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Abstract - This study investigates the effects of Silica Fume (SF) on Geopolymer Concrete (GPC) to evaluate its impact on key 

performance metrics, including workability, setting times, and mechanical properties. Geopolymer concrete mixes with varying 

SF/Fly Ash (FA) ratios were prepared and tested for the slump, initial and final setting times, compressive strength, and splitting 

tensile strength. Results indicate that increasing SF content decreases slump values, reflecting reduced workability due to the 

high surface area and water absorption of SF particles. Incorporating SF significantly accelerates setting times, which is 

advantageous for applications requiring rapid strength gain. Mechanical testing revealed a marked improvement in compressive 

and splitting tensile strengths with higher SF content, attributed to enhanced microstructural densification and reduced porosity. 

Despite these promising findings, the study identifies several knowledge gaps, including the need for research on long-term 

durability, optimization of mix proportions, standardization of production methods, exploration of additional industrial by-

products, and comprehensive environmental and economic assessments. Addressing these gaps will advance the understanding 

and application of SF-blended GPC, supporting its broader adoption in sustainable construction practices. 

Keywords - Geopolymer Concrete, Silica Fume, Workability, Compressive Strength, Splitting Tensile Strength, Sustainability. 

1. Introduction 
The purpose of this paper is threefold: to establish a 

robust theoretical framework, to identify key findings and 

existing knowledge gaps in the current body of research, and 

to guide the direction of the present study. As per the kinds of 

literature, various research presents the evaluation of the 

performance of geopolymer-concrete with partial replacement 

of various additional materials. The property varies with 

respect to the different replaced materials in the different 

geographical regions. According to the Delhi geographic 

region, silica fume has been used in this research to develop a 

high-strength geopolymer concrete. Theoretical frameworks 

serve as the foundation upon which empirical research is 

constructed, providing the necessary context for 

understanding the underlying principles governing 

geopolymer concrete's mechanical properties and 

environmental impact. By systematically reviewing the 

relevant literature, this section seeks to delineate the evolution 

of research in the field, highlight the most significant 

contributions, and identify areas where further investigation is 

warranted. These efforts are essential in shaping the trajectory 

of the current study, ensuring that it builds upon existing 

knowledge while addressing unresolved questions and 

emerging challenges. Figure 1 represents some benefits of 

silica fume. 

2. Overview of Geopolymer Concrete 
2.1. Definition and Composition 

Geopolymer Concrete (GPC) is an advanced material 

designed to address the environmental and performance 

limitations of traditional Portland cement concrete (OPC) [1]. 

Unlike OPC, which relies on the high-temperature calcination 

of limestone and other raw materials to produce cement, GPC 

is synthesized through the alkaline activation of 

aluminosilicate precursors. These precursors, such as fly ash, 

metakaolin, and blast furnace slag, are in the high proportion 

of alumina (Al₂O₃) as well as of silica (SiO₂), and they react 

with an alkaline activator to form a hardened binder [2].  

 

The chemical process involved in GPC production begins 

with the dissolution of aluminosilicate minerals in an alkaline 

solution, typically composed of potassium hydroxide (KOH) 

or sodium hydroxide (NaOH), and a silicate activator such as 

potassium silicate (K₂SiO₃) or sodium silicate (Na₂SiO₃). This 

reaction generates a gel-like aluminosilicate matrix that forms 

the binding phase in GPC. Unlike OPC, where calcium silicate 
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hydrate (C-S-H) is the primary binder, GPC’s binding phase 

is an aluminosilicate gel characterized by a three-dimensional 

network of Si-O-Al bonds. This distinctive chemistry imparts 

GPC with unique mechanical and durability properties, setting 

it apart from conventional concrete materials [3].  

 

The differences between GPC and OPC extend beyond 

their chemical composition. GPC typically exhibits enhanced 

resistance to chemical attacks, high temperatures, and acidic 

environments, making it particularly suitable for applications 

in harsh conditions. Furthermore, the production of GPC 

involves a lower carbon footprint compared to OPC, as it does 

not require the high-temperature kiln process essential for 

cement production. This makes GPC an appealing alternative 

in the context of sustainable construction practices [4]. Figure 

2 illustrates the typical composition of geopolymers, 

highlighting the role of aluminosilicate materials like fly ash, 

metakaolin, and slag, along with alkali hydroxides and 

silicates, in the geopolymerization process.

