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Abstract - The hydrological impact is evaluated by downscaling huge-scale climate variables (predictors) simulated and 

modelled by a Global Climate Model. Hydro-meteorological variations illustrate the use of the Statistical Downscaling 

technique to enhance precipitation resolution. In this investigation, we introduce a statistical precipitation model utilizing three 

distinct approaches that are the Delta technique, the Quantile Mapping technique, and the Empirical Quantile Mapping 

technique. To investigate the statistical downscaling method, the weather stations Chaskaman, Paragon, Sakhar, and Shirur 

were chosen as research sites to evaluate the approach for precipitation. All the stations are situated within the Bhima River 

Basin. To identify patterns from historical observations and subsequently apply them to both historical and  Shared 

Socioeconomic Pathway (SSP) periods (Shared Socioeconomic Pathway to describe possible future development). Future 

projections based on climate scenarios utilize CMIP6 data and the global climate model CNRM-CM6-1. The statistical 

downscaling results indicate that the SDGCM (Statistical Downscaling Global Climate Model) performs best in predicting daily 

precipitation. In the future period (2021-2100), the SDGCM model predicts an increase in average yearly rainfall at all four 
locations in the context of SSP245 and a substantial rise in average yearly rainfall at all four locations in the context of SSP585. 

Keywords - Climate change, GCMs, Rainfall, SDGCM, Statistical downscaling.

1. Introduction 
Climate change profoundly affects water resources 

through shifts in water availability, glacier retreat, rising sea 

levels, and alterations in the hydrological cycle. Precipitation 
and temperature are pivotal variables immediately influencing 

climate change. Forecasting and projecting future climate 

changes in the atmosphere is essential.  

After various literature surveys, a significant gap remains 

in the region-specific vulnerability assessment, especially 

concerning precipitation patterns in river basins. Many studies 

have focused on larger and global-scale assessment. However, 

regional basins like the Bhima River basin in India require 

detailed analysis using the latest advancements in climate 

modelling, such as CMIP6 (Coupled model intercomparison 

project phase 6).  

Most previous assessments have relied on older CMIP 
phases (e.g. CMIP5) is valuable but may not capture the full 

range of projected climate change due to their lower resolution 

and outdated socioeconomic scenarios. The understanding of 

how changing precipitation patterns will affect local water 

availability, agriculture, and communities is still evolving. 

There is a limited number of studies that incorporate both high 

resolution and climate projection and local vulnerability 

indicators like socioeconomic factors and infrastructure. The 

detail vulnerability assessment integrating CMIP6 projection 

is necessary to inform local adoption strategies.  

Climate change has emerged most pressing global 

challenge. River basins are vulnerable to these changes as they 

are often highly dependent on seasonal precipitation patterns. 

Alteration in rainfall due to climate change can lead to 

significant disruption including flood, drought and water 

availability. The Bhima River Basin, a critical water source in 
Maharashtra, is particularly susceptible to these shifts due to 

its dependence on the southwest monsoon.  

The CMIP6 models, which provide improved resolution 

and incorporate updated socioeconomic pathways (SSPs), 

offer a new opportunity to project future climate impacts with 

greater accuracy. Translating these model outputs into 

actionable vulnerability assessments remains a challenge. This 

study seeks to bridge that gap by applying CMIP6 climate 

projections to evaluate how future precipitation changes will 

affect the Bhima River Basin's water resources.  

The goal is to identify the most vulnerable areas and 
sectors, helping policymakers and local stakeholders develop 

more effective adaptation strategies. Global Climate Models 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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(GCMs) are a crucial tool for evaluating the potential result of 

climate shift effects on hydrological assets and resources and 

other environmental aspects. 

The output from GCMs requires analysis and 

interpretation before it can be directly utilized. GCMs operate 

on a global scale, with grid resolutions typically ranging from 
250 to 500 kilometres. This coarse resolution is insufficient 

for capturing local variations in watershed modelling. The 

downscaling technique is employed to transform coarse 

resolution into finer resolution (Wilby & Wigley, 1997; 

Hashmi et al., 2009).  

Downscaling is categorized into two ways: statistical and 

dynamic Downscaling. Statistical downscaling involves 

establishing a statistical linkage between broad-scale climate 

factors (such as precipitation) simulated by GCMs and their 

corresponding small-scale climate factor.  

Typically, this relationship is established by using past 

data and GCM output (Huang et al., 2011). Statistical 

downscaling involves creating a quantitative link between 

global atmospheric parameters (predictors) and small-scale 

variables (predictors). The software SDGCM V2.0, developed 

by Agrimetsoft, facilitates this system (Wilby et al., 2004). 

This paper focuses on assessing the suitability of SDGCM for 

downsizing precipitation and providing regional climate 

information based on future emission projections (SSP245, 

SSP585) for ongoing hydrological impact assessments related 

to climate change (Wilby et al., 2004).

 
Fig. 1 Study area showing Bhima river basin with dam 
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Fig. 2 Drainage  map showing the weather monitoring station as chaskaman, paragon, sakhar, shirur 

2. Study Area 
The Bhīma River has its source in the dry zone area of the 

Sahyadri Ghats in India. The Upper Bhīma basin extends 

geographically from 73°15'E to 75°15'E and from 18°0'N to 

19°15'N, in an area of 15859 km2 (Figure 1). The drainage 

map (Figure 2) displays comprehensive information about 
villages and stations. The Bhīma basin has features of a 

meandering landscape, with variations in elevations from 499 

meters to 1,298 meters above ocean level. The west side 

section of the catchment is highly rocky terrain. The central 

area is characterized by rolling hills and a gentle slope, while 

the east side section features undulating terrain and a low-

lying area (Central Water Board, Water Resources 

Department). The watershed experiences a tropical wet and 

dry climate, with temperatures reaching a high of around 38°C 

in April and a low of about 11°C in January. It receives an 

average rainfall of 1,233 mm annually, primarily from the 

summer monsoon. The west section of the watershed gets over 

3,000 mm of precipitation and slowly reduces to 600 mm 

towards the basin exit point (Samal et al. 2015). 

