Structural and Optical Analysis of Ti1-xCoxO2 (X=0.0, 0.025, 0.05, 0.075) Nanocrystalline Particles Synthesized via Sol-gel Method
International Journal of Applied Physics |
© 2017 by SSRG - IJAP Journal |
Volume 4 Issue 1 |
Year of Publication : 2017 |
Authors : Anand Kumar |
How to Cite?
Anand Kumar, "Structural and Optical Analysis of Ti1-xCoxO2 (X=0.0, 0.025, 0.05, 0.075) Nanocrystalline Particles Synthesized via Sol-gel Method," SSRG International Journal of Applied Physics, vol. 4, no. 1, pp. 10-13, 2017. Crossref, https://doi.org/10.14445/23500301/IJAP-V4I2P101
Abstract:
Present study focused on the concentration effect of dopant on structural and optical properties of host material. Ti1-XCoXO2 for X=0.0, 0.025, 0.05, 0.075 nanocrystalline powder were synthesized using sol-gel method. Structural analysis were done by Xray diffraction (XRD) pattern, which confirmed the phase of synthesized nanoparticles corresponds to tetragonal anatase phase of TiO2. Also, extra peaks related any type of impurity is not observed in XRD pattern. The average crystalline size evaluated using Scherer’s formula was found to be from 45 nm to 29 nm. Crystalline size and strain also calculated using Williamson–Hall analysis. Band gap decreases with doping and further increases with doping concentration.
Keywords:
TiO2, Anatase, Williamson–Hall analysis, Band gap
References:
[1] B. Bharti, P. B. Barman and Rajesh Kumar, ―XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method, AIP Conf. Proc., vol.1675, pp. 030025, 2015, doi: 10.1063/1.4929241.
[2] R. Mechiakh and R. Bensaha, ―Variation of the structural and optical properties of sol–gel TiO2 thin films with different treatment temperatures, C. R. Physique, vol. 7, 2006, pp.464.
[3] J. R. Simpson and H. D. Drew, ―Optical band-edge shift of anatase Ti1-xCoxO2, Phy. Rev. B, vol. 69, pp. 193205, 2004.
[4] S. Guha, K. Ghosh, J. G. Keeth, S. B. Ogale, S. R. Shinde, J. R. Simpson, H. D. Drew, and T. Venkatesan, ―Temperature dependent optical studies of Ti1-xCoxO2,‘‘ Appl. Phys. Lett. vol.83, pp. 3296, 2003.
[5] Y. Chen, G. Zhao, Y. Ren and Z. Wang, ―Microfabrication of dilute magnetic semiconducting Ti1−xCoxO2 films using photosensitive sol–gel method, Thin Solid Films, vol. 519, pp.1985, 2011.
[6] K. Siddhapara and D. Shah, ―Characterization of nanocrystalline cobalt doped TiO2 sol–gel material, J. Crys. Grow. vol.352, pp. 224 2012.
[7] K. Karthik, S. Kesava Pandian, K. Suresh Kumar and N. Victor Jaya, ―Influence of dopant level on structural, optical and magnetic properties of Co-doped anatase TiO2 nanoparticles, Appl. Surf. Sci. vol. 256, pp. 4757, 2010.
[8] M. Guo, Y. Gao and G . Shao, ―Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders, Phys.Chem.Chem.Phys., vol.18, pp. 2818, 2016.
[9] S. A. Ahmed, ―Annealing effects on structure and magnetic properties of Mn-doped TiO2, J. Magn. Magn. Mater. vol.402, pp.178, 2016.
[10] G. Rana, U.C. Johri and K. Asokan, ―Correlation between structural and dielectric properties of Ni-substituted magnetite nanoparticles, Euro. Phys. Lett. vol.103, pp.17008, 2013.
[11] B. Santara, B. Pal and P. K. Giri, ―Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles, J. Appl. Phys. vol.110, pp.114322, 2011.
[12] G. K.Williamson and W. H. Hall, ―X-Ray line broadening from filed Aluminium and Wolfram, Acta Metallur. vol.1, pp.22, 1953.
[13] A. K. Zak, W. H. A. Majid, M .E. Abrishami and R. Yousefi, ―X-ray analysis of ZnO nanoparticles by Williamson Hall and size strain plot, Solid State Sci. vol.13, pp.251, 2011.
[14] R. R. Prabhu and M .A. Khadar, ―Study of optical phonon modes of CdS nanoparticles using Raman Spectroscopy, Bull. Mater. Sci. vol.31, pp.511, 2008.
[15] V. Senthilkumar, P. Vickraman, M. Jayachandran and C. Sanjeeviraja, ―Structural and electrical studies of nano structured Sn1-x SbxO2 (x= 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method, J. Mater. Sci.: Mater. Electron. vol.21, pp.343, 2010.
[16] A. J. Antony, J. Nutting, D. R. Baer, D. Meyer, A. Sharma and Y. Qiang, ―Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core Shell Iron Nanoclusters, J. Nanomaterials, vol. 2006, pp. 1, DOI 10.1155/JNM/2006/54961.
[17] J. Zhang, X. Xiao and J. Nan, ―Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure, J. Haz. Mat. vol. 176, pp. 617, 2010.
[18] S. Velumani , X. Mathew, P. J. Sebastian, S. K. Narayandass and D. Mangalaraj, ―Structural and optical properties of hot wall deposited CdSe thin films, Solar Energy Mater. Solar cells. vol.76 , pp.347, 2003.
[19] N. Q. Chinh, J. Gubicza and Langdon, ―Characteristics of face-centered cubic metals processed by equal-channel angular pressing, T G. J. Mater. Sci. vol.42, pp.1594, 2007, DOI 10.1007/s10853-006-0900-3.
[20] T. P. Yendrapati., V. R. Kalagadda, S. S. K.Vemula, S. K. Bandla, ―Synthesis of ZnO Nanoparticles by a Novel Surfactant Assisted Amine Combustion Method, Adv. in Nanoparticles, vol.2, pp. 45, 2013, http://dx.doi.org /10.4236/ anp.2013.21009.
[21] Q. Hua, J. Huanga, G. Lia, Y. Jianga, H. Lana, W. Guoa and Y. Cao, ―Origin of the improved photocatalytic activity of Cu incorporated TiO2 for hydrogen generation from water, Appl. Surf. Sci. vol. 382, pp.170, 2016.