Advanced Generalized Fractional Kinetic Equation

International Journal of Applied Physics
© 2014 by SSRG - IJAP Journal
Volume 1 Issue 2
Year of Publication : 2014
Authors : Mohd. Farman Ali, Manoj Sharma, Renu Jain

pdf
How to Cite?

Mohd. Farman Ali, Manoj Sharma, Renu Jain, "Advanced Generalized Fractional Kinetic Equation," SSRG International Journal of Applied Physics, vol. 1,  no. 2, pp. 11-14, 2014. Crossref, https://doi.org/10.14445/23500301/IJAP-V1I3P102

Abstract:

The aim of present paper to obtain the solution of Advanced generalized fractional order kinetic equation involving the Miller-Ross function. The results obtained here is moderately universal in nature. Special cases, relating to the Mittag-Leffler function is also considered.

Keywords:

Fractional kinetic equation, Mittag-Leffler function, Riemann-Liouville operator, Laplace transform Miller-Ross function.

References:

[1] R.P. Agarwal, A propos d’une note de M.Pierre Humbert, C.R. Acad. Sci. Paris 236 (1953), 2031-2032.
[2] D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, 2nd ed.: Chicago: Chicago Univ. Chicago Press, 1983.
[3] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York-Toronto-London, 1953.
[4] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transform, Vol.1, McGraw-Hill, New York-Toronto-London, 1954.
[5] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.3, McGraw-Hill, New York-Toronto-London, 1955.
[6] F. Ferro, A. Lavago and P. Quarati, Temperature dependence of modified CNO nuclear reaction rates in dense stellar plasmas, arXiv:nuclth/ 0312106v1, 2003.
[7] H.J. Haubold and A.M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophysics and Space-Sciences 327 (2000), 53-63.
[8] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000.
[9] P. Humbert, Quelques resulats relati-fs a’la fonction de Mittag-Leffler, C.R. Acad. Sci., Parish 236 (1953), 1467-1468.
[10] P. Humbert and R.P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses generalizations, Bull. Sci. Math. (Ser. II) 77 (1953), 180-185.
[11] V. Kourganoff, Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company, Dordrecht, 1073.
[12] K.R. Lang, Astrophysical Formulae Vol.1 (Radiation, Gas Processes and High Energy Astrophysics) and Vol.II (Space, Time, Matter and Cosmology), Springer-Verlag, Berlin-Heidelberg, 1999.
[13] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
[14] G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C.R. Acad. Sci., Paris (Ser.II) 137 (1903), 554-558.
[15] G.M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogene, Acta Math. 29 (1905), 101-181.
[16] K.B. Oldhman and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
[17] J. Perdang, Lecture Notes in Stellar Stability, Part I and II, Instito di Astronomia, Padov, 1976.
[18] T.R. Prabhakar, A singular integral equation with generalized Mittag- Leffler function in the kernel, Yokohama Mathematical Journal 19 (1971), 7-15.
[19] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York, 1993.
[20] R.K. Saxena, A.M. Mathai and H.J. Haubold, On fractional kinetic equations, Astrophysics Space Sci. 282 (2002), 281-287.
[21] R.K. Saxena, A.M. Mathai and H.J. Haubold, On generalized fractional kinetic equations, Physica A 344 (2004), 653-664.
[22] M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 No.4 (2009) 449-452.
[23] M. Sharma, Fractional integration and fractional differentiation of the M-series, Fract. Calc. Appl. Anal. 11 No.2 (2008), 187-192.
[24] H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation 118 (2001), 1- 52.
[25] C. Tsallis, Entropic nonextensivity: A possible measures of Complexity, Chaos, Solitons and Fractals 13 (2002), 371-391.
[26] A. Wiman, Ueber den Fundamentalsatz in der Theorie der Funkilionen Eα(x), Acta. Math. 29 (1905), 191-201.
[27] Carl. F. Lorenzo, Tom T. Hartley, Generalized Functions for the Functional Calculus, Nasa/tp-1999-209424/rev 1, p1-17.