The Bhīma River provides a large volume of water flow, 

mainly due to its closeness to the West section of the Ghats. 

Four stations, namely Chaskaman, Paragon, Sakhar, and 

Shirur, are chosen within this river basin. Thus, studying the 

effects of climate change will provide valuable insights for 

making informed and effective decisions regarding the 

development of water resources for future growth. The 

primary meteorological data utilized in the study is 

precipitation. Historical precipitation data was sourced from 
Hydrological Data User Group (HDUG) in Nashik. The 

basin's landscape has undergone rapid urbanization in recent 

years, driven by the expanding Pune metropolitan region. This 

has garnered attention from scholars and scientists (Wagner et 

al., 2013, 2019) who are analysing the effect of climate shift 

on availability and water governance. 
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3. Methodology 
Global Climate Model (GCM) data downscaling involves 

several steps, where the predictor is the GCM output and the 

predictor is the observed station value. Precipitation data is 

employed as the dataset, selected through correlation analysis, 

and subjected to statistical downscaling using multilinear 

regression (Kannan et al., 2011). The model is applied to 

estimate daily precipitation for each station in both present and 

future scenarios. Monthly and annual precipitation totals are 

derived from the daily precipitation series (Srivastava et al., 

2008). The Bhima River basin is prone to variations in 

monsoon patterns, which are highly sensitive to climate 

change and also experience periodic water scarcity. This study 
could provide insight into sustainable water management 

strategies under future climate scenarios. The flow chart of 

progressive steps in this investigation is as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Showing detailed methodology of downscaling 

3.1. Statistical Downscaling 

The model is utilized to project daily precipitation for 

each station under current and future conditions. Monthly and 

annual precipitation computed depends on the daily rainfall 

time series (Srivastava et al., 2008). The developed statistical 

correlation is implemented to project climate model 

simulations to predict future hydrological parameters. The 

climate model's projected variables (predictor) and recorded 

precipitation values (predictand) are statistically correlated 

using a mathematical process employing the delta method for 
statistical downscaling. This approach is widely adopted, 

utilizing GCM output as a predictor (Marun et al., 2010; Kang 

et al., 2016; Kim et al., 2016). According to Marun et al. 

(2010), the delta approach does not correct biases in climate 

models. Instead, it utilizes the model's reaction to climate shift 

to refine observation, serving as a valuable reference point for 

the elimination of bias. The delta method approach builds 

upon the climate change signal derived from GCM data and 

applies it to observational data (Hay et al., 2000). In this 

approach, precipitation downscaling is determined as follows: 

Pstat,downscaling = PMOD, daily x (POBS/PMOD) 

Where Pstat.downscaling = downscaled precipitation data  

POBS = mean observed precipitation  

PMOD= mean precipitation data of GCM historical. For 

projecting future data, the equation incorporates the future 

period. The SD-GCM software tool (Agrimetsoft SD-GCM 

2017) is specifically employed to execute the delta technique, 

facilitating the downscaling of CMIP6 model data across 

different Shared Socioeconomic Pathways (SSPs) scenarios. 

The observed data and GCM output are stored in Excel format 

files. The SD-GCM tool offers three statistical downscaling 

approaches: the delta approach, the quantile mapping 

approach (QM) (Brier et al., 1968), and the Empirical Quantile 
Mapping approach (EQM) (Boe et al., 2007).  

A database is created to apply CMIP6 models under 

SSP245 and SSP585 scenarios. The SD-GCM tool includes 

options for manually entering input data, provided in a 

separate file. The CMIP6 models, such as the CNRM-CM6-1 

model, follow a specific naming format. The SD-GCM 

software includes an evaluation data option, enabling the 

assessment of CMIP6 model performance against 

observational data over a concurrent period. The observational 

data is stored in an Excel sheet file. During the evaluation 

phase, the efficiency criteria are assessed using metrics such 

as Pearson correlation, Root Mean Squared Error (RMSE), 
Spearman correlation, Nash-Sutcliffe efficiency, Mean 

Absolute Error (MAE), and d (index of agreement). 

3.2. Downscaling Concept 
Downscaling transforms global climate model data to 

achieve finer regional projections and detailed assessments of 

climate change impacts in specific areas. Raw outputs from 

GCM simulations lack the detail required for hydrological 

impact studies. Because of the inadequate and broader spatial 

resolution of GCM output data (typically 250 km), 

Evaluation Process through Statistics 
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downscaling techniques are employed. Downscaling narrows 

the disparity between coarse data and detailed climatic 

information at smaller scales.  

Downscaling can address geographical and time-related 

aspects of climate prediction. High-resolution mapping 

involves techniques to enhance resolution from a coarser to a 
finer scale. This can include refining data from a 25-kilometer 

grid cell to a 500-kilometer resolution or a specific 

geographical location (Fowler et al., 2007).  

