Advanced Generalized Fractional Kinetic Equation
International Journal of Applied Physics |
© 2014 by SSRG - IJAP Journal |
Volume 1 Issue 2 |
Year of Publication : 2014 |
Authors : Mohd. Farman Ali, Manoj Sharma, Renu Jain |
How to Cite?
Mohd. Farman Ali, Manoj Sharma, Renu Jain, "Advanced Generalized Fractional Kinetic Equation," SSRG International Journal of Applied Physics, vol. 1, no. 2, pp. 11-14, 2014. Crossref, https://doi.org/10.14445/23500301/IJAP-V1I3P102
Abstract:
The aim of present paper to obtain the solution of Advanced generalized fractional order kinetic equation involving the Miller-Ross function. The results obtained here is moderately universal in nature. Special cases, relating to the Mittag-Leffler function is also considered.
Keywords:
Fractional kinetic equation, Mittag-Leffler function, Riemann-Liouville operator, Laplace transform Miller-Ross function.
References:
[1] R.P. Agarwal, A propos d’une note de M.Pierre Humbert, C.R. Acad. Sci. Paris 236 (1953), 2031-2032.
[2] D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, 2nd ed.: Chicago: Chicago Univ. Chicago Press, 1983.
[3] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York-Toronto-London, 1953.
[4] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transform, Vol.1, McGraw-Hill, New York-Toronto-London, 1954.
[5] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.3, McGraw-Hill, New York-Toronto-London, 1955.
[6] F. Ferro, A. Lavago and P. Quarati, Temperature dependence of modified CNO nuclear reaction rates in dense stellar plasmas, arXiv:nuclth/ 0312106v1, 2003.
[7] H.J. Haubold and A.M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophysics and Space-Sciences 327 (2000), 53-63.
[8] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000.
[9] P. Humbert, Quelques resulats relati-fs a’la fonction de Mittag-Leffler, C.R. Acad. Sci., Parish 236 (1953), 1467-1468.
[10] P. Humbert and R.P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses generalizations, Bull. Sci. Math. (Ser. II) 77 (1953), 180-185.
[11] V. Kourganoff, Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company, Dordrecht, 1073.
[12] K.R. Lang, Astrophysical Formulae Vol.1 (Radiation, Gas Processes and High Energy Astrophysics) and Vol.II (Space, Time, Matter and Cosmology), Springer-Verlag, Berlin-Heidelberg, 1999.
[13] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
[14] G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C.R. Acad. Sci., Paris (Ser.II) 137 (1903), 554-558.
[15] G.M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogene, Acta Math. 29 (1905), 101-181.
[16] K.B. Oldhman and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
[17] J. Perdang, Lecture Notes in Stellar Stability, Part I and II, Instito di Astronomia, Padov, 1976.
[18] T.R. Prabhakar, A singular integral equation with generalized Mittag- Leffler function in the kernel, Yokohama Mathematical Journal 19 (1971), 7-15.
[19] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York, 1993.
[20] R.K. Saxena, A.M. Mathai and H.J. Haubold, On fractional kinetic equations, Astrophysics Space Sci. 282 (2002), 281-287.
[21] R.K. Saxena, A.M. Mathai and H.J. Haubold, On generalized fractional kinetic equations, Physica A 344 (2004), 653-664.
[22] M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 No.4 (2009) 449-452.
[23] M. Sharma, Fractional integration and fractional differentiation of the M-series, Fract. Calc. Appl. Anal. 11 No.2 (2008), 187-192.
[24] H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation 118 (2001), 1- 52.
[25] C. Tsallis, Entropic nonextensivity: A possible measures of Complexity, Chaos, Solitons and Fractals 13 (2002), 371-391.
[26] A. Wiman, Ueber den Fundamentalsatz in der Theorie der Funkilionen Eα(x), Acta. Math. 29 (1905), 191-201.
[27] Carl. F. Lorenzo, Tom T. Hartley, Generalized Functions for the Functional Calculus, Nasa/tp-1999-209424/rev 1, p1-17.