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Abstract - This paper investigates the in-plane free vibrations of thin arches with variable radius and varying cross-sections 

employing the Rayleigh-Ritz method (RRM). A novel aspect of this study lies in the trial arc functions, which are solutions of 

the sixth-order differential equation governing the vibration motion of circular arches with constant cross-section. These trial 

functions are obtained through symbolic computation. Numerical computation is then utilized to determine the eigenvalues, 
representing frequency parameters, and eigenvectors, representing mode shapes. The investigation considers three different 

end conditions (clamped-clamped, clamped-simply supported, and supported at both ends) and five arc geometries (parabolic, 

catenary, spiral, circular, and cycloid) with varying opening angles, taper types, and taper ratios. The convergence study 

highlights the sensitivity of the results to the taper ratio, with convergence rates faster than those observed in previous RRM 

studies. Frequency parameters are accurately calculated and compared favourably with existing literature. Additionally, mode 

shapes are plotted, demonstrating the significant influence of the taper ratio on mode shapes. 

Keywords - In-plane vibrations, Rayleigh-Ritz method, Thin arches, Variable radius, Varying cross-section, Trial arc 

functions, Eigenvalues, Eigenvectors, Taper ratio, Mode shapes. 

1. Introduction 
In civil Fields, the arches give excellent structural 

function and beautiful appearances. For example, the 

horseshoe arc is used to frame structures [19]; in mechanical, 

they convert the bending load into a compressive force to 

give the structure good rigidity; in aerospace, they can model 

the scimitar rotor blades [2], they are also essentials in many 

other fields: sensors, piping systems, roof structures, bridges, 

and aerospace structures, etc. In particular, arches with 

variable sections and curvature make it possible to optimize 
the material choice and control the force distribution 

uniformity. Consequently, much literature has been 

published on the in-plane vibration of these arches. Much 

work had been done on the vibration of many types of arches 

during the 19th 𝑡ℎ century after, Rayleigh proposed the trial 
arc functions containing an undermined exponential 

parameter allowing the optimization of the frequency 

parameters. Laura et al. studied the circular arc with varying 

cross-sections by the Rayleigh-Ritz Method (RRM) using the 

same set of trial functions [21, 16]. Romanelli [22] and 

Wang [25] investigated clamped and hinged non-circular 

arches; they used the Rayleigh-Ritz Method by taking as trial 

functions sin functions satisfying the end conditions. 

Gutierrez [12] and Rossi [23] employed the Ritz Method by 

means of polynomial coordinate functions to study tapered 

arches with varying curvature. The same arc type has been 
studied by Huang [13] and Tang using the so-called exact 

solutions.  

Byoung [18] used his calculation of the Cartesian 

coordinates instead of the polar coordinates to study the free 

vibration of parabolic arches. Liu [20] used the accurate 

generalized differential quadrature rule, and Karami [15] 

used the differential quadrature method. Shin [24] applied 

the Generalized Differential Quadrature Method (GDQM) 

and Differential Transformation Method (DTM) to vibration 

analysis of circular arches with variable cross-sections. 

Author dealt with the in-plane free vibration of circular 
arches with variable cross-sections by means of the exact 

solution. An authour investigated the dynamic response of 

circular arches with variable cross-sections subjected to 

seismic ground motions. Adair [2] studied the free in-plane 

vibrations of rotating arches with a variable cross-section 

using the so-called Adomian Modified Decomposition 

http://www.internationaljournalssrg.org/
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Method (AMDM). Noori used the Complementary Functions 

Method (CFM) to investigate the in-plane free and forced 

vibration responses of axially functionally graded parabolic 

tapered arches. Wang derived the differential equations of 

motion of the in-homogeneous tapered arches with variable 

curvature under elastic constraints [26]. Melchiorre 
investigated elastic tapered arches with variable curvature 

using differential formulation and numerical solution. 

