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Abstract - Plastic waste management is critical on a global scale because of the widespread environmental and economic 
consequences. Businesses are confronted with increasing cost challenges, forcing an increasing number of them to investigate 

alternatives for more cost-effective product returns and recycling solutions. Several studies have investigated the challenges of 

reverse logistics for various waste materials such as C&D wastes, iron, and aluminium; there exists a significant gap in research 

addressing the holistic incorporation of reverse logistics for plastic waste. This research aims to fill this gap by proposing a 

comprehensive model that not only minimizes the total reverse logistics cost but also determines the optimal number of recycling 

plants. The proposed waste plastic recycling model introduces a distinctive two-stage modelling approach, integrating collection 

centres before recycling plants. This novelty is crucial for minimizing transportation costs from municipalities to recycling 

plants, given that plastic is a low-density material and is often mixed with non-plastic substances like dirt, iron, and aluminium. 

To address this issue effectively, the proposed model employs a mixed-integer linear programming deterministic model, solved 

using the Genetic Algorithm (GA). The model’s effectiveness is validated through practical applications involving illustrative 

examples that demonstrate its applicability to the complexities of reverse logistics in the waste plastic management field. 

Keywords - Plastic recycling, Reverse logistics, Waste management, Genetic algorithm, Mixed integer linear programming. 

1. Introduction  
Plastics are extremely versatile industrial materials with 

wide application in different sectors of the economy due to 

their low density and easily mouldable in nature leading to a 

4% annual output growth in plastic production forecasted by 

2030 [1]. Plastics are non-biodegradable, thus causing a great 
impact on the environment and climate change also recycling 

rate of waste plastics is approx. 14% as compared to some 

other metals whose recycling rate is as high as 90% [2]. Over 

the past few decades, plastic has accumulated in large 

quantities in aquatic and terrestrial ecosystems as well as 

landfills around the world due to an increase in the amount of 

plastic manufactured, inappropriate waste management 

techniques, impulsive human behaviour, and negligence [3]. 

Thus, waste reduction and recycling of waste plastic have 

become important areas for plastic industry activities due to 

the shrinking of landfill lands particularly in urban areas.  

Reverse logistics, as defined by Fleischmann [4], 

involves the strategic planning, implementation, and 

monitoring of a smooth entering flow and storage of 

subordinate products and their related information. This 

method is used in the reverse direction of the traditional supply 

chain, aiming towards reclaiming value and ensuring 

appropriate disposal. Reverse logistics is distinct from 

conventional forward logistics, which involves the production 

and sale of new materials or parts to customers. The 

complexity of recovery routes and the limited number of 

recovery centres pose challenges in forecasting the time or 

quantity of returns in reverse logistics. These uncertainties 

arise from factors such as the period of product use and the 

conditions of recovered items. The waste plastic reverse 

logistics route comprises a range of tasks such as gathering, 

organizing, stockpiling, moving, compressing or compacting, 

shredding, and liaising with customers alongside the retro 

manufacturing process. [5].  

Utilizing reverse logistics, especially for handling 

product returns, offers several advantages. It not only 

enhances customer reliability and potential sales but also 

contributes to the reduction of waste disposal costs, 

transportation expenses, and inventory holding costs 

associated with returned goods [6]. When contemplating the 

logistics network, a critical decision revolves around whether 

to outsource or maintain an in-house fleet. This decision is 

paramount, given that transportation typically represents the 

most significant cost component of reverse logistics 

operations [7]. Careful consideration of transportation options 
is vital for optimizing the efficiency and cost-effectiveness of 

the reverse logistics network. 

http://www.internationaljournalssrg.org/
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Barros et al. [8] introduced a Mixed-Integer Linear 

Programming (MILP) model that addresses a multilevel 

capacitated warehouse location problem concerning sand 

recycling. The proposed model was optimized by 

implementing heuristic techniques. Within the sand recycling 

process, the study effectively pinpointed the optimal quantity, 
capacity, and locations for both depots and cleaning facilities. 

Another MILP model, as presented by Kirkke et al. [9], 

focused on a multilevel incapacitated depot position model. 

