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Abstract - In recent years, monolithic building solutions' durability, energy efficiency, and aesthetic appeal have contributed to 

their increasing popularity. However, it is crucial to diligently engineer these structures to prevent potential failures under 

various loads. The present work explores the engineering study of designing monolithic dome components using Aluminium 

6082-T6 alloy. Material testing and connection moment capacity in semi-rigidly jointed structures are examined using 

experimental and finite element analysis (FEM) approaches. Two single-layered reticulated dome types of geometric and 

material nonlinear analysis (GMNA) were conducted. The domes were rigidly and semi-rigidly connected by incorporating 

Aluminium connection bending stiffness in an accurate and valid program. The resulting loads were used to determine the 

strength of the columns of the reticulated members of the dome. The coefficient of strength calculated was compared with the 

stability coefficients from different codes. This work also focuses on dimensioning structural elements under combined bending 

and buckling forces. It emphasizes incorporating second-order effects, buckling susceptibility, and spatial changes in axial 

force and flexural rigidity for accurate dimensioning. The proposed dimensioning criterion ensures the appropriate utilization 

ratio of the section by considering safety coefficients and critical loads. 

Keywords - Buckling analysis, Dimensioning criteria for elements subjected to combined forces, Euler's law limitations, Rigid 

and semi- rigid joints, Structural design and optimization. 

1. Introduction 

Dome structures have gained widespread use in 

engineering projects worldwide and have seen significant 

growth in recent years due to high-strength steel and 

advanced computer technology availability. Monolithic 

domes featuring semirigid joints are particularly noteworthy 

due to their reduced material usage, attractive appearance, 

and rapid construction with high accuracy. However, as 

dome spans increase significantly, instability issues can 

become critical, making understanding the factors 

influencing their stability essential. The study of instability in 

the architecture of monolithic dome structures is thus a 

relevant issue that requires thorough investigation. 

1.1. Literature Review 

During the 1900s, Timoshenko et al. studied structural 

members' buckling response. They derive analytical solutions 

for various types of members under different loading 

conditions and discuss the effects of geometric imperfections 

and material properties on buckling behaviour. Their works 

have become a foundational reference for the structural 

integrity assessment of elastic structures [1]. Stephen P. 

Timoshenko's "Theory of Elastic Stability" is a seminal and 

influential book covering the structural stability theory. It 

discusses buckling phenomena in columns, plates, and shells, 

in addition to the effects of initial imperfections.  

The book explores critical load determination methods 

like the energy, Ritz, and Galerkin. Timoshenko's work has 

significantly shaped modern stability theory and is widely 

referenced in the field [2].  

Forde et al. (1987) proposed an enhanced method for 

arc-length orthogonality in nonlinear finite element analysis. 

Their approach improves the traditional method's 

convergence efficiency by modifying the tangent stiffness 

matrix and residual vector. The method was validated 

through tests on various examples, demonstrating accelerated 
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convergence and reduced iteration requirements. It has since 

been widely adopted in nonlinear finite element analysis for 

improved efficiency and accuracy [3].  

Reddy, J. N presents analytical and computational 

models for assessing buckling, vibration, and failure 

behaviour of laminated composite plates and shells and 

provides examples and problems for illustration [4]. 

Recently, researchers showed substantial interest in studying 

the structural integrity of dome structures. Researchers have 

utilized various methods to conduct such studies, including 

continuum shell analogy theories and finite element analysis, 

which have yielded significant insights into dome structures 

buckling critical force [5-7].  

However, with the emergence of advanced finite 

element software and computer technology, there is potential 

for even more significant progress in instability research for 

dome structures. The popularity of nonlinear responses 

resulting from geometry and material characteristics 

investigation methods, such as GNA and GMNA, is growing 

as they replace traditional approaches, such as continuum 

shell analogy and finite element analysis. These new 

methods, coupled with using Eigenvalue and nonlinear 

buckling analyses, provide a deeper insight into the 

behaviour of single-layer domes [8-11].  

S. Kato et al. introduce a method for determining 

suitable member sections of single-layer reticulated domes 

under varying loads, including uniform and non-uniform 

distributions.  

The methodology relies on the nonlinear elasto-plastic 

buckling behaviour of the members, and it aims to achieve a 

cost-effective design while satisfying the structural safety 

requirements. The study concluded that the proposed 

methodology could effectively reduce the material cost of the 

structure while maintaining its safety and stability [12].  

The ultimate load of monolithic domes is heavily 

influenced by joint inflexibility, which can be determined 

through testing and analytical models that provide insight 

into the joint moment-rotation behaviour. The analytical 

models consider various factors, including connection 

strength, rigidity, deformation capacity, and the nonlinear 

behaviour imposed by the material characteristics and shape. 

Fathelbab found that joint firmness profoundly affects load-

displacement behaviour, highlighting the importance of 

understanding joint characteristics during the design stage to 

achieve optimal material usage and structure safety [13-16].  

Researchers have recently investigated the buckling 

phenomenon of dome structures with semirigid connections. 

Murakami and Heki comprehensively analysed the instability 

under compression response of monolithic latticed domes 

with a regular hexagonal plan subjected to gravity load. They 

proposed a computational approach to study the buckling 

response and derived a general buckling equation for such 

domes.  

The analysis considered the number of divisions, 

member slenderness ratio, and load direction. The study 

concludes that their theoretical approach helps design and 

analyzes latticed domes [17-21]. Yamada et al. investigated 

the overall buckling response of monolithic lattice domes 

under compression loading and the impact of initial 

geometric imperfections. Using finite element analysis, they 

analyzed different dome geometries and imperfection shapes. 

The study revealed that initial geometric imperfections 

significantly influenced the buckling strength, with critical 

imperfection shapes varying depending on the dome's 

geometry.  

The authors provided design guidelines to enhance 

overall buckling strength by managing initial geometric 

imperfections [22]. Fan et al. (2012) studied the elasto-plastic 

structural integrity of monolithic lattice domes with initial 

member curvature. Their article suggested a computational 

method to evaluate the critical load, considering factors such 

as the slenderness ratio.  

Numerical simulations validate their approach and 

provide insights for designing and analyzing such domes to 

investigate the structural integrity of lattice shells by 

analyzing the buckling of individual members. Their 

numerical method considers factors like span-to-height ratio 

and member slenderness.  

The study emphasizes the significance of accounting for 

member buckling in accurately predicting the structural 

integrity of lattice shells [23]. To the best of our knowledge, 

until 2005, the design method for studying the instability of 

domes assumed that each member was straight and did not 

consider the pre-bending of the members. However, during 

the members' production, transportation, handling, and 

assembly, they inevitably become curved in one way or 

another, which can visibly reduce their ability to sustain load, 

provoking structural instability and damaging impacts, 

especially for compressed, slender members. Therefore, 

considering the pre-bending of members in the study of 

network-like shell structure instability is necessary. 