Dynamical Downscaling involves complex 

computational processes, limiting its application in climate 

impact studies. Dynamical Downscaling (DD) requires a 

Regional Climate Model (RCM) to project finer-scale details 

within the broader framework provided by GCM nodes 

(Ghosh et al., 2009). Numerous methods have been developed 

for Statistical Downscaling, all relying on establishing 

statistical interrelationships between big-scale predictors and 

local ground station predictands. Statistical reduction creates 
climate projections tailored to specific locations, a capability 

that Dynamical Downscaling lacks due to its analytical 

constraints within a 25–50 km range.  

A key benefit of Statistical Downscaling methods is their 

reduced analytical complexity, enabling them to downscale 

numerous GCM or RCM climate projections efficiently. This 

approach is straight forward to implement and provides 

climate variables at station level from GCM-scale outcome 

(Yatagai et al., 2012). Statistical methods in downscaling are 

categorized into three main types: regression methods (Kang 

et al. 2007) and stochastic weather generators (Richardson, 
1981). The most widely adopted approach is Bias Correction 

(BC), extensively utilized in climate change impact 

assessments worldwide (Payne et al., 2004). 

The SD-GCM V1.0 tool is utilized for processing daily 

data from observational stations and GCM datasets. For 

monthly and daily data from CMIP6 or CORDEX, the SD-

GCM V2.0 tool is employed. 

3.3. Statistical Downscaling Methods in SD GCM V1.0 Tool 

The Global Climate Model (GCM) outputs downscaling 

procedure is made easier for climate researchers by 

AGRIMETSOFT's SD GCM software, a specialist 

application. When performing Statistical Downscaling (SD) 
using different bias correction techniques, such as Delta, 

Quantile Mapping, and Empirical Quantile Mapping (EQM), 

this software is especially helpful. With its intuitive interface, 

users may efficiently handle and process huge datasets to 

conduct climate impact assessments at local or regional sizes. 

The SD GCM software tool offers three statistical 

downscaling approaches: The Delta approach, the Quantile 

Mapping (QM) approach, and the Empirical Quantile 

Mapping (EQM) approach. The Delta Statistical Downscaling 

Method computes the delta, or difference, between historical 

climate simulations from a GCM and future climate 

projections. These computed deltas represent the relative 

changes in variables like temperature or precipitation.  

Downscaled future climate projections are then obtained 

by applying these modifications to observed historical climate 
data at a finer spatial level. Because the method maintains the 

observed climate characteristics and offers a consistent way to 

apply climate change signals across locations, it is extensively 

utilized and computationally easy. One significant drawback 

is that it assumes that the relationship between large-scale 

climate and local-scale variability will not change in the 

future. 

3.3.1. Delta Statistical Downscaling Approach (Dessu and 

Melesse, 2013) 

Equation (1) is for the precipitation, and Equation (2) is 

for the temperature for the downscaling of GCM data. 

𝑃𝑆𝐷
𝐷𝑒𝑙𝑡𝑎 = 𝑃𝐺𝐶𝑀 𝑆𝑆𝑃 ×

𝑃𝑜𝑏𝑠

𝑃𝐺𝐶𝑀 𝐻𝐼𝑆
 (1) 

𝑇𝑆𝐷
𝐷𝑒𝑙𝑡𝑎 = 𝑇𝐺𝐶𝑀 𝑆𝑆𝑃 + (𝑇𝑜𝑏𝑠 − 𝑇𝐺𝐶𝑀 𝐻𝐼𝑆𝑇) (2) 

Where, 𝑃𝑆𝐷
𝐷𝑒𝑙𝑡𝑎 is for precipitation and  𝑇𝑆𝐷

𝐷𝑒𝑙𝑡𝑎 is for 

temperature data downscaling. 𝑃𝑂𝑏𝑠  represents the mean 

measured and observed precipitation while 𝑃𝐺𝐶𝑀 𝐻𝐼𝑆𝑇  

corresponds to the historical mean precipitation simulated by 
the GCM. The subscript GCM ssp denotes the GCM's SSP 

projections for future periods, and the subscript Obs refers to 

the observed values. 

3.3.2. Quantile Mapping (QM) Statistical Downscaling 

Method 

Quantile Mapping (QM) is used to address biases in 

climate model outputs, especially for variables like 

temperature and precipitation. By mapping the quantiles of the 

model outputs to the corresponding quantiles of observations, 

the approach modifies the distribution of predicted climatic 

variables to match the distribution of observed historical data. 
By doing this, it is guaranteed that the downscaled data's 

statistical characteristics, such as its mean, variance, and 

extremes, are in line with previous observations. According to 

Panofsky et al. (1968), Quantile Mapping comprises a 

downscaling technique. In Quantile Mapping, the equation 

calculates the transformation from the ratio of Modelled 

Probabilistic Distribution (MPD) and Observed Probabilistic 

Distribution (OPD). SD GCM employs equation 3 for 

evaluating criteria and Equation (4) for future downscaling. 

𝑃𝑡
𝐸𝑣𝑎𝑙= Inv CDF

𝑆𝑡𝑎𝑡

𝑃𝑡−𝐶𝑎𝑙
(CDF

𝐻𝐼𝑆𝑇

𝑃𝑡−𝐶𝑎𝑙
 (𝑃𝑡−𝐸𝑣𝑎𝑙

𝐺𝐶𝑀 ))     (3) 

𝑃𝑡
𝑃𝑟𝑒𝑑𝑖𝑐𝑡= Inv CDF

𝑆𝑡𝑎𝑡

𝑃𝑡−𝐻𝑖𝑠
 (CDF

𝐻𝐼𝑆𝑇

𝑃𝑡−𝐻𝑖𝑠
 (𝑃𝑡−𝑆𝑆𝑃

𝐺𝐶𝑀 ))  (4) 
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In Equation (3), 𝑃𝑡
𝐸𝑣𝑎𝑙  is the Cumulative Distribution 

Function (CDF) of the observation data and GCM data over 

the supposed same period. 