This particular model was applied to a case study revolving 

around a network of reverse logistics dealing with the 

collection, processing, and return of abandoned copiers. The 

investigation successfully determined the optimal locations 

and capacities of recovery facilities, along with transportation 

connections linking various points, thereby enhancing the 

overall logistics of copier return processes. Multi-objective 

optimization problems, which involve the simultaneous 

optimization of multiple objective functions, are extensively 
used across various domains, including management, 

economics, and engineering. Several ideas and solutions have 

emerged to handle the complexity and diversity of multi-

objective problems. Since conflicting objective functions 

often arise, prioritizing one parameter may entail sacrificing 

others. Decision-makers must consider their preferences when 

determining which parameters to prioritize or sacrifice in the 

process of addressing a multi-objective problem [10]. Given 

that logistics network design problems are NP-hard, 

researchers have developed novel heuristics, meta-heuristics, 

and Lagrangian Relaxation (LR)-based approaches to solve 
these problems. Pishvaee and Torabi [11] noted that these 

methods have proven effective, particularly since exact 

techniques are impractical for addressing real-size problems 

associated with multi-objective mixed-integer programming 

(mo-MIP). 

2. Literature Review 
Bing et al. [12], after analyzing various scenarios, have 

developed a model for predicting future events and established 

a Mixed-Integer Linear Programming (MILP) scheme aimed 

at enhancing plastic recycling processes. Their aim was 

twofold: to minimize the environmental impact of plastic 

recycling and minimize transportation costs. Pati et al. [13], 

on the other hand, tackled paper recycling by adopting a 

Mixed-Integer Goal Programming (MIGP) approach. This 

model examined the complex interaction of different goals 

within the recycled paper distribution network, encompassing 

aspects like cost, quality improvement, and recovery benefits. 

Shulman [14] contributed to the discourse with a MILP model 
featuring multiple facility types with finite capacities. This 

model tackled the strategic placement of facilities within open 

plants to determine plant capacities over a planned horizon 

and also addressed the location problem of a capacitated 

dynamic plant by employing a Lagrangian relaxation 

technique. Dat et al. [15] ventured into the world of electrical 

and electronic devices and developed a strategy for cost 

minimization across multiple nodes of reverse logistics, 

including collection centres, disassembly centres, and 

treatment facilities. Their approach called for the development 

of a multi-objective genetic algorithm capable of effectively 

coping with large-scale challenges [16]. The Genetic 

Algorithm (GA), as a part of Evolutionary Computation (EC) 

approaches, has garnered significant attention and success in 
solving combinatorial optimization problems [17]. With its 

foundation in the principles of natural selection and genetics, 

the GA is a stochastic search technique known for its 

versatility and effectiveness, particularly in scenarios with 

vast search spaces and minimal prior information on problem 

solutions [18]. As a member of heuristic optimization 

techniques, GAs, alongside evolutionary algorithms, Tabu 

search, and Simulated Annealing (SA), have proven 

remarkably successful in providing optimal or near-optimal 

solutions for a diverse range of complex problems. 

 

Bautista and Pereira [19] tackled the challenge of 
identifying optimal waste collection point locations in 

Barcelona by formulating a set coverage problem and devised 

a genetic algorithm to effectively address this problem, 

demonstrating a strategic approach to waste management. 

Gonzalez-Torre and Adenso-Diaz [20] developed a two-step 

objective programming model to optimize the distribution of 

recycling containers specifically for glass recycling. Their 

primary objectives were to maximize the quantity of material 

collected and minimize logistics expenses. The first stage 

involved determining bin distribution, while the subsequent 

stage focused on planning the most efficient routes. These 
studies concentrate on the tactical and operational levels, 

emphasizing the importance of determining optimal collection 

point locations and efficient routes for waste management. 