 
 

 

 

 

 

 

 

 

 

Fig. 1 Benefit of silica fume 

        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Typical composition of geopolymers 
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2.2. Historical Development 

The evolution of geopolymer technology dates back to the 

early 1970s, with the pioneering work of Professor Joseph 

Davidovits, who first introduced the concept of geopolymers. 

Davidovits's initial research focused on developing a new 

class of inorganic polymers, which he termed "geopolymers," 

to replace conventional cementitious materials. His early work 

demonstrated the potential of aluminosilicate materials to 

form durable and chemically resistant binders when activated 

with alkaline solutions [5]. 

 

Key milestones in the research and application of GPC 

include the refinement of precursor materials and activation 

methods, as well as the exploration of diverse applications. In 

the 1980s and 1990s, significant advancements were made in 

understanding geopolymers' structural and chemical 

properties, leading to the development of more refined and 

efficient activation techniques. The use of industrial by-

products, such as fly ash and slag, as precursors for GPC 

gained prominence in the 2000s, reflecting a growing 

emphasis on sustainability and waste minimization in 

construction materials. 

 

The 2010s marked a period of increased research into the 

optimization of GPC mixtures, with a focus on enhancing 

mechanical properties, workability, and long-term durability. 

Studies during this period also explored the potential of GPC 

in various structural and non-structural applications, including 

high-strength concrete, fire-resistant materials, and 

environmentally friendly construction solutions [7]. 

 

In recent years, the application of GPC has expanded 

beyond traditional concrete applications, with ongoing 

research investigating its use in novel contexts such as 3D 

printing, advanced structural composites, and infrastructure 

rehabilitation. The continued evolution of geopolymer 

technology reflects a growing recognition of its potential to 

contribute to sustainable development and address the 

environmental challenges associated with conventional 

cement-based materials [8]. 

 

The historical development of GPC underscores its 

transformative impact on the field of construction materials. 

From its inception as a theoretical concept to its current status 

as a viable and innovative alternative to OPC, GPC represents 

a significant advancement in materials science, driven by 

ongoing research and technological progress [9]. 

 

3. Mechanical Properties of Geopolymer 

Concrete 
3.1. Compressive Strength 

The compressive strength of Geopolymer Concrete 

(GPC) is a critical parameter influencing its suitability for 

various structural applications. This strength is influenced by 

several factors, including mixed proportions, curing 

conditions, and the nature of the alkaline activators used. 

 

3.1.1. Mix Design Proportions 

The proportions of the aluminosilicate precursor 

materials (such as fly ash, metakaolin, or slag) and the alkaline 

activator solutions are pivotal in determining the compressive 

strength of GPC. Variations in the SiO₂/Al₂O₃ ratio and the 

concentration of the alkaline activators can lead to significant 

differences in the final strength. Optimal mix proportions are 

necessary to achieve high compressive strength, and recent 

research has focused on fine-tuning these parameters to 

enhance performance [6]. Figure 3 represents the factors for 

mixed design proportions of geopolymer concrete using silica 

fume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Mix design properties 

Water-to- Binder Ratio 

Balancing workability 
and strength is 
essential. 

Aluminosilicate Source 

The choice of aluminosilicate 
affects concrete performance. 

Alkaline Activators 

Activators influence 

setting time and 
strength. 

Silica Fume Content 

Silica fume content is 

critical for mix 
optimization. 

Factors Influencing Geopolymer Concrete 

Performance 



Sitesh Kumar Singh et al. / IJCE, 11(11), 78-88, 2024 

 

81 

3.1.2. Curing Conditions 

Curing conditions play a crucial role in developing 

compressive strength in GPC. Unlike OPC, which typically 

requires moist curing, GPC can benefit from elevated 

temperature curing, such as steam curing, to accelerate the 

geopolymerization process. The temperature and duration of 

curing affect the polymerization kinetics and, consequently, 

the final compressive strength. Understanding the influence of 

curing regimes helps in optimizing the performance of GPC in 

various environmental conditions [10]. 