Subsequently, researchers started focusing on member and 

complete structure buckling [24-28].  

Prior to 2012, there was insufficient research conducted 

on how buckling of the structural elements affects dome 

structures, and the matter had not been systematically 

explored because of insufficient engineering application 

results. Investigating the influence of buckling phenomena 

exhibited by structural members and complete buckling on 

dome structures is essential in nonlinear studies and in 

assessing member buckling assessment methods.  
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Fig. 1 Aluminium material tensile test coupons from Al. 6082-T6 body 

 

 

 

 

 

 

 

 

 

Fig. 2 Aluminium 6082-T6 material model for finite element analysis 

 
Fig. 3 Aluminium joint strength testing in different orientations under bending loading 

The FEM is not satisfactory for describing member 

buckling, and second-order effects resulting from structure 

geometric nonlinear influences can increase members' inner 

strength, leading to unfavourable states before complete 

structure buckling [29-31]. Overall, this study has important 

implications for the architecture and construction of 

monolithic dome structures in high-load applications. By 

improving our understanding of buckling behaviour and 

designing components to prevent it, we can create safer, 

more durable, and more efficient structures for various 

engineering applications. 
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Table 1. Summary of Aluminium 6082-T6 alloy material coupon test results 

Coupon (No) Thickness (mm) E0 (Mpa) f0,1 (Mpa) f0,2 (Mpa) fu (Mpa) n=ln2/ln(f0;2/f0;1) e = f0;2/E0 

1 10.00 69912 290 296 315 36.16 0.0042 

2 10.00 69912 290 296 315 36.16 0.0042 

3 10.00 69912 290 296 315 36.16 0.0042 

4 10.00 69912 290 296 315 36.16 0.0042 

5 10.00 69912 290 296 315 36.16 0.0042 

Table 2. Geometric properties of kiewitt 8 domes 

Structure Type L (m) f/L n 0 (deg.) 0 (deg.) f (m) R (m) l0 (m) 

K8 60 1/5 24 1.65 39.51 12.00 43.5 2.5 

K8 60 1/8 24 1.12 26.96 7.50 63.75 2.5 

 

2. Materials and Methods 

2.1. Material Test and Joint Moment Capacity Testing 

2.1.1. Aluminium 6082-T6 Alloy Testing  

The Aluminium 6082-T6 alloy finished product sections 

shown in Figure 1 were used to create mate-rial test samples. 

These samples were acquired from the Aluminium body per 

the Chinese standard for Metal tensile specimen tests [32], 

and the resulting mechanical properties are recapitulated in 

Table 1. The resulting mechanical properties were used to 

develop an Aluminium material test model incorporated into 

the numerical program used to analyze the domes. The 

graphical portrayal of the model is presented in Figure 2. 

2.1.2. Moment Capacity Testing in Aluminium Hexagonal 

Joints 

The Aluminium hexagonal joints consider in this study 

are the same as the study in [33]. This study exclusively 

considers the T30. We extended our research to explore 

further T30-type joints. A set of six recently developed T30 

Aluminium joints were subjected to testing. The joint was 

modelled and experimentally verified in both the bolt 

direction and orthogonal to the bolt direction, as shown in 

Figure 3 [33]. The mechanical capacity of the Aluminium 

connection model was obtained from experimental tests and 

integrated into the numerical program. Figure 4 displays the 

moment capacity curve for the T30 Aluminium Hexagonal 

joint for both the experimental and FEM results, which 

match well in both the bolt direction and orthogonal to the 

bolt direction. The T30-1 and T30-2 connection models were 

incorporated into the program as real constant R1 and real 

constant R2, respectively, in the bolt direction and 

orthogonal to the bolt direction. The moment capacity was 

obtained from the mean values of all specimens and 

displayed in Figure 4. 

2.2. Numerical Investigation of Dome Instability in Semi-

Rigidly Jointed Structures 

2.2.1. Geometric Description of the Studied Single Layer 

Kiewitt Domes 

The research model studied in this article is single-layer 

Kiewitt 8 domes, as depicted in Figure 5. Table 2 illustrates 

the geometric aspects of the analyzed domes, where n 

represents the number of segments on the radial axis. The 

domes have fixed vertical boundaries at the base and are 

supported on a tension ring at the circumference. The span L 

and the rise/span ratio f/L are specified in Table 2, and the 

half-subtended angle 0 is calculated to represent the 

inclination of the roof for the members at the dome apex. The 

members are presumed to be made of Aluminium T6-6082, 

and the model considers tubular cross-sections. Structural 

characteristics of the examined model are enumerated in 

Table 2, including the radius of curvature, spans, and heights 

of the domes at the center. The members are semi-rigidly 

jointed at nodes, and their lengths on the rib lines l0 are also 

specified in Table 2. The yield strength and Young's modulus 

of the Aluminium T6-6082 are presumed to be 296 MPa and 

E=69912.23 MPa, respectively. While the extent of the dome 

may affect its buckling behaviours, it is not considered 

significant in this study.  

2.2.2. Features and Capabilities of BEAM189 Element 

BEAM189 is a powerful tool for analyzing beam 

structures that are thin to moderately robust. It is derived 

from the Timoshenko [34] beam theory, which accounts for 

shear strain effects. This investigation's 3-D quadratic beam 

element permits unconstrained and constrained cross-

sectional warping. Each node has six independent 

parameters, including movements in the three-dimensional 

coordinate system and rotations about those axes.  
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Fig. 4 Validating FEM results with test results for T30 aluminium hexagonal joint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Illustration of the kiewitt8 geodesic dome structure 

If needed, there is an alternative seventh independent 

parameter for warping magnitude. The element is functional 

for linear, high rotation, and large-deformation nonlinear 

behaviour applications. Figure 6 illustrates BEAM189 

Element's geometry. However, owing to the restrictions of 

the 1st-order shear hypothesis, it is only appropriate for 

evaluating structures of moderate to slender proportions. 

2.2.3. Geometric Properties and Capabilities of COMBIN39 

Element 

COMBIN 39 is an element that exhibits nonlinear force-

deflection characteristics. It applies to longitudinal and 

torsional loads in one-dimensional, two-dimensional, or 

three-dimensional cases. The longitudinal option has up to 

three independent parameters for movements in the Three-

dimensional coordinate system at every vertex.  
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Fig. 6 BEAM189 geometric representation 

 

 

 

 

 

 

 

Fig. 7 COMBIN39 element geometry and construction illustration 

 

 

 

 

 

 

 

Fig. 8 4 BEAM189 element meshing model for tube members 

In comparison, the torsional option has three 

independent parameters for rotations in nearly the three 

spatial dimensions.  