As is well known, the RRM is a simple and systematic 

way to find frequency parameters and associated mode 

shapes of various structures such as plates, shells and arches. 

It makes it possible to solve problems with several 

complexities, such as the existence of added masses, the 

supports of the studied structures on point [6] or distributed 

elastic supports [7], for isotropic, orthotropic or in-

homogeneous materials, FGM, etc. It is especially used for 

introduction to the study of nonlinear vibrations by 

Benamar’s method. However, the major problem of the 
RRM is the choice of the trial functions. Indeed, Laura et al. 

[23, 17, 16, 12, 9, 11] studied the vibrations of arches with 

variable radius and section, with added masses, and 

elastically restrained at ends using the RRM. Unfortunately, 

the calculation presents an instability problem, and the 

accuracy of the method concerns only shallow arches [3] due 

to the set of trial arc functions, which are polynomial 

functions with an exponential optimization parameter. 

It is well known that the set of the trial functions used in 

RRM must satisfy the following conditions: 1) be 

independent and complete, 2) satisfy the end conditions 3) 
preferably, must be representative of the studied arc. This 

third condition is not imperative, but if it is not respected, the 

calculation time is likely to be significant, and the 

convergence is slow. This paper proposes a precise RRM 

giving arc good results and having a rapid convergence in 

order to study arcs of variable sections (called tapered arcs) 

and variable curvature. The choice of the trial arc functions is 

the method's strong point; they are taken as a particular 

solution of the differential equation governing the in-plane 

arc vibrations corresponding to an opening angle = 1 𝑟𝑎𝑑. 

The set of this trial functions is independently complete and 
satisfies the end conditions. However, it is based on the arc 

with constant radius and section: the arc geometric type and 

the cross-section nature are not involved at this stage. These 

parameters are considered in the kinetic and the strain 

energies. Fortunately, computation time and convergence are 

not affected when this set of trial functions is used to study 

the frequency parameters and mode shapes of tapered arcs 

with variable radii. 

The present formulation is based on two main steps: the 

determination of the trial arc functions and the formulation of 

the Rayleigh-Ritz Method.   
1. For the first step, i.e., the determination of the trial arc 

functions, the arc is supposed to be circular with a 

uniform section. Indeed, the set of this function must 

only verify the end conditions of the studied arc. 

Consequently, the sixth-degree differential equation, 

which governs the in-plane arc vibrations, becomes with 

constant coefficients whose solution is relatively less 

difficult; the author and his co-author resolved this in [4, 
8, 5, 1]. Using the end conditions, the symbolic 

calculation is applied to obtain a system of six equations 

and seven unknowns, which are the six integration 

constants and the frequency parameter. Thus, the system 

matrix is established, and stating its nullity, several 

frequency parameters are determined, as well as the six 

associated integration constants. The solutions found 

constitute the set of the trial arc functions.  

2. In the second step, the opening angle, the ratio of the 

shape of the tapered and the geometric nature of the arc 

are taken into account. All these parameters are 

considered to calculate the strain and kinetic energies. 
The general terms of the dimensionless rigidity and mass 

matrix are involved. The application of Hamilton’s 

principle gives the Rayleigh-Ritz formulation. The 

problem is thus reduced to a simple eigenvalue problem 

easily solvable by Matlab software. For both calculation 

steps, the arc axis is assumed to be inextensible, 

rotational inertia and shear deformation effect are 

neglected, and the arc is assumed to be thin. This 

formulation of RRM saved us from dealing with a 

differential equation of sixth degree with variable 

coefficients and from dealing only with a differential 
equation of the same order but with constant 

coefficients. The frequency parameters are found and 

well compared with those available in the bibliography 

for several opening angles, shapes and ratios of arc 

tapered and for the arc geometric nature arc. The modes 

are also plotted. 