 

3.1.3. Comparison with OPC 

Compared with traditional Portland cement concrete 

(OPC), GPC often exhibits comparable or superior 

compressive strength. Studies have shown that GPC can 

achieve high compressive strengths, sometimes exceeding 

those of OPC, - depending on the mix design and curing 

conditions. This enhanced strength is attributed to the unique 

polymeric network formed during the geopolymerization 

process, which can provide greater load-bearing capacity and 

structural integrity [10]. 

 

3.1.4. Enhancements Through Additives 

The tensile and flexural strengths of GPC can be 

improved by incorporating various additives, such as silica 

fumes and steel fibers. Silica fume, known for its high 

pozzolanic reactivity, contributes to the densification of the 

geopolymeric matrix, enhancing both tensile and flexural 

strengths. When added to GPC, steel fibres provide additional 

reinforcement, improving its resistance to cracking and 

enhancing overall mechanical performance. 

 

3.1.5. Comparative Analysis with Conventional Concrete 

Compared to conventional concrete, GPC, with 

appropriate additives, often demonstrates improved tensile 

and flexural strengths. The presence of silica fumes and steel 

fibers contributes to a more robust and ductile material 

capable of withstanding higher tensile stresses and flexural 

loads. The ability to tailor the mechanical properties of GPC 

through additive incorporation allows for its application in 

demanding structural scenarios where conventional concrete 

might fall short. 

 

3.2. Durability 

3.2.1. Resistance to Chemical Attacks 

GPC exhibits exceptional resistance to chemical attacks, 

including acids, sulfates, and chlorides. This enhanced 

durability results from the dense aluminosilicate network, 

which minimizes the penetration of aggressive substances. 

The performance of GPC in environments with high chemical 

exposure makes it a suitable choice for applications such as 

marine structures and wastewater treatment facilities [11]. 

 

3.2.2. Thermal Effects 

The thermal stability of GPC is another significant 

advantage. GPC can withstand elevated temperatures better 

than OPC, making it particularly valuable in fire resistance 

applications. The thermal properties of GPC, including its 

ability to maintain structural integrity at high temperatures, are 

a direct result of the geopolymeric matrix, which remains 

stable under thermal stress [12]. 

 

3.2.3. Environmental Stressors 

GPC's durability extends to its performance under various 

environmental stressors, including freeze-thaw cycles and 

moisture fluctuations. The resistance to such stressors is 

attributed to the low permeability and high chemical stability 

of the geopolymeric binder. This resilience ensures long-term 

performance and reduces maintenance needs, contributing to 

the overall sustainability of GPC as a construction material 

[13]. 

 

3.2.4. Long-Term Performance and Sustainability Aspects 

The long-term performance of GPC is characterized by its 

ability to maintain mechanical and durability properties over 

extended periods. Studies indicate that GPC can sustain its 

strength and resistance characteristics effectively throughout 

its service life.  

 

Moreover, using industrial products as precursors in GPC 

production aligns with sustainability goals by reducing waste 

and lowering the carbon footprint associated with traditional 

cement production [14]. The performance characteristics of 

geopolymer concrete using silica fume are shown in Figure 4.  

 

 
Table 1. Mechanical properties of geopolymer concrete 

Property Aspect Details References 

Compressive Strength 

Mix Proportions Optimal ratios [6] 

Curing Conditions Elevated curing [10] 

Comparison with OPC Comparable or superior [10] 

Enhancements 
Additives Silica fume, steel fibers  

Comparative Analysis Improved strength  

Durability 

Chemical Resistance Acid, sulfate, and chloride resistance [11] 

Thermal Effects High-temperature stability [12] 

Environmental Stressors Freeze-thaw, moisture resistance [13] 

Long-Term Performance Sustained strength, eco-friendly [14] 
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Fig. 4 Performance characteristics 

 

The mechanical properties of geopolymer concrete, 

including compressive strength, tensile and flexural strength, 

and durability, underscore its potential as a robust and 

sustainable alternative to traditional Portland cement concrete.  