The element can have a large displacement and two or 

three independent parameters at every vertex. The structural 

geometry, vertex locations, and geometric coordinates for 

this element are illustrated in Figure 7. It is characterized by 

two nodal points and a generalized force-deflection curve, 

where the points on the curve represent force or moment 

versus relative translation or rotation. The loads should be 

defined on a complete 360-degree basis for an asymmetric 

analysis. 

2.2.4. Division and Meshing of Members in Dome Structures 

using Beam189 Element 

The nodes connecting the members of each structure are 

presumed to have semirigid connections. The structure is 

rigidly fixed at the base and sustains a uniformly distributed 

vertical load.  

The structures were modelled using ANSYS 15.5 Finite-

Element software. A 3-D linear finite strain beam element 

using a mathematical model of beam theory [34] called 

Beam189 is utilized to model the members.  

Each member is segmented into eight parts and meshed 

with four Beam189 elements, as displayed in Figure 8. 

Nonlinearities in geometry and material behaviour study 

(GMNA) is conducted [35] for each dome using Forde and 

Stiemer's proposed method [3]. Figure 8 illustrates the 4 

BEAM189 element meshing model for tube members. 

2.3. Buckling Curves of Kiewitt8 Members 

2.3.1. K8 Domes Buckling Response 

In this study, an established methodology widely 

employed by researchers involves investigating the load-

deflection curve, commonly known as the nonlinear 

equilibrium path, at specific nodes. This approach offers 

valuable insights into structural behaviour, particularly 

regarding stability analysis and the influence of initial 

imperfections [25, 36-42]. The ANSYS software package 

facilitated this analysis due to its robust capabilities in 

simulating complex structural responses.  

For each dome analytical model K8, an in-depth 

geometric and material nonlinear investigation (GMNA) was 

conducted. The GMNA method, initially proposed by Forde 

and Stiemer, was implemented to trace the nonlinear 

equilibrium trajectories [35,3] accurately. The resulting load-

deflection graph, illustrated in Figure 9 for rigid and T30 

Aluminium Connections, visually represents the structural 

response under various loading conditions. Additionally, the 

ultimate load values obtained from the analysis are 

summarized in Table 3, providing essential insights into the 

structural capacity and performance.  

By employing this rigorous analysis methodology, 

valuable insights can be obtained regarding the structural 

behaviour and potential failure modes. The findings 

presented in this study contribute to a more profound 

comprehension of structural response and can inform future 

design considerations for similar structures. 
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2.3.2. Kiewitt 8 Column Buckling Strength 

The strength and buckling behaviour of single-layer 

reticulated domes are significantly influenced by the rigidity 

and strength of their joints. Therefore, it is essential to 

conduct comprehensive investigations to determine the load-

carrying capacities of such structures. The buckling strength 

of reticulated domes is evaluated using a design formula 

based on column strength curves. For K8 reticulated domes, 

the final strength is expressed in dimensionless parameters: 

the dimensionless final strength  and the normalized 

slenderness ratio , which are analogous to those used for 

straight columns.  

Through the application of GMNA analysis, the values 

of  and  are determined for specific members that have the 

most significant impact on the ultimate behaviour of the 

reticulated domes. Typically, this corresponds to the member 

experiencing the highest vertical position or displacement 

under the final load-carrying capacity of the dome. The 

calculations for  and  are performed using equation (1). 

For a more detailed understanding of the methodology 

employed, it is recommended to refer to Adeoti et al.'s work 

[33, 43-45]. 

φ = (
1

2λ2
) [(1 + η + λ2) − √(1 + η + λ2)2 − 4λ2] ≤ 1 (1) 

Where: φ; λ and η are non-dimensional column strength, 

slenderness and imperfection parameters, respectively. α and 

λ0 parameters derived from numerical simulation results 

column curve fitting with various connection types. The 

strength curves for the dome structure are visually 

represented in Figures 10 and 11.The upcoming section will 

focus on dimensioning elements that encounter the 

simultaneous effects of bending and buckling forces. 

3. Results and Discussion 

Several buckling concepts require complete 

comprehension to understand the discussion about member 

dimensioning comprehensively. These concepts include the 

following: First order and second-order buckling, the P−δ 

effect or  effect, the P−∆ effect, design optimization for 

components under axial forces, the buckling of structural 

elements (including the limit of validity of Euler's law), and 

the standardization of buckling curves. 

3.1. Buckling Concept 

3.1.1. Fundamental Concepts of Buckling 

Buckling is an abrupt instability phenomenon that 

affects elements subjected to compression, partially or 

entirely. It is a frequently hidden issue that can suddenly 

occur within structural systems. 

Table 3. K8 domes ultimate load (KN) 

Structural Type K8 domes f/L = 1/8 K8 domes f/L = 1/5 

Connection Type Tube Section Tube Section 

Rigid Joint 69.24 73.58 85.63 85.91 

Al. HBC Joint 49.88 51.49 73.19 73.58 

 

 

 

 

 

 

 

 

 

 

Fig. 9 K8 buckling graph with rigid and Al. T30 connection type 
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Fig. 10 Kiewitt8 dome strength curves with rigid joint and Aluminium T30 joint 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Kiewitt8 dome strength curves with rigid joint and Aluminium T30 joint express in various codes 

Hence, it is essential to proactively prevent buckling to 

safeguard the structural integrity and the well-being of 

occupants or users. Some civil engineering structures, such 

as sailboat masts, are particularly susceptible to buckling and 

should be carefully accounted for. Buckling is often defined 

as a second-order effect with diverging characteristics and 

can be triggered by manufacturing imperfections or 

disturbances. Indeed, even with impeccable manufacturing, 

no element can be perfectly straight. At the microscopic 

level, some form of imperfection will always be present.  
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Fig. 12 Fixed-end beam analysis 

 

These imperfections can arise from the tiniest deviations 

in the compressive force relative to the average fibre 

(buckling due to imperfection) or the combined 

implementation of a bending moment on the element (known 

as buckling due to disturbance). 

Consequently, the normal force F always acts with some 

degree of eccentricity e0, no matter how small, resulting in a 

parasitic bending moment M0 = Fe0. This moment induces 

curvature, exacerbating the eccentricity of the applied 

compressive force, leading to a cascade of increasing 

deformations. This progressive amplification of deformations 

is commonly known as buckling by divergence [46-47]. 

3.1.2. First Order, Second Order, P−δ Effect or  Effect, 

P−∆ Effect 

Let's consider a structure initially not subjected to loads 

with a defined geometry. When a load is exerted on this 

structure, it undergoes deformation and reaches a new 

equilibrium state with a different geometric configuration 

than its original form. Although the consequent deformations 

are generally small and barely perceptible to the naked eye.  

Considering the deformed shape to analyze the deformed 

structure accurately and derive equilibrium equations for 

statics to calculate internal forces would be imperative.  