The end conditions considered in this work are clamped 

(C) and supported (S) for five types of arc geometry: 

parabolic, catenary, cycloid, circular and spiral. Different 

natures of tapered arcs have been investigated with many 

functions defining the variation law of the cross-section, and 

several opening angles were used. For the first time, the 
results of tapered circular arches are given; after the tapered 

arches with varying curvature are investigated, the 

comparison with the bibliography is excellent. 

2. General Formulation  
2.1. Arc Presentation 

The studied arc, shown in Figure 1, is supposed to be 
homogeneous and thin. Its geometric characteristics are the 

opening angle 𝜃, the variable radius 𝑅, the rectangular cross-

section of constant width 𝑏 and, the variable height ℎ and the 

variable second moment of inertia with respect to the neutral 

line of the cross-sectional area 𝐼 =
𝑏ℎ3

12
. These three 

geometric parameters are functions of the curvilinear 
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abscissa 𝛼. The mechanical characteristics of the studied arc, 

i.e. Young’s modulus 𝐸 and the mass per unit length of the 

material, 𝜇 are supposed to be constant. 𝑢 The radial and the 

tangential 𝑣 displacement, at any point 𝑃(𝛼) in the central 

axis defined by its curvilinear abscissa 𝛼, are related by [3]: 

 

                       𝑢(𝛼) =
∂𝑣(𝛼)

∂𝛼
                                          (1) 

                                                               

Equation (1) expresses the in-extensibility of the arc 

axis. The tangential displacement of a current point in the arc 

axis v = v(𝛼, 𝑡) is considered harmonic, 𝑡 being the time. It 

is assumed to be expressed in the form of a finite series:  

 

v(𝛼, 𝑡) = 𝑣(𝛼)sin(𝜔𝑡) = 𝑎𝑖𝑣𝑖(𝛼)sin(𝜔𝑡)    𝑖 = 1,2. . . 𝑁 (2) 

  

The repeated index means the Einstein index 𝜔𝑖 is the 

natural frequency, 𝑎𝑖 is an unknown coefficient of the 𝑖𝑡ℎ 

trial arc function 𝑣𝑖 , and N is the number of the trial arc 

functions investigated in the next subsection and plotted in 

Figure 1. 

 
Fig. 1 A tapered arc with variable radius 

 

2.2. Research of Trial Arc Functions   

The purpose of this section is to determine a set of trial 

arc functions that will be used in the current Rayleigh-Ritz 
formulation. 

 

The basic sixth-order differential equation of the arc in-

plane vibration of a current point 𝑃(𝛼) in terms of the 

tangential displacement 𝑢 is [24, 25]:  

 

𝑣(6)(𝛼) + 2𝑣(4)(𝛼) + (1 −
𝜇𝑆(𝛼)𝑅4(𝛼)

𝐸𝐼(𝛼)
) 𝑣(2)(𝛼) 

+
𝜇𝑆(𝛼)𝑅4(𝛼)

𝐸𝐼(𝛼)
𝑣(𝛼) = 0  

(3) 

  Where 𝑣(𝑛)(𝛼) indicates the 𝑛𝑡ℎ derivative of the 

tangential displacement 𝑣(𝛼), with respect to 𝛼. This 

equation has non-constant coefficients since the radius and 

the section are variable. It is well known that the trial arc 

functions should be orthogonal and verify the arc end 

conditions. However, they do not necessarily have to 

constitute a solution of the differential equation expressed in 

Equation  (3). Think of the coefficients in the last equation as 

constants; it becomes:  

 

𝑣(6)(𝛼) + 2𝑣(4)(𝛼) + (1 − Ω̅2)𝑣(2)(𝛼) + Ω̅2𝑣(𝛼)
= 0

 

Ω = √
𝜇𝑆0𝑅0

4

𝐸𝐼0

𝜔 

 

 
(4) 

 

 Ω̅ It is not a frequency parameter of the studied arc. 
However, it is only a frequency parameter in this very 

particular case: the arc opening angle 𝜃 = 1𝑟𝑎𝑑, the radius 

𝑅 = 𝑅0 and the height ℎ = ℎ0 are supposed to be constant. 

