Excitation of Surface Acoustic Waves in a Zsection of Piezoelectric Crystals by the Electric Field of a Long Electrode
International Journal of Applied Physics |
© 2019 by SSRG - IJAP Journal |
Volume 6 Issue 3 |
Year of Publication : 2019 |
Authors : Igor V. Linchevskyi |
How to Cite?
Igor V. Linchevskyi, "Excitation of Surface Acoustic Waves in a Zsection of Piezoelectric Crystals by the Electric Field of a Long Electrode," SSRG International Journal of Applied Physics, vol. 6, no. 3, pp. 42-50, 2019. Crossref, https://doi.org/10.14445/23500301/IJAP-V6I3P108
Abstract:
The method for solving the homogeneous boundary-value problem of the dynamic elasticity theory is proposed, which allows one to obtain the general solutions describing the propagation of surface acoustic waves in Z –sections of single crystals of hexagonal syngony up to the constant factor. The plane problem of the excitation of surface acoustic waves in Z -sections of single crystals of hexagonal and cubic syngony is solved. The influence of the dimensions of the region of external forces existence on the levels of excited surface waves is shown. The concept of wave characteristic of a source of ultrasonic waves is introduced.
Keywords:
piezoelectric, surface acoustic waves, single crystals
References:
[1] Morgan D., Surface acoustic wave filters with applications to electronic communications and signal processing. Elsevier, 2007, 448.
[2] T. Wang , R. Green, R. Guldiken , J. Wang, S. Mohapatra, S. S. Mohapatra, Finite Element Analysis for Surface AcousticWaveDevice Characteristic Properties and Sensitivity. Sensors, vol. 19, no. 8., p.1749., 2019, doi:10.3390/s19081749.
[3] W. Buff , F. Plath, O. Schmeckebier, M. Rusko, T. Vandahl, H. Luck, F. Moller, D. Malocha, Remote sensor system using passive SAW sensors. Proceeding of the Utrasonics Symposium, 31 October –3 November, Cannes, France, pp. 585–588, 1994.
[4] R. Guldiken, M.C. Jo, N.D. Gallant, U. Demirci, J. Zhe, Size-Based Acoustic Particle Separation , Sensors, vol. 12, no.1, pp. 905–922.,2012. doi.org/10.3390/s120100905
[5] T. Wang, Q. Ni, N.B. Crane, R. Guldiken, Surface acoustic wave based pumping in a microchannel /Microsyst. Technol., vol.23, no.5., pp.1-8. doi:
10.1007/s00542-016-2880-9, 2016.
[6] J. R. Gell, M.B. Ward, R.J. Young, R.M. Stevenson, P. Atkinson, D. Anderson, G. Jones, D.A. Ritchie, A.J., Shields, Modulation of single quantum dot energy levels by a surface-acoustic-wave. Appl. Phys. Lett., vol. 93. , pp. 081115, 2008. doi.org/10.1063/1.2976135.
[7] Aigner R., SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. 2008 IEEE Ultrasonics Symposium, 2–5 November 2008, Beijing, China: proc. symp. 2008., pp. 582–589, 2008.
[8] Mujahid , F. L. Dickert, Surface acousticwave (saw) for chemical sensing applications of recognition layers, Sensors , vol.17, no.12, p.2716, 2017.
doi:10.3390/s17122716 .
[9] G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, vol. 10, no.6, pp. 5469–5502, 2010. doi.org/10.3390/s100605469.
[10] I.A. Casalinuovo, D. Di Pierro, E. Bruno, P. Di Francesco, M. Coletta, Experimental use of a new surface acoustic wave sensor for the rapid identification of bacteria and yeasts, Lett. App. Microbiol., vol.42, no.1., pp. 24–29, 2006. doi.org/10.1111/j.1472-765X.2005.01792.x.
[11] O. Onen, A. Sisman, N.D. Gallant, P. Kruk, R.A. Guldiken, A urinary bcl-2 surface acoustic wave biosensor for early ovarian cancer detection, Sensors, vol.12, no.6., pp. 7423–7437, 2012. doi.org/10.3390/s120607423.
[12] O. Onen, A.A. Ahmad, R. Guldiken, N.D. Gallant Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity, Sensors, vol. 12, no. 9., pp. 12317–12328, 2012. doi.org/10.3390/s120912317.
[13] Y. Zhang, F. Yang, Z. Sun, Y.-T. Li, G.-J. Zhang, A surface acoustic wave biosensor synergizing DNAmediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay, Analyst, vol. 142. no.8, pp. 3468–3476, 2017. doi: 10.1039 / c7an00988g.
[14] W. Jakubik, P. Powro´znik, J. Wrotniak, J, M. Krzywiecki, Theoretical analysis of acoustoelectrical sensitivity in SAWgas sensors with single and bi-layer structures, Sens. Actuators B: Chem., vol.236, no.11, pp.1069–1074, 2016. doi.org/10.1016/j.snb.2016.05.157.
[15] A. Marcu, C. Viespe, Surface Acoustic Wave Sensors for Hydrogen and Deuterium Detection, Sensors, 2017. vol. 17, no.6., pp. 1417, 2017. doi.org/10.3390/s17061417.
[16] K. Hashimoto, G. Endoh, M. Yamaguchi, Coupling-ofmodes modelling for fast and precise simulation of leaky
surface acoustic wave devices, 1995 IEEE Ultrasonics: Symposium, 7–10 November 1995, Seattle, WA, USA, : proc. of conf., vol.1. , pp. 251–256, 1995.
[17] J.H. Kuypers, A.P. Pisano, Green’s function analysis of Lamb wave resonators, IEEE Ultrasonics: Symposium, 2–5 November 2008, Beijing, : proc. of conf. , pp. 1548–1551, 2008. doi: 10.1109/ultsym.2008.0377.
[18] Tewary V.K., Green’s-function method for modeling surface acoustic wave dispersion in anisotropic material systems and determination of material parameters, Wave Motion.,vol. 40, no.4., pp. 399–412, 2004. doi.org/10.1016/j.wavemoti.2004.02.007.
[19] Xu G., Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter, Smart Mater. Struct., vol.9, no.6, pp. 973–980, 2000. doi: 10,1088 / 0964-1726 / 9 / 6/401.
[20] K.M.M. Kabir, G.I. Matthews, Y.M. Sabri, S.P. Russo, S.J. Ippolito, S.K. Bhargava, Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device, Smart Mater. and Struct., vol. 25, P.035040, 2016.
[21] M. EL. Gowini, W.A. Moussa, Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor, Sensors, vol.10, no.2, pp.1232–1250, 2010. doi: 10.3390/s100201232.
[22] K.-C. Park, J. R.Yoon, Transmission Line Matrix Modeling for Analysis of Surface Acoustic Wave Hydrogen Sensor, Jpn. J. Appl. Phys.,vol. 50, no.7S. — 07HD06, 2011.
[23] T. Kojima, H. Obara, K. Shibayama, Investigation of Impulse Response for an Interdigital Surface-Acoustic-Wave Transducer., Jpn. J. Appl. Phys., vol.29, no.1, p.125, 1990.
[24] Hoang T., SAW Parameters Analysis and Equivalent Circuit of SAW Device, Acoustic Waves—From Microdevices to Helioseismology, In Tech: Rijeka, Croatia, 2011. doi: 10.5772/19910.
[25] T. Kojima, K. Shibayama, An analysis of an equivalent circuit model for an interdigital surface-acoustic-wave transducer, Jpn. J. Appl. Phys., vol. 27, pp.163-165., 1998.