3.3.3. Empirical Quantile Mapping (EQM) 

The statistical downscaling and bias correction technique 

used to modify climate model outputs is called Empirical 

Quantile Mapping, or EQM. By using empirical Cumulative 

Distribution Functions (CDFs) to map the quantiles of climate 

model outputs to those of observable data, it improves on the 

conventional quantile mapping method. By doing this 

variable-by-variable, it is ensured that the projected data of the 

model matches the observed statistical features, such as 

variance, mean values, and extremes, more precisely over the 

whole distribution. 

Wetterhall (2012), in statistical downscaling methods, 

EQM utilizes the Empirical Cumulative Distribution Function 

(ECDF) as described in Equation (5), along with all the 

components utilized similarly by SD GCM. Eq. 5 is 𝑃𝑡
𝐸𝑣𝑎𝑙 for 

evaluation criteria, and Equation (6) is 𝑃𝑡
𝑃𝑟𝑒𝑑𝑖𝑐𝑡 for future 

downscaling. 

𝑃𝑡
𝐸𝑣𝑎𝑙= InvECDF

𝑆𝑡𝑎𝑡

𝑃𝑡−𝐶𝑎𝑙
 (ECDF

𝐻𝐼𝑆𝑇

𝑃𝑡−𝐶𝑎𝑙
 (𝑃𝑡−𝐸𝑣𝑎𝑙

𝐺𝐶𝑀 ))     (5) 

𝑃𝑡
𝑃𝑟𝑒𝑑𝑖𝑐𝑡= InvECDF

𝑆𝑡𝑎𝑡

𝑃𝑡−𝐻𝑖𝑠
 (ECDF

𝐻𝐼𝑆𝑇

𝑃𝑡−𝐻𝑖𝑠
 (𝑃𝑡−𝑆𝑆𝑃

𝐺𝐶𝑀 ))     (6) 

 
Fig. 4 Three statistical downscaling approaches in the SD GCM 

software tool 

3.3.4. Comparative Analysis of Downscaling Techniques 

Downscaling techniques are crucial in climate change 

research to convert coarse-resolution outputs from global 

climate models to finer scales appropriate for regional 

assessments. The Delta approach, Quantile Mapping (QM), 

and Empirical Quantile Mapping (EQM) are among the 

frequently used techniques.  

The methodology, precision, and applicability of these 

methodologies vary, especially when it comes to predicting 

future precipitation patterns. A comparison of these three 

approaches is given in this section. One of the simplest and 

most used downscaling strategies is the delta method. It 

modifies observable data uniformly or by applying a delta 

based on changes predicted by Global Climate Models 

(GCMs).  

In order to estimate future values, the delta is typically 
computed as the difference between the historical and future 

simulations from GCMs. This difference is then added to the 

observed past data. The Delta method's primary benefits lie in 

its computational efficiency and ease of use. Its main flaw, 

which ignores the variability and distributional changes in 

climate variables, is the assumption of uniform changes across 

time. 

A more advanced method called Quantile Mapping (QM) 

aligns the distribution of modeled data with the observed data 

by adjusting for bias in climate model outputs. QM uses the 

statistical link between the quantiles of the simulated and 

observed variables to modify model outputs.  

This approach effectively reduces biases since it takes 

into consideration the whole distribution of precipitation 

rather than simply the mean, especially for extreme events. 

Nonetheless, QM may have trouble with non-stationarity, a 

situation in which the relationship between simulated and 

observed data varies over time, and it may be sensitive to the 

size and caliber of observed datasets. 

Building on the QM method, Empirical Quantile 

Mapping (EQM) applies bias correction using empirical 

distributions of modeled and observed data. EQM employs the 

empirical cumulative distribution functions (also known as 
CDFs) of observed and modeled precipitation directly, 

without making any assumptions about a particular 

distribution (such as normal or gamma).  

Because of its adaptability, EQM is especially helpful in 

situations when the data's underlying distribution is 

complicated or uncertain. Similar to QM, EQM efficiently 

tackles distributional biases, such as those resulting from 

extreme precipitation occurrences. Nevertheless, it also has 

the drawbacks of being dependent on a large amount of data 

and possibly being less efficient in non-stationary scenarios. 

Although the Delta approach is straightforward to use and 

computationally straightforward, it is unable to account for 
changes in the distribution of rainfall, especially at extremes. 

On the other hand, by modifying the complete distribution of 

climate model outputs, QM and EQM offer more realistic 

predictions of future precipitation patterns. EQM provides 

increased adaptability through the use of empirical 

distributions, which, in complicated climatic conditions, can 

result in more reliable bias correction. However, compared to 

the Delta technique, QM and EQM are computationally more 

demanding and need high-quality observational observations. 