However, this is impractical because assessing the 

changed shape requires knowledge of the internal forces, 

which can only be initially determined based on assuming 

equilibrium in the undeformed structure.  

This initial calculation, commonly known as a first-order 

calculation, is widely used in most cases. Let us take a fixed-

end beam with inertia moment I and length L, where a force 

Q is applied at an angle : If we perform a first-order 

calculation, we assume that the beam remains in its original, 

undeformed geometry. This allows us to find the support 

responses and the associated flexural moment diagram, as 

depicted in Figure 12. 

In reality, the beam experiences deflection, and the 

deflection at the end is defined by the mathematical equation 

δ=QL3cosθ/3EI, as depicted in Figure 12. Reevaluating the 

force equilibrium based on this deformed structure, the 

horizontal projection of Q introduces a non-zero lever arm 

regarding the fixed end, causing the initial bending moment 

to be increased by a multiple of 1+QL2sinθ/3EI.  

This subsequent analysis is a second-order analysis and 

can be extended indefinitely by considering incremental 

deflections and higher orders. When these successive 

deflections diverge, the phenomenon of buckling arises. 

Second Order, Third Order, ..., Second Order 

The physical understanding of buckling has 

demonstrated that it arises when there is a divergence among 

successive deflections of varying orders, including first, 

second, third, and beyond. However, it is significant to 

mention that this interpretation is purely mathematical. In 

reality, the combined phenomena of successive orders, 

ranging from two to infinity, can be encapsulated as a unified 

effect known as the second-order effect within the context of 

this article. 
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P-Delta Effect (P - ∆) 

Let us clarify from the start that the P-∆ effect should 

not be confused with the P-δ effect. The first is linked to the 

overall behaviour of a structure, while the latter concerns the 

individual behaviour of an element. In a structural 

framework, the inherent lack of perfect verticality leads to 

gravitational loads being applied to columns with some 

eccentricity. As a result, additional bending moments are 

induced, supplementing the forces calculated in the first-

order analysis.  

If the structure is flexible or poorly braced, these effects 

can be amplified and further compounded by horizontal 

loads, often caused by wind acting on the facades. This 

phenomenon, known as the P-∆ effect, is directly correlated 

with the deformed state of the structure. It can be justified by 

amplifying the first-order effects to a certain extent or by 

conducting a second-order analysis that explicitly considers 

the P-∆ effect through computational software [46-50].  

P-Delta Effect (P-δ) or  Effect 

Let us begin by emphasizing that it is essential to 

distinguish between the P-∆ effect and the P-δ effect. The 

earlier is aligned with the behaviour of a structure as a whole, 

while the latter relates to the individual behaviour of an 

element. Scientific research has proven that even a minimal 

imperfection in the straightness of an element, when 

subjected to a compressive normal force F, gives rise to 

second-order moments that are not directly correlated with 

the applied load. Instead, these moments amplify the 

maximum first-order moment Fe0 by a factor calculated as: 

𝜇 =
1

1−𝐹

𝐹𝑐𝑟𝑖𝑡

 (2)             

Here, Fcrit represents the Euler critical charge of the 

element. Likewise, when an element experiences combined 

bending, with an average force F and a bending moment M 

acting on it, the first-order bending moment M is amplified 

by the same corrective factor 1/(1-F/Fcrit). This 

phenomenon is commonly known as the P-δ effect.  

Regarding Element Design, Two Scenarios can be 

considered 

• With regard to pure compression, one can apply 

analytical buckling formulas that implicitly account for 

this effect.  

• In situations involving combined bending, it becomes 

necessary to consider the buckling formulas and 

multiply the first-order bending moment by the 

corrective factor 1/(1-F/Fcrit). 

When It Comes to Designing the Overall Structure 

• The amplification effect of $P-\delta$ leads to a 

perceived reduction in the flexural stiffness of the 

element. Consequently, this effect can potentially 

provoke the transfer of loads within the structure, 

especially if it is statically indeterminate [35,46,49-50]  

Summary 

The second order can arise from an imperfection, such 

as a manufacturing defect or a disturbance, such as a side 

wind, as depicted in Figure 13.  

  

 

 

 

 

 

 

 

 

 

 

Fig. 13 Origin of second-order buckling 
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Fig. 14 Second-order buckling analysis: element with manufacturing imperfection 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 15 Second-order buckling analysis: element subjected to disturbance 

Compressing the element in either situation will generate 

unexpected moments with a magnitude equal to Fν1. The first 

intuitive approach to second-order effects is illustrated in 

Figure 14, where an element with an imperfection ν1 is 

shown. Figure 15 presents the second intuitive approach to 

second-order effects, depicting an element without 

imperfection but subjected to a disturbance (a bending 

moment with a first-order deflection, ν1).  
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From these observations, we conclude that second-order 

effects occur in two ways: either due to a manufacturing 

defect (imperfection) or a bending deformation caused by a 

disturbance (such as lateral wind on a compressed column). 

These effects always arise when a flexural moment is 

combined with a normal force. The ratio Mn/M1 is 

recognized as the amplification factor equal to νn/ν1. 

Buckling is thus a diverging second order phenomenon, as 

depicted in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 Buckling with diverging second-order phenomenon 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Second-order buckling analysis 
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Fig. 18 Influence of defects on the response of euler critical load 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 Slenderness and buckling sensitivity 
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moment distribution. It is essential to highlight that this 

finding holds implications for a broad spectrum of bending 

scenarios, suggesting its potential for generalization. (Figure 

17), the refinement scale can vary depending on the specific 

conditions, resulting in a spectrum of precision with differing 

degrees. 

(
1

1−𝐹
𝐹𝑐𝑟𝑖𝑡

⁄
) 𝑀1(𝑥) (5) 

𝐹 = 𝐹𝑐𝑟𝑖𝑡 =
𝜋2𝐸𝐼

𝐿2  (6) 

Consequently, the amplification factor is determined to 

be Equations (5). We can derive from equation (5) that the 

moment tends towards infinity when F is equation (6). This 

critical value is identified as Euler critical charge. The Euler 

critical load remains independent of the extent of the 

production imperfection ν1 and the first-order bending 

moment, representing the disturbance pictured in Figure 18.  

3.1.3. Engineering Design Optimization and Improvement 

Based on the graphical representation of Euler's formula 

in Figure 19, It is evident that with an augmentation in the 

slenderness ratio, it can be observed that the likelihood of 

buckling occurring under low-stress conditions also 

increases. A summarized compilation of the sensitivity to 

buckling to different slenderness ratios is presented in Table 

4. From the data in this table, it can be inferred that 

slenderness ratios within the spectrum of 0 to 20 exhibit 

negligible sensitivity to buckling.  