This frequency parameter is used to facilitate the 

determination of the trial arc functions given below. 

 

According to what has been said, the set of trial arc 

functions deduced from Equation (4) with constant 

coefficients remains valid for Equation (3) with variable 

coefficients, even if the individual trial function does not 

consider the variations of the radius and the section, they will 

be verified by the series expressed in Equation (2). The 

variations of the radius and the cross-section are taken into 
account in the energy study developed in section (?). The 

general solution of the differential Equation (4) leads to the 

tangential displacement; it is given by:  
 

𝑣(𝛼) = 𝐶1sinh(𝜆1𝛼) + 𝐶2cosh(𝜆1𝛼) + 𝐶3sin(𝜆2𝛼)

+𝐶4cos(𝜆2𝛼) + 𝐶5sin(𝜆3𝛼) + 𝐶6cos(𝜆3𝛼)
 (5) 

 

 In which  

𝜆1 = √2√
𝑝

3
cos (

1

3
arccos (√

27𝑞2

4𝑝3
)) −

2

3

𝜆2 = √−2√
𝑝

3
cos (

2𝜋

3
−

1

3
arccos (√

27𝑞2

4𝑝3
)) +

2

3

𝜆3 = √−2√
𝑝

3
cos (

2𝜋

3
+

1

3
arccos (√

27𝑞2

4𝑝3
)) +

2

3

𝑝 =
1

3
+ Ω̅2,    𝑞 =

2

27
−

5

3
Ω̅2

         (6) 

 Equation (1) allows to obtain the expression of the 

radial displacement:  

𝑢(𝛼) = 𝐶1𝜆1cosh(𝜆1𝛼) + 𝐶2𝜆1sinh(𝜆1𝛼) + 𝐶3𝜆2cos(𝜆2𝛼)

−𝐶4𝜆2sin(𝜆2𝛼) + 𝐶5𝜆3cos(𝜆3𝛼) − 𝐶6𝜆3sin(𝜆3𝛼)
 (7) 

 

The integration constants 𝐶1 to 𝐶6 are determined by the 

following end conditions [3, 17]:  
 

𝐴𝑡  𝑡ℎ𝑒  𝑐𝑙𝑎𝑚𝑝𝑒𝑑  𝑒𝑛𝑑𝑠       𝑣 = 𝑣(1) = 𝑣(2) = 0

𝐴𝑡  𝑡ℎ𝑒  𝑠𝑖𝑚𝑝𝑙𝑦  𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑  𝑒𝑛𝑑𝑠   𝑣 = 𝑣(1) = 𝑣(3) = 0
      (8) 
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 The two end conditions at 𝛼 = 0 and 𝛼 = 𝜃 having 

three equations each, and described by Equation (8), lead to a 

system of six equations and seven unknowns, which are the 

integration constants 𝐶1 to 𝐶6 and the frequency parameter Ω̅. 
The obtained system can be written as follows:  

 

[𝑆]. {𝐶} = [0]                       (9) 

  

In which {𝐶} is a column vector whose components are 

the six unknown integration constants 𝐶1 to 𝐶6 , i.e., {𝐶}𝑇 =
(𝐶1    𝐶2    𝐶3    𝐶4    𝐶5    𝐶6) and [𝑆] is a 6 × 6 square matrix 

determined by a symbolic calculation. The solutions of the 

parameter Ω̅ are deducted by imposing the nullity of the 
determinant of the previous matrix. This leads to a 

transcendental equation solved numerically by MatLab 

software to get the series of the frequency parameters Ω̅ 

described by Eq (4) and corresponding to the end conditions 

considered. Table 1 gives the first ten frequency parameters 

Ω̅𝑖, (𝑖 = 1 to 10) found for an arc supported at both ends 

(SS), an arc supported at an end and clamped at the other end 

(SC), and an arc clamped at its two ends (CC) with an 

opening angle 𝜃 = 1𝑟𝑎𝑑. The corresponding normalized 

tangential 𝑣𝑖(𝛼∗) and radial modes 𝑢𝑖(𝛼∗), described by 

Equations (5) and (7), are plotted in Figure 2 for SS, SC and 

CC arches; the dimensionless abscissa 𝛼∗ =
𝛼

𝜃
 varies from 0 

to 1. For clarity, only four modes are depicted in Figure 5. It 

is noticed that the traced modes verify the end conditions, i.e. 