Statistical 
Downscaling 

Data

Delta 
Approach

QM Approach
EQM 

Approach
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3.3.5. Input Station and GCM Data Downscaling 

Three types of data are loaded and utilized: observational 

data, historical GCM data, and projected GCM data for future 

scenarios. An Excel file serves as the input format for 

uploading. Users can select weather data from a specific 

station by clicking on "Browse file." In the pop-up window, 
users can browse and choose the targeted file containing 

observation data (in-situ). The station data should be in daily 

intervals. Once the input file is selected, attributes of the 

station data need to be specified. After selecting the required 

input sheet, users should input details such as "Station Name, 

Latitude, Unit, and Longitude." 

3.3.6. Statistical Downscaling in SD-GCM 

 The process begins by selecting the downscaling method 

for future data under specified Shared Socioeconomic 

Pathway (SSPs) scenarios. Three time periods, that is, station 

data, historical data (from GCM), and projected data, are 

designated. The target year for downscaling future data is 
manually chosen. Next, the appropriate statistical 

downscaling method is selected. During the evaluation phase, 

the Delta method is chosen. The downscaling procedure is 

executed via the downscaling tab, and by enabling the "Plot 

Observation Data" checkbox, users can visualize the time 

series graphically. 

3.3.7. Selecion of  GCM Model 

Table 1 shows the details of the GCM model. 

Table 1. Details of GCM model 

Sr. 

No 

Name of  

GCM 

Models 

Climate Model 

Description 
Resolution 

1 
CNRM-
CM6-1 

The climate model 

developed by the 
CNRM/CERFACS 

modelling group of 

CMIP6 

AOGCM high 

resolution 0.25 

degrees in the 
ocean and 0.5 

degrees in the 

atmosphere 

 

4. Statistical Analysis for Model Accuracy 
4.1. Statistical Analysis for Model Accuracy 

4.1.1. Root Mean Square Error (RMSE) 

The RMSE quantifies the typical deviation between the 
predicted values from a statistical model and the actual 

observed values. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑛

𝑖=1

𝑛
 

4.1.2. NRMSE 

NRMSE computes the Normalized Root Mean Square 

Error by matching observed and prediction values, employing 

various normalization techniques. 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑋0

 

4.1.3. Pearson Correlation Coefficient 

The Pearson Correlation Coefficient gauges the power of 

the linear relationship between two parameters measured on 

the same scale. It assesses how closely and in what direction 

two continuous variables are related. 

𝑟 =
∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑂𝑖 − �̅�)2𝑛
𝑖−1  √∑ (𝑃𝑖 − �̅�)2𝑛

𝑖−1

 

4.1.4. M.A.E.  

The Mean Absolute Error (MAE) is determined as the 

sum of all residuals (the discrepancies between actual and 

predicted values) divided by the total number of data points. 

Both MAE and RMSE span from 0 to ∞ and are insensitive to 
the direction of errors. These metrics are negatively driven, 

meaning lower scores indicate better performance. The MAE 

is determined using the following formula. 

𝑀𝐴𝐸 =
1

𝑛
× ∑ |𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 

4.1.5. M.B.E.  

The Mean Bias Error (MBE) calculates the mean 

deviation between two information sets. It retains the unit of 

the variable being measured. Values close to zero are ideal. 

𝑀𝐵𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 

4.1.6. Index of Agreement 

The index of agreement suggests the ratio between the 

Mean Square Error (MSE) and the Potential Error (PE). The 

value of 1 signifies an ideal match, while a value of zero 

indicates no agreement. 

𝑑 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

,  0 ≤ 𝑑 ≤ 1 

4.1.7. NSE  

The Nash-Sutcliffe Efficiency (NSE) is a statistical metric 

used to assess the predictive accuracy of hydrological models. 

It evaluates how well the model replicates the observed data. 

NSE values can range from -∞ to 1. 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝐵𝑆𝑖 − 𝑆𝐼𝑀𝑖)

2𝑛
𝑖=1

∑ (𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1
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5. Result and Discussion 
5.1. GCM Model CNRM-CM6-1 

Table 2. Evaluation criteria for Village- Chaskaman 

Method RMSE NRMSE Pearson Spearman MAE MBE 
Index of 

Agreement 

Nash Sutcliffe 

Model Efficiency 

Delta 3.182 1.643 0.512 0.753 1.73 0.01 0.687 -0.356 

QM 4.44 2.296 0.532 0.762 2.32 0.97 0.616 -1.652 

EQM 4.767 2.458 0.508 0.747 2.45 1.14 0.584 -2.044 

 
Table 3. Evaluation criteria for Village-Pargaon 

Method RMSE NRMSE Pearson Spearman MAE MBE 
Index of 

Agreement 

Nash Sutcliffe 

Model Efficiency 

Delta 2.4 1.86 0.331 0.644 1.43 -0.01 0.556 -0.524 

QM 5.397 4.04 0.343 0.652 2.81 1.88 0.376 -6.110 

EQM 5.644 4.214 0.327 0.652 2.91 2.04 0.354 -6.775 

 
Table 4. Evaluation criteria for Village- Sakhar 

Method RMSE NRMSE Pearson Spearman MAE MBE 
Index of 

Agreement 

Nash Sutcliffe 

Model Efficiency 

Delta 6.705 1.466 0.646 0.773 3.556 -0.02 0.786 0.174 

QM 7.337 1.604 0.667 0.782 3.876 1.02 0.785 0.013 

EQM 7.695 1.682 0.653 0.775 4.046 1.18 0.768 -0.086 

 
Table 5. Evaluation criteria for Village- Shirur 

Method RMSE NRMSE Pearson Spearman MAE MBE 
Index of 

Agreement 

Nash Sutcliffe 

Model Efficiency 

Delta 2.687 1.827 0.361 0.682 1.48 -0.01 0.586 -0.451 

QM 5.995 4.077 0.371 0.682 3.08 2.162 0.397 -6.211 

EQM 6.194 4.217 0.361 0.682 3.18 2.312 0.377 -6.711 



Mahesh S. Waghmare et al. / IJCE, 11(10), 1-20, 2024 

9 

 
Fig. 5 Evaluation analysis of three methods for Chaskaman station 

 