Table 4. Slenderness and buckling sensitivity 

Slenderness  Buckling Sensitivity 

0 − 20 None 

20 − 50 Low to Moderate 

50 − 80 High 

80 − 200 Extremely High 

≥ 200 Refrain 

The sensitivity of slenderness ratios between 20 and 50 

is low to moderate. When the slenderness ratios fall within 

the range of 50 to 80, the sensitivity is classified as high, and 

ratios between 80 and 200 are considered extremely high. To 

ensure structural integrity, it is advisable to refrain from 

constructing elements with slenderness ratios exceeding 200. 

Elements with such high ratios are inherently flawed, 

rendering Euler's law less representative. Furthermore, the 

geometry of these elements does not facilitate precise and 

secure application of Euler's law. 

3.1.4. Design Optimization for Components under Axial 

Forces 

Upon investigating the bending phenomenon, it becomes 

apparent that elements subjected to such forces consistently 

necessitate substantial moments of inertia within their cross-

sectional profiles. A more excellent moment of inertia 

contributes to lower bending stresses, leading to diminished 

deformations. This correlation finds affirmation in Euler's 

law. A more excellent moment of inertia aligns with a higher 

critical load requirement. In simpler terms, as the section size 

increases, a higher compressive force is needed to induce 

buckling.  

Referencing Figure 20, it is observed that material usage 

can be optimised by systematically removing material from 

sections centroid while maintaining consistent moment of 

inertia, length, and Euler's critical load. Let us denote the 

area and inertial moment of the solid section as A0 and I0, 

respectively. The solid section exhibits a thickness-to-outer-

diameter ratio of 1/2.  

Table 5. Various elements details 

e0⁄ϕ0 ϕ0 A0 λ0 

0.5 100 100 100 

e⁄ϕ ϕ A λ 

0.2 104 69 83 

0.1 114 47 68 

0.05 131 32 57 

0.02 161 20 45 

Refer to Table 5 for specific details concerning various 

elements. The inertial moment for a hollow section can be 

determined using Equation (9): 

𝐴0 =
𝜋𝜙0

2

4
 (7) 

𝐼0 =
𝜋𝜙0

4

64
 (8) 

𝐼 =
𝜋𝜙0

4

64
(1 − (1 −

2𝑒

𝜙
)

4

) = 𝐶𝑠𝑡𝑒 = 𝐼0 (9) 

𝜙

𝜙0
= (1 − (1 −

2𝑒

𝜙
)

4

)

−1
4⁄

 (10) 

𝐴 =
𝜋𝜙2

4
(1 − (1 −

2𝑒

𝜙
)

2

) (11) 
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𝐴 =
𝜋𝜙0

2

4

1−(1−
2𝑒

𝜙
)

2
 

√1−(1−
2𝑒

𝜙
)

4
 (12) 

𝐴 = 𝐴0

1−(1−
2𝑒

𝜙
)

2
 

√1−(1−
2𝑒

𝜙
)

4
 (13) 

When comparing the amount of material present in 

consecutive hollow sections, which reflects the cross-

sectional area, it is evident from equation (10) that the ratio 

A/A0 between a hollow section and a solid section with an 

equivalent moment of inertia can be expressed by equation 

(13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 The influence of the e/φ ratio on the dimensions of the section and the value of section A is examined, assuming the use of homogeneous 

material with identical I and F values 

This ratio is established by the relationship between e/φ, 

representing the wall dimension and the outer diameter. 

Notably, the extent of the diameter of the hollow section is 

60% larger, while the area is only one-fifth of the solid 

section area. To summarize, two approaches can be adopted 

to lessen the impact of buckling and achieve material 

efficiency.  

The first approach involves increasing the inertial 

moment by displacing material away from the centroid, 

which can be accomplished by hollowing out the section. 

The second approach focuses on reducing the buckling 

length, a critical factor in Euler's law, by incorporating 

appropriate supports at the ends and along the dimension of 

the element length.  

3.1.5. Buckling of Structural Elements: Limit of Validity of 

Euler's Law 

Euler's law overlooks the material's yield strength, 

denoted as fe, and requires adjustment when dealing with 

small slenderness ratios. This is because Euler's law allows 

for the possibility of infinite normal stresses in such cases. 

The critical slenderness ratio, represented by λE, marks the 

point beyond which Euler's law no longer holds. 

𝜎𝑐𝑟𝑖𝑡 =
𝜋2𝐸

𝜆2  (14) 

𝜎𝑐𝑟𝑖𝑡 =
𝜋2𝐸

𝜆2 ≥ 𝑓𝑒 (15) 

𝜆𝐸 = 𝜋√
𝐸

𝑓𝑒
 (16) 

𝜆 = 𝑙𝑓√
𝐴

𝐼
 (17) 

 When examining Equation (14) and carefully studying 

the graph in Figure 21, it becomes apparent that minimal 

slenderness ratios can lead to material stress reaching infinite 

values.  
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Fig. 21 Limit of validity of euler's law 

This contradicts the inherent nature of materials, which 

possess defined yield strength, denoted as fe. To address this 

issue, the curve coloured in red in Figure 21 presents the 

permissible stress values in a compressed element correlated 

with the slenderness ratio, ensuring that the material stays 

within the prescribed limits of its yield strength fe. According 

to this curve, the material can be stressed up to its yield 

strength fe for compressed elements with small slenderness 

ratios approaching zero.  

However, with the rise in the slenderness ratio, a need 

arises to diminish the stress exerted on the element gradually. 

As the slenderness ratio deviates from zero, it is essential to 

ensure that the stress within the element remains below the 

stress level present in the absence of buckling 

susceptibility—this sensitivity to buckling results in 

suboptimal material utilization. Increasing the element's size 

to maintain the stress below the elastic limit for a given load 

becomes necessary. 

3.1.6. Standardization of Buckling Curves 

Standardization of buckling curves is a critical process 

in scientific research. It establishes a consistent framework 

for investigating the response of structural elements to 

compressive forces. By analyzing data and identifying 

patterns, researchers can compare and predict the buckling 

behaviour of different structures. This leads to safer design 

practices and a deeper understanding of structural integrity. 

Standardization plays a pivotal role in enhancing the 

credibility of research findings and optimizing the efficiency 

of structural designs. Figure 22 depicts a typical standardized 

buckling curve.  
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We can obtain valuable insights by analyzing 

standardized buckling curves with Euler's curve and yield 

strength. Euler's curve represents the critical load at which 

buckling occurs, while the yield strength provides 

information about the material's durability.  