Recognizing the need to incorporate dynamic elements like 

lead times and inventory placements, Lieckens and Vandaele 

[21] expanded on a conventional model framed as a Mixed-

Integer Linear Programming (MILP) with the integration of a 

queuing model and addressed the complexities of a dynamic 

system, considering factors such as unpredictability in 

determining optimal plant locations and lowering costs 

throughout the reverse supply chain. Their comprehensive 

approach highlights the importance of adapting waste 
management strategies to dynamic and uncertain conditions 

for enhanced efficiency and cost-effectiveness. Giri and 

Sharma [22] examined the relationships between the producer, 

retailer, collector, and raw material source by deciphering the 

intricacies of the closed-loop supply chain. Their contribution 

lies in proposing algorithms for sequential and global 

optimization, with a unique focus on considering product 

quality and introducing a threshold above which goods are 

earmarked for remanufacturing, showcasing the successful 

implementation of their suggested methods. This approach 

demonstrates a nuanced understanding of closed-loop supply 
chain dynamics. Alshamsi and Diabat [23] made significant 

strides by formulating a Mixed-Integer Linear Programming 

(MILP) model, and it not only determined optimal locations 

and capacity for crucial processes but also placed emphasis on 
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transportation decisions and explored the choice between in-

house and outsourced vehicles, building decisions on cost-

effectiveness. Their contribution to the development of a 

robust Genetic Algorithm (GA) capable of quickly tackling 

large-scale problems in a very short period of time. The GA 

code devised led to a substantial reduction in the number of 
variables and constraints by 92% and 86%, respectively, 

showcasing an innovative approach to streamline and 

optimize the modelling process. 

 

3. Problem Description 
Illustrated in Figure 1 is the strategic-level waste plastic 

reverse logistics network formulated in this study. The 
configuration outlines fixed locations for municipalities, 

collection centres, and landfills. The comprehensive network 

is segmented into four integral components: municipalities 

(sources), collection centres, recycling plants, and landfills. A 

critical aspect necessitates an in-depth exploration of the 

location allocation problem, specifically pertaining to 

recycling plants for waste plastic. The overarching objective 

is cost minimization, entailing considerations of fixed costs, 

transportation costs, sorting costs, processing costs, and 

disposal costs. This analysis aims to optimize the spatial 

distribution of recycling plants to achieve efficiency and 
economize on various associated costs within the waste plastic 

reverse logistics network. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 1 Reverse logistics network of waste plastic recycling 

 

There are I municipalities considered in the city of Patna: 

J collection centres, K recycling plants and L landfills. Waste 

plastic is collected from different households in a 

municipality, either in the form of dry garbage or wet garbage. 

In the collection centers, the plastic collected is segregated, 

and its density is increased by crushing to minimize 

transportation costs. Though some sorting and segregation of 

plastic waste are done at collection centres, bulk sorting and 
segregation are done at the recycling plants, after which 

processing and retromanufacturing are carried out. The 

residual waste, if any, is sent to the landfills. 

 

Formulating the waste plastic reverse logistics network 

problem involves considering various parameters. With 

information on potential locations and capacities of collection 

centres and recycling plants, along with the total plastic waste 

generated by each municipality, transportation costs, fixed 

costs, sorting costs, processing costs, and disposal costs 

associated with waste plastic, the developed model aims to 

determine optimal solutions. Specifically, the model seeks to 
identify which potential waste plastic recycling facilities 

should be established and how the flow of waste plastic should 

be directed to these recycling plants. The ultimate goal is to 

design a reverse logistics network that minimizes overall 

costs, addressing the complex interplay of variables to achieve 

efficiency and economic viability in managing waste plastic. 

 

3.1. Model Formulation 

The anticipated model introduces a mixed-integer linear 

programming framework, incorporating both conventional 

continuous variables and integer variables. Key information, 
including the potential locations of recycling plants, cost 

structures for various processes in the reverse logistics of 

plastic waste (such as transportation, sorting, processing, and 

disposal), and the capacities of recycling plants and collection 

centres, is known. The primary goal of the proposed model is 

to strategically pinpoint the best locations for building 

recycling plants in the city of Patna. This overarching goal is 

designed to minimize the overall reverse logistics cost 

associated with waste plastic recycling, highlighting an 

effective and cost-effective approach to addressing the various 

aspects of waste plastic recycling. Index sets and parameters 

used in the MILP problem: 
 

    i Є I - Set of sources or Municipalities 

    j Є J - Set of collection centres 

    k Є K - Set of recycling plants 

    l Є L - Set of landfills 

 

    qk = A binary value, either 0 or 1, indicates whether the 

recycling plant is open or closed. 