at the clamped and supported ends, 𝑢 the tangential and 𝑣 the 

radial modes are zero. In contrast, the radial modes 𝑣 have 

zero slopes at the clamped ends and have an inflexion point 

at the supported ends. Even if the found set of the trial 

functions is based on a circular arc with constant cross-

section whose in-plane vibrations are governed by the 

differential equation with constant coefficients expressed in 

Equation (4), they constitute the three sets of basic functions 

used in the present Rayleigh-Ritz formulation. It is applied to 

the different values of the opening angle 𝜃, for the geometric 
nature of different arches and many functions defining the 

change in height ℎ(𝛼). 

 

Table 1. First ten frequency parameters 𝜴̅𝒊 obtained for SS, SC and CC circular arches with an opening angle 𝜽 = 𝟏𝒓𝒂𝒅 and uniform section 

 𝛺‾1 𝛺‾2 𝛺‾3 𝛺‾4 𝛺‾5 𝛺‾6 𝛺‾7 𝛺‾8 𝛺‾9 𝛺‾10 

SS 42.41 85.39 160.88 243.51 358.31 480.45 634.67 796.31 989.14 1177.07 

SC 53,22 98,68 181,95 266,99 389,39 513,94 675,71 840,61 1007,01 1149,85 

CC 65.72 112.46 204.69 291.05 422.16 548.03 718.45 883.93 1094.16 1320.24 

 

 
Fig. 2 First four tangential and radial displacements of an arc with an opening angle θ=1rad for CC, CS, and SS end conditions



Ahmed BABAHAMMOU et al. / IJCE, 11(5), 41-55, 2024 

 

 

45 

Table 2. The five values of the integer n define the geometric nature of the studied arches 

n -3 -2 -1 0 1 

Nature Parabola Catenary Spiral Circle Cycloid 

 

2.3. Rayleigh-Ritz Formulation  

Under the assumption of neglected the rotational inertia, 

the kinetic energy 𝑻 and the bending strain energy 𝑽 are 

given by [12, 14]:  

𝑻 =
𝟏

𝟐
𝝁 ∫

𝜽

𝟎

𝑹(𝜶)𝑺(𝜶) ((
𝛛𝐯

𝛛𝒕
)

𝟐

+ (
𝛛𝐯(𝟏)

𝛛𝒕
)

𝟐

) 𝒅𝜶

𝑽 =
𝟏

𝟐
𝑬 ∫

𝜽

𝟎

𝑰(𝜶)

𝑹𝟑(𝜶)
(𝐯(𝟑) + 𝐯(𝟏) −

𝑹(𝟏)(𝜶)

𝑹(𝜶)
(𝐯(𝟐) + 𝐯))

𝟐

𝒅𝜶

 

(  (10) 

The variation function of the height of the cross-sections 

ℎ(𝛼) and that of the arc radius 𝑅(𝛼) are defined as follows:  

 

ℎ(𝛼) = ℎ0𝑓(𝛼)

𝑅(𝛼) = 𝑅0cos𝑛(𝛼)
 (11) 

 

Where ℎ0 and 𝑅0 are the height and the radius, 

respectively, in the middle line (𝛼 =
𝜃

2
), 𝑓 is a known 

function defining the law of the height variation and 𝑛 is an 

integer defining the geometric nature of the arc, as shown in 

Table 2.  With due regard for Equations. (2), (10) and (11), 

the kinetic and the bending strain energies are discretized as 

follows:  
 