Comparing the standardized curves to Euler's curve 

allows us to assess the stability and safety margins of the 

structures. By examining the points of intersection of the 

curves or where they deviate from each other, we can 

understand how material properties and configurations 

influence buckling behaviour.  
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Fig. 22 Normalized buckling curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Combined bending and buckling dimensioning 
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Fig. 24 An infinite set of allowable couples (Nmax, Mmax) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25 An infinite set of allowable couples (Nmax, Mmax) analysis 

These findings are essential in guiding design decisions 

by identifying potential failures. Analysing standardized 

buckling curves, Euler's curve and yield strength enhances 

our understanding of structural stability. This understanding 

plays a pivotal role in guaranteeing the security and 

reliability of engineering designs. 
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, M
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) 

𝛽 =  
1−𝛾ȁ𝑁ȁ

F𝑐𝑟𝑖𝑡
  N = A (σ

crit
 - 

1

𝛽𝑤
 𝑀), with 

σ𝑚𝑎𝑥 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑛 𝐵) =
𝛾ȁ𝑁ȁ

𝐴σ𝑐𝑟𝑖𝑡
 + 

𝛾(
ȁ𝑀ȁ

(
1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡
)

൘ )

𝑊σ𝑐𝑟𝑖𝑡
≤ 1 
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3.2. Discussion on Dimensioning of Elements Facing the 

Combined Influence of Bending and Buckling Forces 

If we neglect both the secondary effects (moment 

amplification) and the susceptibility to buckling (effect on 

axial compression force N), we focus solely on examining 

the local behaviour within the sections. In such cases, the 

following inequalities hold: 

𝜎 =
ȁ𝑁ȁ

𝐴
+

ȁ𝑀ȁ

𝑤
≤

𝑓𝑒

𝛾
 (19) 

𝜎 =
𝛾ȁ𝑁ȁ

𝐴𝑓𝑒
+

𝛾ȁ𝑀ȁ

𝑊𝑓𝑒
≤ 1 (20) 

Additionally, it is essential to consider incorporating 

shear stress and torsional moment whenever applicable. The 

expression |N|/Afe+|M|/Wfe) represents a section's 

utilisation ratio. Exceeding a utilization ratio of 1 indicates 

that the section has surpassed its failure state, while a 

utilization ratio of 1 implies that the section is appropriately 

sized. Conversely, a utilization ratio below 1 suggests that 

the section is oversized, providing a significant safety margin 

and resulting in material wastage.  

Notably, this criterion applies explicitly to local 

dimensioning within a section subjected to axial force N and 

bending moment M. However, buckling is a global 

phenomenon that affects the entire element rather than 

individual sections. When considering the effects of second-

order (moment amplification factor M) and buckling 

sensitivity (effect on axial compression force N), the 

dimensioning criterion becomes more intricate due to the 

following factors:  

• It involves a comprehensive assessment of the entire 

element, extending beyond localized section analysis. 

• The moment diagram M can exhibit any shape, 

influencing the amplification factor. 

• Section plasticization may occur earlier than anticipated 

since both first-order and second-order moments 

accumulate. 

• Buckling can manifest in various forms, such as oblique 

bending or torsion, depending on the section type. 

• Axial force N and flexural rigidity EI can undergo 

variations along the length of the element, presenting 

spatial changes within the structural member. 

• For ductile materials, designers typically adhere to the 

following dimensioning criterion: 

𝜎 =
𝛾ȁ𝑁ȁ

𝐴𝜎𝑐𝑟𝑖𝑡
+

𝛾(
ȁ𝑀ȁ

1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡

⁄
)

𝑊𝑓𝑒
≤ 1 (21) 

Where: 

M: Moment at the middle location of the element 

𝐹𝑐𝑟𝑖𝑡 =
𝜋2𝐸𝐼

𝐿𝑓
2  ; Fcrit represents the critical load  

𝜎𝑐𝑟𝑖𝑡 =
𝐹𝑐𝑟𝑖𝑡

𝐴
  or normalized stress curve 

𝛾: Safety coefficient  

W: Flexural modulus 

Using either the corrected Euler's law or a normalized 

stress curve, we calculate crit. In this section, we explore 

different combinations of forces (Nmax, Mmax) that lead to 

maximum stress reaching the material's yield strength fe in a 

section subjected to combined bending. We specifically 

consider the compressive axial force (N>0 in compression) 

for the analysis. 

Let us consider Figure 24 in our analysis. The section 

crossing point B location is particularly significant as it 

experiences the highest stress. The section is subjected to 

compressive stress from the bending moment M and axial 

force N. In contrast, the section crossing point A location 

experiences comparatively lower stress due to the tension 

generated by the moment that counteracts the compressive 

effect of the axial force. Our primary focus is to analyze the 

section area that produces the maximum compressive stress. 

Equation (22) represents this maximum compressive stress 

within section crossing point B, considering the predominant 

influence of combined bending without incorporating the 

safety factor. Let us start with Equation (22), which 

expresses the maximum compression stress at point B: 

𝜎𝑚𝑎𝑥  Compression at B =
ȁ𝑁ȁ

𝐴
+

ȁ𝑀ȁ

𝑤
≤ 𝑓𝑒 (22) 

When considering second-order buckling effects and 

safety considerations, Equation (22) is modified to: 

𝛾ȁ𝑁ȁ

𝐴𝜎𝑐𝑟𝑖𝑡
+

𝛾(
ȁ𝑀ȁ

1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡

⁄
)

𝑊𝑓𝑒
≤ 1 (23) 

In the case where we restrict the bending stress to the 

limit buckling stress crit=fe, Equation (27) can be simplified 

as: 

𝛾ȁ𝑁ȁ

𝐴𝜎𝑐𝑟𝑖𝑡
+

𝛾(
ȁ𝑀ȁ

1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡

⁄
)

𝑊𝑓𝑒
≤ 1 (24) 
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Fig. 26 An infinite set of allowable couples (Nmax, Mmax) analysis and state limits representation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27 Set of allowable couples (Nmax, Mmax) analysis for kiewitt members with rigid joints 
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Now, let us introduce a variable: 

𝛽 =
1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡
 (25) 

With this notation, Equation (25) can be rewritten as: 

𝑁 = 𝐴 (𝜎𝑐𝑟𝑖𝑡 −
1

𝛽𝑊
𝑀) (26) 

Therefore, the coefficient β considers material safety, 

imperfections, and disturbances contributing to second-order 

buckling. Next, we will generate a graphical representation 

depicting the correlation between the regular forces and 

moments exerted on the section.  

The abscissa represents the applied moments, while the 

y-axis represents the corresponding regular forces. Within 

this context, we have identified two specific combinations 

(Nmax and Mmax) representing the section's limit states (see 

Figure 24). Analyzing Figure 24, we can observe that 

regarding pure compression, without any moments, the limit 

combination occurs at point C, where (Nmax=Acrit, 0).  