    Dk = Fixed cost of opening a recycling plant   

    aij = Total transportation costs from source i to collection 

centres j 
    vij = amount of waste plastic transported from source i to 

collection centers j 

    bjk = Total transportation costs from collection centres j to 

recycling plants k 
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    wjk = amount of waste plastic transported from collection 

centres j to recycling plants k 

    ck = Total sorting cost at recycling plants k 

    xjk = amount of waste plastic sent from collection centres j 

to recycling plants k 

    dk = Total processing cost at recycling plant 
   yjk = amount of waste plastic sent from collection centres j 

to recycling plants k 

   ekl = Total transportation costs from recycling plants k to 

landfill l 

   zkl = amount of waste plastic sent from recycling plants to 

landfill l 

   Sj = Capacity of collection centres j 

   Rk = capacity of recycling plants k 

 

Objective Function: - 

Minimize (∑ Fixed cost + ∑ Transportation cost + ∑ Sorting 

cost + ∑ Processing cost +  
           ∑ Disposal cost)       

 

Minimise 

( ∑ 𝐷𝑘
𝐾
𝑘=1 𝑞 𝑘   + ∑ ∑ 𝑎𝑖𝑗

𝐽
𝑗=1

𝐼
𝑖=1 𝑣𝑖𝑗 + ∑ ∑  𝐾

𝑘=1
𝐽
𝑗=1 𝑏𝑗𝑘 𝑤𝑗𝑘+ 

∑ ∑ 𝑐𝑘
𝐾
𝑘=1

𝐽
𝑗=1 𝑥𝑗𝑘  +  ∑ ∑ 𝑑𝑘

𝐾
𝑘=1

𝐽
𝑗=1  𝑦𝑗𝑘 +  ∑ ∑ 𝑒𝑘𝑙

𝐿
𝑙=1

𝐾
𝑘=1 𝑧𝑘𝑙 ) 

Subject to: -  

   ∑ 𝑣𝑖𝑗
𝐼
𝑖=1  ≤  𝑆𝑖  ∀    i  ∈ I                                                     (1) 

   ∑ 𝑥𝑗𝑘  𝐽
𝑗=1  ≤  𝑅𝑖  ∀    j  ∈ J                                                   (2)  

   ∑ 𝑥𝑗𝑘 =𝐾
𝑘=1   ∑ 𝑥𝑖𝑗 + 𝐽

𝑗=1
∑ 𝑧𝑘𝑙

𝐿
𝑙=1    ∀    k  ∈  K                  (3) 

    

       qk= 0 or 1 where  

       qk = 1 if recycling plant is open 

       qk= 0 if recycling plant is not open 

        i = 1,2,3,4…………………. I 

         j = 1,2,3,4…………………. J 

         k = 1,2,3,4………………...K 

         vij , wjk , xjk, yjk, zkl  ≥  0 

The first term refers to the fixed cost associated with the 

establishment of the recycling plant. The second term refers to 

the transportation expenses involved in transporting waste 

plastic from its sources to the collection centres. The third 

term refers to the transportation costs from collection centres 
to the recycling plant. The fourth term refers to the sorting 

involved in the waste plastic recycling process. The fifth term 

refers to the processing costs, while the sixth term refers to the 

costs associated with transferring waste from the recycling 

plant to landfills. The first constraint (1) represents that the 

supply of waste plastic from sources to collection centres 

should be less than the capacity of the collection centres. The 

second constraint (2) states that the transfer of waste plastic 

from collection centres to the recycling plant must not exceed 

the capacity of the recycling plant. The third constraint (3), or 

balancing constraint, is based on the fact that the recycling 

plant neither produces nor consumes any material, thus acting 

as a pivotal balancing factor. These constraints collectively 

guide the optimization process, ensuring the model adheres to 

practical limitations and balances the flow of waste plastic 

within the reverse logistics network effectively. 
 

4. Genetic Algorithm  
Commonly known as a stochastic solution search 

technique, a genetic algorithm employs the principles of 

evolutionary computation to address combinatorial problems. 