Fig. 6 Evaluation analysis of three methods for Pargaon station 

 
Fig. 7 Evaluation analysis of three methods for Sakhar station 
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Fig. 8 Evaluation analysis of three methods for Shirur station 

5.2. Evaluation Criteria 

In this criterion, the effectiveness of statistical 

downscaling methods is evaluated during a shared time frame. 
The assessment involves three distinct periods: the station 

period, the past period, and the predicted period. The past 

period pertains to GCM historical data. SDGCM can choose a 

common base that aligns with both the station and historical 

data periods. In the "Evaluation" tab, the user will choose three 

periods: Station period, Historical period, and Predicted 

period (based on GCM). SD-GCM will then calculate the 

calibration period and evaluation period from these selected 

periods.  

The calibration period is established based on the overlap 

between the Station period and the Historical period (it is 

recommended that the user selects the same period for both). 
The evaluation period is determined based on the Predicted 

period. In the downscaling process, there are four statistical 

downscaling methods, with three of them currently active: 

Delta, QM, and EQM. Once the data has been accurately 

downscaled, the efficiency criteria results can be reviewed. 

For evaluation comparisons, users can apply five efficiency 

criteria methods to compare the observed data with the past 

data from the GCM model. 

An RMSE value of zero indicates a perfect fit for the 

model. Lessen RMSE values indicate a better model and good 

accuracy predictions, while higher RMSE values show a 
deviation from the residual to the benchmark label. In this 

context, since the Delta method has the lowest RMSE value, 

it is preferred. 

The Normalized Root Mean Square Error (NRMSE) 

relates to the RMSE range of recorded values for the variable. 

It is stated as a portion of the total range that the model 

accounts for. In this scenario, the NRMSE value is the lowest, 

making the Delta approach the preferred choice. 

A Pearson value close to +1 or -1 shows a perfect relation, 

as one parameter increases, the other also increases as well. If 

the coefficient value falls between ±0.50 and ±1, it signifies a 
strong correlation. In this instance, all values are 

approximately 0.35, but the Pearson value for the Delta 

method is slightly lower. 

Spearman's rho is a nonparametric test used to check the 

power of the correlation of two parameters. When r = 1 

denotes a perfect correlation (positive) when r = -1 shows a 

perfect correlation (negative). In this scenario, none of the 

values meet these criteria, so the Delta approach is selected. 

When closer the Mean Absolute Error (MAE) is zero, the 

model is more accurate. Evaluation within the dataset reveals 

that the Delta approach, with its near-zero MAE, is more 

accurate and thus preferred. 

Mean Bias Error (MBE) occurs when predictions 

consistently underestimate observed values. For a reliable 

model, the random error RMSE should approximate the 

systematic error RMSE, ideally approaching zero. 

The Agreement index assesses the proportion of Mean 

Square Error (MSE) and Potential Error (PE). 1 indicates 

perfect agreement, while zero signifies no agreement. 

The Nash-Sutcliffe Efficiency (NSE) is a standardized 

measure that compares the magnitude of residual variance. 

NSE ranges from 1 to -∞, where 1 represents a perfect fit, and 

0 suggests the mean value achieves the same level of accuracy. 

5.3. Observed and Simulated Precipitation by Delta Method 

The evaluation result of the SDGCM Model downscaling 

of precipitation is as follows. (Delta method of downscaling).
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Fig. 9 The observed and simulated precipitation for Chaskaman station 

 
Fig. 10 The observed and simulated precipitation for Pargaon station 

 
Fig. 11 The observed and simulated precipitation for Sakhar station 
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Fig. 12 The observed and simulated precipitation for Shirur station 

5.4. Observed and Simulated Precipitation by EQM Method 

The assessment outcome of the SDGCM Model's precipitation downscaling using the EQM method is as follows: 

 
Fig. 13 The observed and simulated precipitation for Chaskaman station 

 
Fig. 14 The observed and simulated precipitation for the Pargaon station 
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Fig. 15 The observed and simulated precipitation for Sakhar station 

 
Fig. 16 The observed and simulated precipitation for Shirur station 

5.5. Observed and Simulated Precipitation by QM Method 
Here are the evaluation findings for precipitation downscaling using the Quantile Mapping method in the SDGCM Model. 

(Quantile Mapping method of downscaling). 

 
Fig. 17 The observed and simulated precipitation for Chaskaman station 
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Fig. 18 The observed and simulated precipitation for the Pargaon station 

 
Fig. 19 The observed and simulated precipitation for Sakhar station 

 
Fig. 20 The observed and simulated precipitation for Shirur station 
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6. Downscaling of Rainfall 
In this analysis, future data is downscaled for the future 

period from 2021 to 2099. Shared Socioeconomic Pathways 

(SSPs) are scenarios that describe different future pathways of 

global societal development and their potential impacts on 

climate. SSPs are used in conjunction with climate 

projections, like those from the Coupled Model 

Intercomparison Project (CMIP6), to explore the effects of 

socioeconomic changes on greenhouse gas emissions, 

adaptation, and mitigation efforts.  