The advancements in mix design, additive incorporation, and 

understanding of curing conditions continue to enhance the 

performance of GPC, supporting its application in a wide 

range of structural and environmental contexts. The 

mechanical properties of Geopolymer Concrete (GPC), 

including compressive strength and durability factors, are 

summarized in Table 1. 

 

4. Utilization of Industrial By-products in 

Geopolymer Concrete 
4.1. Fly Ash-Based Geopolymer Concrete 

4.1.1. Environmental Benefits and Potential for Reducing 

Greenhouse Gas Emissions 

Fly ash, a by-product of coal combustion in power plants, 

has emerged as a prominent material in the production of 

Geopolymer Concrete (GPC). The utilization of fly ash in 

GPC offers significant environmental benefits. The 

incorporation of fly ash reduces the reliance on virgin raw 

materials, thereby decreasing the overall environmental 

footprint of concrete production [15]. 

Greenhouse Gas Emission Reductions 

The production of traditional Portland cement is a major 

contributor to greenhouse gas emissions, primarily due to the 

high temperatures required for its calcination. In contrast, the 

geopolymerization process, which utilizes fly ash, involves 

lower temperatures and consequently results in reduced 

carbon dioxide emissions. By substituting a significant portion 

of Portland cement with fly ash, GPC contributes to a lower 

carbon footprint, aligning with global sustainability goals. 

 

Reduction of Landfill Waste 

The use of fly ash in GPC also addresses the issue of 

waste management. Fly ash is often disposed of in landfills, 

where it can pose environmental hazards. By incorporating fly 

ash into GPC, the volume of waste directed to landfills is 

minimized, providing a beneficial use for this industrial by-

product and contributing to waste reduction efforts[16]. 

 

4.1.2. Key Studies on the Mechanical and Durability 

Properties of Fly Ash-Based GPC 

Numerous studies have examined the mechanical and 

durability properties of fly ash-based GPC, highlighting its 

performance and potential applications. 
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Mechanical Properties 

Research indicates that fly ash-based GPC can achieve 

comparable or superior mechanical properties compared to 

traditional concrete. Studies have demonstrated that fly ash-

based GPC can attain high compressive strength, tensile 

strength, and flexural strength, depending on the mix design 

and curing conditions.  

 

The pozzolanic reaction of fly ash with alkaline activators 

enhances the formation of a dense geopolymeric matrix, 

contributing to its mechanical robustness. 

 

Durability Properties 

Fly ash-based GPC exhibits excellent durability 

characteristics, including resistance to chemical attacks, 

moisture infiltration, and high temperatures. Studies have 

shown that fly ash-based GPC has superior resistance to 

sulfate attacks, chloride ingress, and acid exposure compared 

to conventional concrete.  

 

This durability makes fly ash-based GPC suitable for 

aggressive environments, such as marine structures and 

industrial applications [17]. 
 

4.2. Other By-Products 

4.2.1. Use of Ultra-Fine Slag, Rice Husk Ash, Ferrochrome 

Slag, Red Mud, and Silica Fume 

In addition to fly ash, several other industrial by-products 

have been explored for their use in geopolymer concrete. 

These by-products offer varying benefits in terms of 

mechanical performance and sustainability [19]. 
 

Ultra-Fine Slag 

Ultra-fine slag, a by-product of steel manufacturing, has 

been used as a supplementary material in GPC. Its fine particle 

size and high reactivity contribute to improved mechanical 

properties and durability. Research indicates that ultra-fine 

slag can enhance the compressive strength and resistance to 

chemical attacks of GPC, making it a valuable addition to 

geopolymer mixtures [20]. 
 

Rice Husk Ash 

Rice husk ash, derived from the agricultural waste of rice 

milling, is another by-product used in GPC. The high silica 

content of rice husk ash contributes to forming a dense and 

durable geopolymeric matrix. Studies have demonstrated that 

rice husk ash-based GPC exhibits good mechanical properties 

and resistance to environmental stressors [21]. 
 