Conversely, in the scenario of pure bending, without 

regular forces, the limit combination is found at point E, 

represented by (0, Mmax=βWcrit). It is essential to note that 

exceeding the compression limit Nmax=Acrit at point C or 

surpassing the bending moment limit Mmax=βWcrit at point E 

leads to surpassing the critical stress and exceeding the 

material limit (fe).  

In order to determine the function representing the 

combinations (Mmax, Nmax) that result in reaching the material 

limit (fe) on the section crossing point B location, we can set 

Equation (27) to zero. Introducing the following notation: 

𝛾ȁ𝑁ȁ

𝐴𝜎𝑐𝑟𝑖𝑡
+

𝛾(
ȁ𝑀ȁ

1−𝛾ȁ𝑁ȁ

𝐹𝑐𝑟𝑖𝑡

⁄
)

𝑊𝜎𝑐𝑟𝑖𝑡
= 0 (27) 

We can derive the equation (26). Here, the value of β 

corresponds to the expression defined in Equation (25), 

which considers material safety factors and various 

imperfections and disturbances contributing to second-order 

buckling.  

The equation represented by Equation (26) corresponds 

to a straight line in the (M, N) coordinate system with a slope 

of -A/βW. This line, depicted in red in Figure 25, crosses the 

C and E locations, which represent the limits of pure 

compression (Nmax=Acrit, 0) and pure bending (0, 

Mmax=βWcrit), respectively.  

It delineates the correlation between the maximum 

moments and regular forces that allow the material limit fe to 

be reached precisely on the section crossing B location.  

In Figure 25, the upper portion of the curve represents 

situations where the dominant force is the normal force, 

resulting in pure compression within the section. In the lower 

part of the curve, the dominant factor is the bending moment, 

leading to tension and compression in different regions.  

At point D, there is a specific combination of couples 

with zero stress at point A and maximum compression (fe) at 

point B. Additionally, all points located within the bounds of 

the triangle (OCE) on the curve in Figure 25 correspond to 

combinations of couples (N, M) that do not exceed the 

material limit (fe) anywhere, neither on the crown of the 

section crossing A location nor on the one crossing point B.  

On the other hand, points above the line crossing C, D, 

and E locations represent combinations of couples (N, M) 

where the material limit (fe) is exceeded on the section 

crossing point B, and sometimes also on the one crossing 

point A.  

We can also consider the points representing stress 

planes intersecting the section at point A, where the stresses 

are zero on the section crossing that point.  

The stress is zero when the compressive stress (N/A) is 

precisely balanced by the bending stress (M/βW). These 

results in an affine line equation in the (N, M) coordinate 

system with a slope of (A/βW). The dotted purple line 

crossing O and D locations encompasses all combinations of 

couples (N, M) that generate a diagram showing only 

compression within the section, with zero stress on the 

section crossing point A.  

Points along the segment (OD) indicate situations where 

the compressive effect is below the material limit (fe) on the 

section crossing point B. Point C corresponds to combination 

(N, M) where compression occurs throughout the section, 

with maximum compression at point $B$.  

Points above this line after point D represent 

combinations (N, M) that result in compression throughout 

the section, with zero stress at point A and stress levels 

surpassing (fe) on the section crossing point B. Figure 26 

provides an overview of all allowable combinations. The red 

triangle area (OCD) represents fully compressed sections 

with maximum compressive stress on section crossing point 

B, staying below the material limit (fe).  

The blue triangle area (ODE) corresponds to sections 

experiencing compression and tension, with stresses at A and 

B locations below the material limit (fe) and peak stress at B 

locations.  
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Fig. 28 Set of allowable couples (Nmax, Mmax) analysis for kiewitt members with Al. joints 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29 Set of allowable couples (Nmax, Mmax) corrected for kiewitt members with a material unable to withstand tension and rigid joints 
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 The line (CE) encompasses all ultimate combinations 

(N, M) that result in ultimate stress crossing B location, 

below the material limit (fe), and potentially maximum at 

point A during pure bending at point E. Known as the 

ultimate design limit line (Limit State), it delineates the limit. 

Beyond the ultimate design limit line lies the white area, 

representing combinations of couples (N, M) that yield an 

ultimate stress surpassing the material limit (fe) on the section 

crossing B location and possibly on the section crossing point 

A.  

This region encompasses combinations leading to 

excessive compression or unacceptable tension in the 

material and section. The violet-coloured dashed line serves 

as a clear indicator, separating the red triangle (OCD) from 

the blue triangle (ODE), enabling a straightforward 

assessment of whether the section is entirely compressed or 

subjected to tension. It proves particularly valuable when 

dealing with a material incapable of withstanding tension. 

When an element is under combined bending, it can assume 

infinite couples (N, M) combinations. Some combinations 

solely result in compression within the section (red zone: 

triangle (OCD)), while others involve both compression and 

tension (blue zone: triangle (ODE)).  

Certain combinations lead to a limit state within the 

section, where the material limit (fe) is reached at either point 

A or B. Furthermore, combinations exist beyond the ultimate 

design limit line, signifying scenarios in which the material 

limit (fe) is surpassed. Figures 27 and 28 present the complete 

range of allowable combinations (N, M) for the Aluminium 

members of the Kiewitt 8 dome structure, considering both 

rigid and semirigid configurations. These combinations were 

obtained through a detailed GMNA analysis using Ansys, 

which carefully incorporates material safety considerations 

and accounts for various imperfections and disturbances that 

induce second-order buckling. For specific values of 

moments and regular forces corresponding to these 

combinations, refer to Table 6. How can we modify the line 

connecting pure compression to pure bending to address the 

material's inability to withstand tension? 

3.3. Correction of Allowable Couples for a Material that 

Resists Not to Tension 

Let us examine a rectangular section element with 

dimensions (bxh) and a material that lacks tensile strength, 

such as concrete. Based on Figure 29, in the tensile region of 

the section, the stresses will result in material fracture, 

impeding stress propagation. As a result, only the 

compressive part of the stress plane remains. In a 2D context, 

where the section has a height of h, the centroid lies at a 

distance of h/2 from the upper fiber.  

Introducing a new parameter, α, we define αh as the 

height of the compressed zone. For simplicity, let us assume 

that this compressed region is always triangular, with its 

resultant located αh/3 away from the upper fiber. Exerting a 

normal force along with a bending moment at the section's 

centroid, the stresses induced by this combination (N, M) at 

the centroid (which are compressive stresses) can be 

considered equal to the stress resulting from the same normal 

force applied with an eccentricity of e=M/N, positioned αh/3 

away from the upper fiber.  

