solidi (B) , 58(561) (1973).
[15] C. Wang et al. Phys. Chem. Chem. Phys. (2014)
[16] B U Haq et al. Ceram. Int. (2019).
[17] S Shimizu, M S Bahramy, T Iizuka, S Ono, K Miwa, Y Tokura and Y Iwasa, www.pnas.org/cgi/doi/10.1073/pnas.152500113
[18] L. Hicks et al. Phys. Rev. B (1993).
[19] M Ohtaki, J. Cera. Soc. Japan 119, 770 (2011).
[20] Zhao Y, Yan Y, Kumar A, Wang H, Porter WD and Priya S J. Appl. Phys. 112 ( 034313) (2012).
[21] Han L, Nong N V, Hung L T, Holgate T, Pryds N, Ohtaki M and Linderoth S, J. Alloys Compd. 555 (291) (2013).
[22] Nag A and Shubha V, J. Electron. Mater. 43( 962) (2014).
[23] N V Nong and N Pryds, Adv. Nat. Sci.: Nanosci. Nanotechnol.4023002 (2013).
[24] U Özgür, Y I Alivov, C Liu, A Teke, M A Reshchikov, S Doğan, V Avrutin, S J Cho and H J Morkoç, App. Phys. 98(041301) (2005).
[25] Martin S, Espen D B, Kasper A B, Sebastian C, Mogens C and Bo B I, Acta Materialia. 61(3314) (2013).
[26] Sunao Shimizu et al., PNAS, 113(6439) (2016).
[27] J Heremans and C M Thrush, Phys. Rev. B, 59, 12579 (1999).
[28] F Zhou, J Szezech, M T Pettes, A L Moore, S Jin and L Shi, Nano Lett. 7(1649) (2007).
[29] C H Lee, G Y Yi, Y M Zuev and Philip Kim, Appl. Phys. Lett. 94(022106) (2009).
[30] D K C Macdonald, Thermoelectricity ,Dover, New York, (2006).