The SSPs are categorized as SSP1 (Sustainability), where 

the world is making good progress toward sustainability, with 

a strong emphasis on environmental stewardship and reduced 
inequality. SSP2 (Middle of the Road) is where world where 

trends broadly follow historical patterns with moderate 

challenges to both mitigation and adaptation. SSP3 (Regional 

Rivalry) where a fragmented world with a focus on regional 

issues, leading to high challenges for mitigation and 

adaptation. SSP4 (Inequality) where a highly unequal world, 

with elites in some regions adapting well while others face 

great difficulty. SSP5 (Fossil-fueled Development) where a 

world driven by rapid economic growth and fossil fuel 

reliance, leading to high emissions but low challenges for 

adaptation due to increased wealth. This study considered only 
SSP245 and SSP585 emission scenarios. The SSP245 

scenario involves a net change in the energy balance of the 

climate system that is radiative forcing of 4.5 w/m2 up to 2100, 

representing a moderate pathway for forthcoming greenhouse 

gas exhaust. This situation assumes the implementation of a 

Climate change mitigation strategy. Consequently, the 

downscaled future precipitation data shows an overall increase 

in average precipitation. On the other hand, SSP585 entails an 

additional radiative forcing of 8.5w/m2 by 2100, depicting the 

upper limit of scenarios where climate protection measures are 

inadequately implemented. As illustrated in Figures 21 and 

24, downscaled precipitation remains relatively constant until 
2057, followed by an increasing trend after that. 

 
Fig. 21 Future downscaled data by delta method for all stations for the SSP245 scenario 

6.1. Downscaling of Rainfall for SSP 245 (Empirical Quantile Mapping Method) 

 
Fig. 22 Future downscaled data by EQM method for all stations for the SSP245 scenario 
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6.2. Downscaling of Rainfall for SSP 245 (Quantile Mapping Method) 

 
Fig. 23 Future downscaled data by QM method for all stations for the SSP245 scenario 

6.3. Downscaling of Rainfall SSP 585 (Delta Method) 

 
Fig. 24 Future downscaled data by delta method for all stations for the SSP585 scenario 

6.4. Downscaling of Rainfall SSP 585 (Empirical Quantile Mapping Method) 

 
Fig. 25 Future downscaled data by EQM method for all stations for the SSP585 scenario 
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6.5. Downscaling of Rainfall SSP 585 (QM Method)  

 
Fig. 26 shows future downscaled data by the QM method for all stations for the SSP585 scenario 

7. Conclusion 
Future climate projections for the Bhīma river basin 

utilize data from the CNRM-CM6-1 model developed by the 

CNRM/CERFACS group for CMIP6, succeeding the CNRM-

CM5-1 model from CMIP5. Statistical downscaling involved 

three approaches, namely the delta approach, the quantile 

mapping approach, and the empirical quantile mapping 

approach. The delta method proves most suitable as per the 

evaluation criteria. This analysis employed a set of eight 

indices to summarize key features necessary for climate 

change effect studies. In the SSP245 scenario, precipitation 
remains relatively stable until 2099 with minimal changes, 

whereas in SSP585, there is a noticeable year-on-year increase 

in precipitation. Notably, precipitation at Paragon and Shirur 

stations shows greater increases compared to Chaskaman and 

Sakhar. 

Peak rainfall is projected to occur in 2069 across all four 

stations under the SSP245 scenario, while in SSP585, it is 

expected to peak in 2096 at all stations. The increase in the 

projected annual average precipitation for the Bhīma river 

basin is 26 to 55% for SSP245 and 24 to 126% for SSP585. If 

the result is compared with Krishna River Basin (KRB) in 
Maharashtra, the results give a notable increase in the annual 

average rainfall, in the future, considering all SSP scenarios. 

The rise in the projected annual average rainfall reached 12% 

to 54% for all SSP scenarios compared to the past ensemble 

average. Future periods presented a switch in the periodic peak 

flows compared to the baseline period more readiness for 

water in the future in the Krishna River Basin (KRB). 

7.1. Hydrological and Socioeconomic Impact Assessment 

The downscaling of CMIP6 models indicates that the 

average annual precipitation over the Bhima River Basin is 

expected to increase, which might have substantial 

hydrological and socioeconomic ramifications for the area. It 

is anticipated that these effects will take several forms, 

including local livelihoods, agricultural output, flood risks, 

and water availability. 

7.1.1. Hydrological Impact 

The hydrological cycle of the Bhima River Basin will be 

directly impacted by an increase in yearly precipitation, which 

could result in higher river discharge and modifications to the 

seasonal flow patterns. Although more rainfall might make 

water more accessible, particularly during the monsoon 

season, it also makes extreme hydrological events like floods 
more frequent and intense. Higher peak discharges could 

overwhelm current flood control systems, resulting in more 

frequent inundations, given the basin's historical sensitivity to 

flooding, especially in low-lying areas. 

The rates of groundwater recharge, which are essential for 

maintaining domestic water supply and agriculture throughout 

the dry season, may also be impacted by the changed 

precipitation regime. However, because of increased surface 

runoff, excessive rainfall may impair the efficiency of natural 

recharge processes. Particularly in areas where groundwater is 

the main supply for irrigation, this imbalance between the 
availability of surface water and groundwater could make 

problems with water management worse. 