Ferrochrome Slag 

Ferrochrome slag, a by-product of the ferrochrome 

industry, has been investigated for its use in GPC. This by-

product can enhance the mechanical properties of GPC, 

particularly in terms of compressive strength. Research also 

highlights its potential benefits in improving the sustainability 

of GPC by reducing reliance on conventional raw materials 

[22]. 

Red Mud 

Red mud, a waste product from the alumina extraction 

process, has been studied for its application in GPC. The 

incorporation of red mud in GPC can contribute to improved 

strength and durability.  

 

However, challenges related to red mud's high alkalinity 

and variability need to be addressed to optimize its 

performance in geopolymer mixtures [23]. 

 

Silica Fume 

Silica fume, a by-product of silicon and ferrosilicon alloy 

production, is frequently used to enhance the properties of 

GPC. The fine particles of silica fume contribute to a dense 

microstructure and improved mechanical performance. Silica 

fume can significantly enhance the compressive strength, 

tensile strength, and durability of GPC [18]. 

 

4.2.2. Impact on Mechanical Properties and Sustainability 

The inclusion of these industrial by-products in GPC not 

only enhances its mechanical properties but also contributes 

to its sustainability. Using by-products reduces the demand for 

virgin raw materials, decreases waste generation, and lowers 

the carbon footprint associated with concrete production [24, 

25]. 

 

Mechanical Properties 

Each by-product has unique effects on the mechanical 

properties of GPC. For instance, silica fume and ultra-fine slag 

typically enhance strength, while rice husk ash and 

ferrochrome slag contribute to both strength and durability. 

The choice of by-product and its proportion in the geopolymer 

mixture can be optimized based on the specific requirements 

of the application [26]. 

 

Sustainability 

Using industrial by-products in GPC aligns with 

sustainability goals by promoting resource efficiency and 

reducing environmental impacts. By leveraging waste 

materials from other industries, GPC supports circular 

economy principles and contributes to a more sustainable 

construction practice [27, 28]. 

 

In conclusion, integrating industrial by-products such as 

fly ash, ultra-fine slag, rice husk ash, ferrochrome slag, red 

mud, and silica fume into geopolymer concrete offers 

significant mechanical performance and sustainability 

advantages. These materials not only enhance the properties 

of GPC but also contribute to environmental conservation by 

minimizing waste and reducing greenhouse gas emissions 

[29].  

Table 2 summarizes the use of various industrial by-

products in geopolymer concrete, highlighting their impacts 

on mechanical properties and sustainability. 
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Table 2. Use of industrial by-products in geopolymer concrete 

Category Aspect Details Reference 

Fly Ash-Based Geopolymer 

Concrete 

Benefits Reduced footprint [15] 

Emissions Lower CO₂ [15] 

Waste Landfill reduction [16] 

Strength Comparable or superior [17] 

Durability Chemical, moisture, and heat resistance [17] 

Other By-products 

Ultra-Fine Slag Enhanced properties [20] 

Rice Husk Ash Dense matrix [21] 

Ferrochrome Slag Improved strength [22] 

Red Mud Strength, durability [23] 

Silica Fume Enhanced performance [18] 

Impact on Mechanical 

Properties and Sustainability 

Strength Improved by by-products [26] 

Sustainability Resource efficiency, reduced waste [24, 25] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Challenges in geopolymer concrete research 
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reduces CO2 emissions but also utilizes industrial by-

products, contributing to a notable decrease in greenhouse gas 

emissions [30]. LCA studies indicate that GPC can reduce 

global warming potential by up to 80% compared to OPC, 

depending on the specific mix design and the source of by-

products. Regarding sustainable development, GPC is pivotal 

in advancing clean technology and promoting sustainable 

construction practices [31].  

Its adoption aligns with circular economy principles by 

repurposing waste materials and minimizing the demand for 

virgin resources. The lower energy requirements for GPC 

production and its reduced carbon footprint underscore its 

contribution to mitigating climate change and achieving 

sustainability goals within the construction sector [33]. 
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4.4. Challenges and Opportunities in Geopolymer Concrete 

Research  

Despite its benefits, the research and application of 

geopolymer concrete face several challenges. One major issue 

is the lack of standardized mix designs and curing protocols, 

which complicates the consistent production and performance 

of GPC. Variability in raw material properties and the 

complexity of the geopolymerization process necessitate the 

development of universal guidelines to ensure reliable results. 