This involves simulating the processes of natural selection and 

biological reproduction observed in animal species [24].  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 4.1 Encoding         

 
The initial step in the successful implementation of a Genetic  
                       Fig. 2 Flow chart of the proposed GA  

 

Significant research efforts have been dedicated to 

genetic algorithms, leading to the development of diverse 

encoding methods custom-made to specific problem domains 

over the past decade. The adaptability and effectiveness of 

genetic algorithms make them a widely explored and applied 

approach for solving complex combinatorial problems across 
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various disciplines. Algorithm (GA) involves the careful 

design of a suitable chromosome. This chromosome, being 

subjected to a probabilistic transition rule, generates a 

population of chromosomes that competes fairly for the 

optimal solution. Within the context of this research, 

numerical value variables such as vij, wjk, xjk, and yjk are 
employed alongside logical value variables denoted as qk. The 

initial step in the successful implementation of a Genetic 

Algorithm (GA) involves the careful planning of a suitable 

chromosome. This chromosome, being subjected to a 

probabilistic transition rule, generates a population of 

chromosomes that competes fairly for the optimal solution. 

Within the context of this research, numerical value variables 

such as vij, wjk, xjk, and yjk are employed alongside binary 

value variables denoted as qk.  

 

The method used in this research to define chromosomes 

is a hybrid encoding technique that mixes binary and floating-
point representations. The format of these chromosomes is 

single-dimensional arrays with binary variables. These binary 

variables pertain to decision variables associated with 

municipalities, collection centres, recycling plants, and 

landfills. Concurrently, floating-point values within the 

chromosomes represent the transportation of waste plastic, 

delineating flows from source i to collection centres j, from 

collection centres j to recycling plants k, and from recycling 

plants k to landfills l. This hybrid encoding rule enhances the 

representation of chromosomes, providing a comprehensive 

framework for the optimization process within the genetic 
algorithm. 

 

4.1. Evaluation 

The evaluation procedure is essential because it assigns 

each member of the population a fitness value that represents 

their specific degree of fitness. Comparing an individual with 

others in the population is an important stage in this process. 

The fitness function that is applied is important since it needs 

to determine the desirability of the qualities that the 

chromosomes specify. Not only should this function be 

proficient at evaluating each solution, but it should also 

demonstrate computational efficiency, considering its 
repetitive use throughout the optimization process.  

 

In instances where certain solutions within the population 

prove impractical, surpassing capacity limits for collection 

centres or recycling plants, the incorporation of a penalty 

function becomes imperative. The penalty function is 

designed to set a significantly higher penalty value in 

comparison to any potential objective value associated with 

the existing population of individuals. Mathematically 

expressed as “Fitness” in the developed algorithm, this penalty 

function is intended to address and discourage impractical 
solutions that deviate from the defined constraints. 

 

Fitness = {Cmax – f(X), if     f(X) < Cmax ; 

              0, if    f(X) ≥ Cmax 

4.2. Selection Operator  
The selection operator plays a vital role in enhancing the 

general quality of the population by preferring chromosomes 

of higher quality, thus increasing their chances of being copied 

into the next generation. There are various distinct selection 

techniques, each determining the reproduction opportunities 
for individual parents in the population. These techniques 

comprise random selection, roulette wheel selection, 

tournament selection, rank selection, and elitist selection, 

providing diverse approaches to parent selection [24]. In this 

study, the roulette wheel selection approach is employed as 

the method of selection. Using this method, two parents are 

chosen at random from each generation’s solutions based on a 

probability value that represents the individual fitness to 

population fitness ratio. By use of this roulette wheel selection 

process, individuals are selected to advance into the following 

generation, improving the average population’s overall 

quality. This approach ensures that high-quality chromosomes 
are granted a higher probability of being replicated in the 

upcoming generation, fostering the evolution of the 

population towards more favourable characteristics following 

equations (10)-(24), the proposed fuzzy reverse logistics 

network model can be completely translated into a 

corresponding crisp α-parametric model. Subsequently, this 

transformed model can be efficiently addressed as a mixed-

integer linear programming problem. 

  

5. Model Applications and Results 
For the reduction of total reverse logistics cost associated 

with waste plastic recycling, the developed model is subjected 

to a numerical trial, specifically applied to evaluate the 

optimal number of waste plastic recycling plants required in 

the city of Patna, India. Given the scarcity of information 

regarding potential sources of waste plastics and demand 

points for recycled plastics in the Patna region, a systematic 

approach is employed. This involves the identification of 15 
major sources of waste plastics, 20 significant collection 

centres, 30 major fixed-type recycling plants, and 5 landfills. 