To determine the maximum value of the average load 

when the compressive stress at the top reaches the material's 

compressive strength limit fe, we utilize the following 

equations: 

𝑁𝑚𝑎𝑥 =
𝛼ℎ𝑏𝑓𝑒

2
 (28) 

And: 

𝑀𝑚𝑎𝑥 = 𝑒𝑁𝑚𝑎𝑥 = (
ℎ

2
−

𝛼ℎ

3
) 𝑁𝑚𝑎𝑥  ; 0 < 𝛼 ≤ 1 (29) 

By eliminating α, we obtain a relation between N and M: 

𝑀𝑚𝑎𝑥 = (
ℎ𝑁𝑚𝑎𝑥

2
−

2𝑁𝑚𝑎𝑥
2

3𝑏𝑓𝑒
) (30) 

Equation (29) allows for adjusting the line graphically 

displaying all the limit states of combinations (N, M) for 

sections capable of sustaining tensile forces. Using equation 

(29), we can identify all the admissible couples (N, M) for α 

<1. When α =1, indicating a purely compressed section, the 

model presented in Figures 27 and 28 remains applicable. 

Equation (30) addresses materials that cannot endure tensile 

forces. It represents a second-degree polynomial that 

describes a concave parabolic curve with its concavity 

directed towards negative values of N. This curve is depicted 

in red in Figure 30 and defines the boundary of the lower 

blue region. It represents the possible states within the 

section where the maximum compressive stress, fe, is 

attained. Conversely, there is no stress in the lower part of 

the section, as tensile stresses cannot propagate in a cracked 

section.  

This is the corrected blue region shown in Figure 30, 

encompassing all admissible combinations (N, M) for a 

flexural section composed of a material unable to withstand 

tension. Consequently, any combinations (N, M) in the white 

region below the correction parabolic curve are invalid. A 

flexural moment cannot exist without a compensating normal 

force in a section with a material lacking tensile strength.  

Whenever a flexural moment is present in the section, a 

corresponding normal force is required to maintain force 

equilibrium and ensure that the maximum stress does not 

exceed the material's limit, fe. In other words, in a section 

with a material unable to withstand tension, the cracking 

limit of the element can be reached without surpassing the 

stress limit, fe, or encountering section instability. 
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Table 6. Moments and regular forces combinations 

Structural Type K8 with Rigid Joint 

Compressive Load (KN) 
0.00 20.00 40.00 60.00 69.24 

73.58 80.00 85.63 85.91 100.00 

Moment (KN.m) 
25.00 20.00 15.00 10.00 7.69 

6.61 5.00 3.59 3.52 0.00 

Structural Type K8 with Al. Joint 

Compressive Load (KN) 
0.00 20.00 40.00 49.98 51.49 

60.00 73.19 73.58 80.00 100.00 

Moment (KN.m) 
25.00 20.00 15.00 12.51 12.13 

10.00 6.70 6.61 5.00 0.00 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 Set of allowable couples (Nmax, Mmax) corrected for kiewitt members with a material unable to withstand tension and semirigid joints 

4. Conclusion 

In conclusion, this scientific article focuses on the 

engineering study of designing monolithic dome components 

using Aluminium 6082-T6 alloy. It provides a 

comprehensive overview of fundamental concepts related to 

buckling and their significance in optimizing component 

design. 

The article highlights the importance of buckling in 

structural design to ensure integrity and safety. It discusses 

manufacturing imperfections, disturbances, and their impact 

on second-order effects. The study emphasizes the 

significance of the P-∆ and P-δ effects in structural 

behaviour under different loads. Investigating Aluminium 

6082-T6 alloy material testing and connection moment 

capacity in dome structures yields valuable insights. 

Experimental testing and finite element analysis verification 

of moment capacity in Aluminium hexagonal joints 

demonstrate good agreement, enhancing our understanding 

of their mechanical behaviour.  
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Design optimization is emphasized, particularly 

regarding buckling sensitivity and structural integrity. The 

study highlights the relationship between slenderness ratio 

and buckling sensitivity, cautioning against high slenderness 

ratios exceeding 200. The importance of moment of inertia in 

reducing bending stresses and deformations is also 

highlighted, suggesting the potential of optimizing material 

usage. The limitations of Euler's law and the need to consider 

small slenderness ratios and material yield strength are 

discussed. The critical slenderness ratio E is identified as the 

point where Euler's law becomes invalid.  

The study emphasizes the necessity of considering 

permissible stress values based on slenderness ratio and yield 

strength to ensure structural integrity. Standardization in 

buckling analysis is stressed for enhancing research 

credibility and optimizing designs. The study presents 

standardized buckling curves and equations to calculate 

critical stress and normalised slenderness ratios, facilitating 

the consistent investigation and comparison of structural 

behaviour.  

Finally, the study addresses the dimensioning of 

structural elements subjected to combined bending and 

buckling forces. It highlights the importance of incorporating 

second-order effects, buckling susceptibility, and spatial 

variations in axial force and flexural rigidity. Considering 

safety coefficients and critical loads, the proposed 

dimensioning criterion ensures an appropriate utilization 

ratio and structural integrity. This scientific article provides 

valuable insights for designing monolithic dome components 

using Aluminium 6082-T6 alloy.  

It emphasizes the significance of considering buckling, 

optimizing design, understanding Euler's law limitations, and 

ensuring structural integrity. By incorporating these findings, 

engineers can enhance the safety and reliability of monolithic 

dome structures. 

Appendix 1 Notation 
M-  = Moment-rotation behaviour of the connection; 

n  = Ring frequency of reticulated dome; 

f  = Rise of the dome; 

L  = Span of the reticulated dome; 

P  = Axial force of the member; 

n  = Parameter defined by Ramberg-Osgood expression is  

  used to describe the shape of the inelastic portion of  

  the stress-strain diagram 

E0  = Initial Elastic Modulus; 

δmid  = Relative bending deflection of the midpoint of the  

  member; 

δend  = Relative deflection between the two ends of the  

  member; 

0.1  = Nominal yield strength (stress at 0.1 percent plastic  

  strain) or 0.1% proof stress; 

0.2  = Nominal yield strength (stress at 0.2 percent  

  plastic strain) or 0.2% proof stress; 

u  = Ultimate strength; 

GNA  = Geometric nonlinear analysis; 

GMNA  = Geometric and material nonlinear analysis; 

d  = Deflection vector of the dome; 

R  = radius of curvature; 

0  = Half-subtended angle: inclination of the roof for  

  the members at the dome apex; 

  = Ultimate Shear Stress; 

  = Compressive Stress or Ultimate Tensile Stress; 

FEM  = Finite element model; 

uFE  = Ultimate stress from FEM; 

E0  = Youngs modulus; 

Ki  = Connection Initial Stiffness; 

Ku  = Connection Plastic Stiffness; 

Mp  = Connection Plastic Moment; 

Mu  = Connection Ultimate Moment; 

T18-1, T24-1 & T30-1 = Specimen nominal name in bolts  

  direction; 

T18-2, T24-2 & T30-2 = Specimen nominal name  

  perpendicular to bolts direction; 

L  = domes span;  
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