Additionally, the intricate chemical reactions involved in 

geopolymerization present a challenge in optimizing GPC 

formulations [36]. Addressing these complexities requires a 

deeper understanding of the reaction mechanisms and 

practical strategies for scaling up production from laboratory 

to industrial scale. Nonetheless, there are significant 

opportunities for advancing GPC research. Further 

optimization of mix proportions can enhance performance 

characteristics such as compressive strength and durability 

while reducing costs [37]. Exploring new applications in 

construction and infrastructure, including high-performance 

and specialized uses, offers potential for expanding GPC's 

market presence. Research into cost-effective production 

methods and innovative applications will support the broader 

adoption of GPC, ultimately contributing to more sustainable 

construction practices and infrastructure development [38]. 

Figure 5 represents some challenges in geopolymer concrete 

research. 

Figure 6 represents the opportunities in geopolymer 

concrete research. 

5. Methodology 
The methodology involved preparing geopolymer 

concrete mixes with varying Silica Fume (SF) content while 

keeping other materials constant to evaluate workability, 

setting time, compressive strength, and splitting tensile 

strength. The mixes, labeled GPSF0 to GPSF3, had SF/FA 

ratios of 0/100, 10/90, 20/80, and 30/70, respectively. The 

workability was assessed using the slump test, setting times 

were measured with a Vicat apparatus, and compressive 

strength was tested on cube specimens after 28 days of curing.  

 

Splitting tensile strength was determined using 

cylindrical specimens. The results were analyzed to determine 

the impact of SF on the concrete's performance, revealing its 

effectiveness in enhancing mechanical properties and 

reducing workability with increasing SF content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Opportunities in geopolymer concrete research 
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6. Presentation and Discussion of Results 
Table 3. Slump values for geopolymer concrete with silica fume 

Mix Name SF/FA Ratio Slump (mm) 

GPSF0 0/100 120 

GPSF1 10/90 105 

GPSF2 20/80 90 

GPSF3 30/70 75 

 
Table 4. Setting times for geopolymer concrete with silica fume 

Mix 

Name 

SF/FA 

Ratio 

Initial Setting 

Time (min) 

Final Setting 

Time (min) 

GPSF0 0/100 250 480 

GPSF1 10/90 210 430 

GPSF2 20/80 180 390 

GPSF3 30/70 150 340 

 

The workability of the geopolymer concrete was 

measured using the slump test, as presented in Table 3. The 

slump values indicate the flowability and ease of placement of 

the concrete. The mix labeled GPSF0, with no silica fume and 

fly ash (FA) to silica fume (SF) ratio of 0/100, exhibited the 

highest slump value of 120 mm, indicating a more fluid and 

workable mix. As the SF content increased, the slump values 

decreased progressively, with GPSF1 (10/90) showing a 

slump of 105 mm, GPSF2 (20/80) showing 90 mm, and 

GPSF3 (30/70) showing 75 mm. This reduction in workability 

with increasing SF content can be attributed to the higher 

surface area and amorphous nature of silica fume particles, 

which tend to absorb more water, leading to a stiffer mix. 

 

Table 4 presents the initial and final setting times for 

geopolymer concrete mixes with varying SF content. The 

initial setting time for GPSF0 (0/100) was recorded at 250 

minutes, and the final setting time at 480 minutes, representing 

the baseline for the setting behavior without any SF. As the SF 

content increased, the setting times shortened, reflecting the 

pozzolanic reactivity of SF, which accelerates the 

geopolymerization process. For the GPSF1 (10/90) mix, the 

initial and final setting times were 210 and 430 minutes, 

respectively. This trend continued with GPSF2 (20/80) 

showing setting times of 180 and 390 minutes and GPSF3 

(30/70) showing the shortest setting times of 150 and 340 

minutes, respectively. The faster setting times with higher SF 

content are beneficial in applications where rapid strength gain 

is desired, such as precast concrete production. 
 