The information is sourced from representatives of the 

Municipal Corporation of Patna, and the on-site 

reconnaissance is conducted to validate the relevant details. 

To identify potential locations for recycling plants, the 

assessment considers factors such as land availability and 

current land use, prioritizing waste or barren lands and 

existing waste dumping areas. These identified locations are 

graphically represented in Figure 3. The primary objective of 

this model is to build a reverse logistics network for waste 
plastic recycling and strategically select ideal locations. The 

lack of data to explore more intricate elements of the network 

design gives rise to this strategic focus. 

 

In the city of Patna, where the practice of recycling waste 

plastic is not widespread, pertinent data has been gathered 

from waste plastic recycling plants situated in Indore, 

acclaimed as the cleanest city in India. This acquisition of data 

involved a combination of reconnaissance efforts and a 
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structured questionnaire survey. Also, some of the relevant 

data was sourced from the Centre for Science and 

Environment (CSE) 2021 and the Central Pollution Control 

Board (CPCB) 2021 [25]. The fixed cost associated with 

setting up the recycling plants is US$ 60979, which includes 

initial land and machinery investment. The collection cost, 
including the cost of purchasing unsegregated waste plastic, is 

US$ 43830 every year. The sorting cost done manually to 

segregate different types of waste plastic is US$ 46740. The 

processing cost cumulative of electricity cost and cost of 

processing the sorted and shredded waste plastic is US$ 

28630. 

 

The transportation cost is US$ 36.59 per ton, which is 

included in the collection cost. The disposal cost or tipping 

charges is the cost of disposal of waste plastics or materials 

after processing is US$ 12.20 per ton. The processing capacity 

of recycling plants is 2850 tons/ year. The handling capacity 
and storage capacity are 2850 tons/year and 550 tons /year, 

respectively. The cost related to the environment has been 

incorporated into the disposal costs. To solve the deterministic 

model, the genetic algorithm is employed with the following 

parameters: a population size of 400, a maximum of 500 

generations, a crossover rate of 0.9, and a mutation rate 

ranging from 5% to 10%, adjusting as the number of 

generations is increased. The execution of the genetic 

algorithm solution procedure is conducted on the MATLAB 

2020b system, featuring 4GB RAM and 500GB memory. This 

configuration ensures a robust application of the genetic 

algorithm for optimizing the given model.  

Table 1. Data used to implement the model 

Description Value 

Total supply of waste 

plastic in Patna region 
32,850 tons/year 

Total demand for waste 

plastic 
7673 tons/year 

Capacity of plastic waste 

recycling plants for 

processing 

2850 tons/year 

Capacity of plastic waste 

recycling plants for 

management 

2850 tons/year 

Capacity of plastic waste 
recycling plants for storage 

550 tons/year 

Fixed cost for establishing a 

recycling plant 
US$ 60979 

Transportation cost 
US$ 36.59 per ton per    

km 

Sorting cost US$116.85 per ton/year 

Processing cost US$ 71.57 per ton/year 

 

The subsequent assumptions are also needed for the 

application of the developed reverse logistics network of 

waste plastic. 

 

 
 Fig. 3 Potential reverse logistics network for the deterministic model 

 Mechanical efficiency remains consistent across similar 

types of facilities, such as collection centres and 

recycling plants. 

 Municipalities are the city’s primary suppliers of waste 
plastics. All the waste is collected from different 

households and collection points located in that 

particular municipality from where it is transported to the 

collection centres where all the different plastics and 

non-plastic materials are separated and shredded based 

on the type of plastics. In the final stage, the waste 

products reach the recycling plants, and subsequently, 

the residual waste from these recycling plants is disposed 

of in landfills. 

 The waste belonging to the non-plastic categories like 

dirt, moisture, aluminium, and iron are not sorted to 
maintain mechanical efficiency, and this disposal 

happens only in collection centres. 

 The network considers eight types of products, 

encompassing non-plastic, PET, HDPE, V, LDPE, PP, 

PS, and other resins, along with layered multi-material. 
 