7.1.2. Socioeconomic Impact 

The expected changes in precipitation are likely to have 

major socioeconomic effects, notably on agriculture, which is 

the dominant economic activity in the Bhima River Basin. By 

reducing water stress, an increase in rainfall may boost crop 

yields in rain-fed agricultural systems. The potential increases 

the likelihood of crop damage, soil erosion, and nutrient loss 

for more extreme rainfall events, which could have a 
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detrimental effect on agricultural productivity as a whole. The 

bulk of the agricultural labor force in the area consists of 

smallholder farmers, who may be especially susceptible to 

these disruptions since they have fewer means to adjust to 

changing weather patterns. 

A direct hazard to housing, infrastructure, and public 
health could result from the increasing likelihood of floods in 

addition to its effects on agriculture. Communities in flood-

prone areas may experience recurring financial losses as a 

result of destruction to real estate, public utilities, and 

transportation infrastructure. The cumulative impact of these 

occurrences may put pressure on regional economies, raise the 

rate of poverty, and call for more expenditures on resilient 

infrastructure and disaster preparedness. Furthermore, 

changes in patterns of water availability may affect the 

demand for water resources in a variety of sectors, including 

household and industrial use. Maintaining the region's 

socioeconomic stability depends on controlling the balance 
between water supply and consumption as the population 

expands. 

7.1.3. Adaptation and Policy Implications 

Integrated Water Resource Management (IWRM) 

techniques that take into account both surface and 

groundwater resources are desperately needed to lessen the 

possible detrimental effects of these hydrological changes. 

The main objectives of the policy should be to increase the 

capacity of water storage, upgrade the infrastructure for 

managing floods, and support climate-variable agriculture. To 

support the livelihoods of vulnerable populations, 
socioeconomic adaptation techniques like crop 

diversification, enhanced irrigation systems, and 

infrastructure resistant to flooding are crucial. 

7.2. Scope for Research 

The results of this study underscore the significance of 

ongoing, multidisciplinary research on the vulnerability of 

river basins like the Bhima to climate change, especially with 

regard to precipitation patterns. Future research in this field 

can expand upon the current work in various directions, 

substantially enhancing the accuracy and application of 

climate projections and risk assessments. 

7.2.1. Exploration of Additional Climate Models 

Although CMIP6 models were the main tool used in this 

work, investigating alternative global and regional climate 

models can yield a more thorough and reliable picture of 

potential future climatic scenarios. Using ensembles of many 

GCMs or the outputs of Regional Climate Models (RCMs) 

like CORDEX can help reduce the uncertainty associated with 
individual models and better represent the range of probable 

outcomes. Improved predictions of precipitation extremes and 

variability which are essential for managing water resources 

and reducing the danger of flooding, can be achieved through 

the use of multiple models. In addition, incorporating new 

generations of climate models as they become accessible will 

guarantee that projections are grounded in the most recent 

climate science, taking into account improvements in 

modeling methodologies, parameterizations, and the addition 

of novel variables like land-use change and atmospheric 

dynamics. 

7.2.2. Application of Advanced Downscaling Techniques 
The downscaling techniques used in this work, such as 

Delta, Empirical Quantile Mapping (EQM), and Quantile 

Mapping (QM), are commonly used for enhancing the spatial 

resolution and correcting bias in climate model outputs. Future 

studies, however, would profit from investigating more 

sophisticated downscaling strategies, such as those based on 

machine learning or dynamic downscaling using RCMs. 

Artificial Neural Networks (ANNs) and Support Vector 

Machines (SVMs) are two examples of machine learning 

techniques that have demonstrated promise in capturing the 

intricate links between large-scale climatic variables and 

local-scale climate variability. This could lead to more 
accurate downscaling estimates. Furthermore, by including 

both physical processes and statistical corrections, hybrid 

techniques that integrate statistical and dynamical 

downscaling may further improve precipitation estimates. 

These techniques could enhance the depiction of extreme 

weather occurrences, which is important for comprehending 

vulnerability in areas susceptible to monsoonal flooding, such 

as the Bhima River Basin. 

7.2.3. Extending the Study to Other River Basins 

Future studies should apply the risk assessment approach 

created for the Bhima River Basin to other river basins in order 

to get a more comprehensive understanding of how climate 

change affects various hydrological regions. This would make 

it possible to compare distinct geographic, meteorological, 

and socioeconomic circumstances, providing insights into 

how different places may be affected differently by climate 

change with regard to water resources. Policymakers and 

water managers could benefit from the collection of useful 
data that could come from doing similar studies for basins with 

different levels of water stress, such as desert regions or 

regions with highly seasonal water supply. Academics can 

create a more comprehensive framework for climate change 

vulnerability assessments by expanding the scope to 

encompass several river basins. This would make it easier to 

identify adaptation methods and vulnerabilities unique to a 

given region, resulting in basin-level water resource 

management plans that are more focused and efficient. 

7.2.4. Incorporating Additional Climate and Socioeconomic 

Variables 

In order to conduct thorough risk assessments, future 

research should also take into account the integration of 

additional climate variables beyond precipitation, such as 
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temperature, evapotranspiration, and extreme weather 

occurrences (such as heat waves and droughts). These factors 

have an impact on agricultural output and water availability, 

two important factors for the socioeconomic stability of areas 

where people rely on river basins for their livelihoods.  

Furthermore, socioeconomic variables, including 
urbanization, population growth, and changes in land use, will 

be included to provide a more comprehensive understanding 

of vulnerability. Researchers will be able to evaluate the 

ability of local populations to adjust to future climatic 

circumstances and create more successful adaption strategies 

by modeling the interaction between climate and 

socioeconomic variables. 
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