Table 5. Compressive strength of geopolymer concrete with silica 

fume 

Mix Name SF/FA Ratio 
Compressive 

Strength (MPa) 

GPSF0 0/100 15 

GPSF1 10/90 18 

GPSF2 20/80 25 

GPSF3 30/70 33 

 

Table 6. Splitting tensile strength of geopolymer concrete with silica 

fume 

Mix Name SF/FA Ratio 
Splitting Tensile 

Strength (MPa) 

GPSF0 0/100 1.2 

GPSF1 10/90 1.6 

GPSF2 20/80 2.2 

GPSF3 30/70 2.7 

 

The compressive strength of geopolymer concrete, a 

critical measure of its load-bearing capacity, is detailed in 

Table 5. At a curing age of 28 days, the GPSF0 (0/100) mix 

exhibited a compressive strength of 15 MPa. The introduction 

of SF significantly enhanced the compressive strength, with 

GPSF1 (10/90) achieving 18 MPa, GPSF2 (20/80) achieving 

25 MPa, and GPSF3 (30/70) reaching 33 MPa. This marked 

increase in compressive strength with higher SF content is due 

to the densification of the concrete's microstructure and the 

formation of Calcium-Alumino-Silicate-Hydrate (C-A-S-H) 

gels, which reduce porosity and enhance the overall 

mechanical properties of the concrete. 

 

Table 6 illustrates the splitting tensile strength, which 

measures the concrete's resistance to tensile stress, an 

important parameter for structural integrity. The GPSF0 

(0/100) mix exhibited a tensile strength of 1.2 MPa at 28 days. 

The inclusion of SF progressively improved the tensile 

strength, with GPSF1 (10/90) showing 1.6 MPa, GPSF2 

(20/80) reaching 2.2 MPa, and GPSF3 (30/70) achieving the 

highest value of 2.7 MPa. The enhancement in tensile strength 

with increasing SF content can be attributed to the improved 

interfacial transition zone (ITZ) between the aggregate and the 

binder and the reduced porosity resulting from the high 

pozzolanic activity of SF. This improvement is crucial for 

concrete structures where tensile forces are significant, as it 

enhances the durability and service life of the concrete. 

7. Knowledge Gaps and Future Research 

Directions  
Despite the promising results, several knowledge gaps 

remain in the field of Geopolymer Concrete (GPC) with Silica 

Fume (SF). Long-term durability and performance data are 

limited, particularly regarding resistance to environmental 

factors like chemical attack and freeze-thaw cycles. Future 

research should explore these aspects and optimize the SF/FA 

ratio to balance strength, durability, and workability. 

Additionally, the absence of standardized production 

protocols hinders broader adoption, highlighting the need for 

research to develop consistent methods for producing and 

curing SF-blended GPC.  

Moreover, there is potential to explore other industrial by-

products, such as rice husk ash and recycled concrete 

aggregates, in combination with SF to enhance GPC’s 

mechanical properties and sustainability. Comprehensive life-
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cycle assessments and cost-benefit analyses are also needed to 

fully understand the environmental and economic impacts of 

GPC. Research should further investigate the application of 

SF-blended GPC in both structural and non-structural 

components to broaden its use in construction. Addressing 

these gaps will advance GPC technology and promote more 

sustainable construction practices. 

8. Conclusion  
The study highlights the significant impact of Silica Fume 

(SF) content on the performance of Geopolymer Concrete 

(GPC), demonstrating its potential to enhance key mechanical 

properties. As the SF/FA ratio increased, the workability of 

the concrete decreased while both compressive and splitting 

tensile strengths improved notably. The reduced setting times 

with higher SF content indicate accelerated 

geopolymerization, making these mixes suitable for 

applications requiring rapid strength gain. These findings 

align with the growing interest in geopolymer technology as a 

sustainable alternative to traditional Portland cement concrete, 

offering improved durability and lower environmental impact. 

However, the study also underscores the need for further 

research to optimize GPC mix designs and better understand 

long-term performance, particularly in relation to durability 

and the exploration of additional industrial by-products. By 

advancing knowledge in these areas, the study contributes to 

the broader adoption of GPC, promoting more sustainable and 

efficient construction practices.
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