6. Sensitivity Analysis  
Sensitivity investigation of the developed deterministic 

MILP model was done with variations in transportation cost, 

GA parameters, demand and supply. The results of 

optimization after varying transportation costs associated with 

waste plastic recycling are shown in Table 2. The location of 
the optimized recycling plant network in the city of Patna is 

shown in Figure 4.  

Table 2. Results of optimization after varying transportation cost 

Condition 
Transportation 

Cost (US$) 

Total 

Cost 

(US$) 

No. of 

Plants 

Required 

Base 43670 184,436 23 

10% 

reduction 
39302 172,575 23 

20% 

reduction 
34936 160,713 23 

10% 

increase 
48037 196,297 23 

20% 
increase 

52404 208,158 23 
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               Fig. 4 Location of optimized recycling plants  

Table 3. Results of the model with variation in the GA parameters 

Generation Population 

No. of 

Recycling 

Plants 

Total Cost 

(US$) 

100 400 23 220,436 

200 400 23 210,208 

300 400 23 190,500 

400 400 23 184,436 

500 400 23 184,750 

200 300 23 184,145 

300 300 23 178,208 

400 300 23 173,650 

500 300 23 180,317 

 

Variations in supply and demand for the reverse logistics 

network of waste plastics recycling are done, and optimized 

results are also shown in Figures 5 and 6. The number of 

recycling plants needed to be opened with variations in supply 

and demand of waste plastic is also shown. The results of the 
model with varying GA parameters are shown in Table 3. 

 

The fitness value steadily decreased to a relatively 

constant level of 184,500 at the 400th generation. The 

application of the genetic algorithm to the model is not aimed 

at obtaining the most precise results but rather at achieving a 

satisfactory solution with high efficiency. The obtained 

optimal solution is 184,436, indicating the need to open 23 

recycling plants. Remarkably, nine different combinations of 

genetic algorithm parameters produced results that were either 

identical or very similar. This implies that variations in 

population size or the maximum number of generations for the 
genetic algorithm have minimal impact on the model’s 

solution. Such robustness suggests that the proposed genetic 

algorithm solution method exhibits resilience to adjustments 

in its parameters.  

 

7. Conclusion and Future Scope 
This research paper addresses the problem of designing a 

reverse logistics network specifically for recycling waste 

plastic. The suggested mixed-integer linear programming 

model aims to recognize the ideal number of recycling 

facilities required in Patna city while also curtailing the overall 

total cost of the reverse logistics network.  

 
        Fig. 5 Optimization results with variation in demand 

 
Fig. 6 Optimization results with variation in supply  

           
Fig. 7 Fitness value vs No. of generations of genetic algorithm 

To enhance computational efficiency and obtain an 

acceptable solution, an evolutionary algorithm, specifically 

the genetic algorithm, is employed. The application of the 

genetic algorithm on practical-size problems involving 15 

sources, 20 collection centres, 30 potential recycling plants, 

and 5 landfill sites demonstrates promising results. The 

model suggests the inclusion of collection centres before 
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recycling plants to minimize transportation costs. This 

strategic placement is driven by the low density of plastic 

material and the impracticality of opening recycling plants in 

densely populated urban areas due to land and environmental 

constraints. The results of the numerical test show that the 

suggested strategy is more effective when used in tandem 
with the waste plastic reverse logistics model. They draw 

attention to increased efficiency, which is demonstrated by 

faster calculation and better optimization. Diverging from 

existing literature on reverse logistics for various materials, 

this paper pioneers the application of fundamental theories 

specifically to plastic waste. The primary objective is to 

improve the logic and effectiveness of the waste plastic return 

and recycling process, aiming to tackle a significant 

environmental issue prevalent in the contemporary world. 

While the proposed models and solution methods boast 

several merits, the paper also suggests avenues for future 

work in this evolving field: 

1. By extending the model into a stochastic framework, the 

risks and uncertainties associated with establishing the 

reverse logistics network for waste plastic can be 
addressed. The changes in scenarios by varying different 

parameters can also be explored. 

2. GA application in reverse logistics can also be compared 

to some newer algorithms like Ant Colony Optimization 

and Grey Wolf Optimization.   

3. GA algorithm can also be combined with some other 

heuristics algorithms like Lagrangian relaxation, fuzzy 

logic and Tabu search methods. 
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