𝑇 =
1

2
𝜔2𝑎𝑖𝑎𝑗𝑚𝑖𝑗cos2(𝜔𝑡) =

1

2
𝜔2{𝐴}𝑇[𝑀]{𝐴}cos2(𝜔𝑡)

𝑉 =
1

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗sin2(𝜔𝑡) =

1

2
{𝐴}𝑇[𝐾]{𝐴}sin2(𝜔𝑡)

 (12) 

 

Where {𝐴} is an unknown contribution coefficient vector 

such as {𝐴}𝑇 = {𝑎1    𝑎2    . . . 𝑎𝑁}. [𝑀] and [𝐾] are the mass 
and the linear rigidity matrices, respectively; their general 

terms are expressed by:  

 

𝑚𝑖𝑗 = 𝜇𝑅0𝑆0 ∫
𝜃

0

𝑓(𝛼)(𝑣𝑖𝑣𝑗 + 𝑣𝑖
(1)

𝑣𝑗
(1)

)cos𝑛(𝛼)𝑑𝛼

𝑘𝑖𝑗 =
𝐸𝐼0

𝑅0
3 ∫

𝜃

0

𝑓3(𝛼)(𝑣𝑖
(3)

+ 𝑣𝑖
(1)

− (𝑣𝑖
(2)

+ 𝑣𝑖)𝑛tan(𝛼)) ×

(𝑣𝑗
(3)

+ 𝑣𝑗
(1)

− (𝑣𝑗
(2)

+ 𝑣𝑗)𝑛tan(𝛼))cos−3𝑛(𝛼)𝑑𝛼

 

 (13) 
 

Hamilton’s principle governs the free tapered arc 

vibrations:  

𝛿 ∫
2𝜋

𝜔
0

(𝑉 − 𝑇)𝑑𝑡 = 0 (14) 

The integration of the energies over the range [0,
2𝜋

𝜔
]and 

calculation of the derivatives with respect to the 𝑎𝑖’s lead to 

the tangential dimensional displacement equation whose 

expression is:  

 

2[𝐾]{𝐴} − 2𝜔2[𝑀]{𝐴} = {0} (15) 
 

Equation (15) holds the mechanical and geometric 

properties of the arc, i.e. the opening angle 𝜃, the material 

density 𝜇, etc., so that the results are not exploitable on a 

large scale.  

 

To simplify the study of the influence of geometrical and 

mechanical parameters on the arc linear behavior, the 

numerical treatment of the linear algebraic Equation (15) has 

to be written by a dimensionless expression. Therefore, the 

following dimensionless parameters are defined: 

 

𝛼∗ =
𝛼

𝜃
 : The dimensionless angular abscissa 

 

𝑣𝑖
∗(𝛼∗) =

𝑣𝑖(𝛼)

𝑅0

 

 

: 

 

The dimensionless tangential 

 displacement 

 

𝑚𝑖𝑗
∗ =

𝑚𝑖𝑗

𝜇𝑅0𝑆0

 

 

: 

 

The dimensionless mass matrix 

 

 

𝑘𝑖𝑗
∗ =

𝑅0
3

𝐸𝐼0

. 𝑘𝑖𝑗  

 

: 

 

The dimensionless rigidity matrix 

 

𝑅0, ℎ0, 𝑆0 = 𝑏ℎ0 and 𝐼0 =
𝑏ℎ0

3

12
 are the radius, the 

thickness, the section area and the second moment of inertia, 

respectively, at the arc top (𝛼 =
𝜃

2
). It leads to the 

dimensionless frequency parameter Ω to be found in what 

follows:  

 

Ω = √
𝜇𝑆0𝑅0

4

𝐸𝐼0
𝜔                                (16) 

 

Equation(15) then becomes:  

 

2[𝐾∗]{𝐴} − 2Ω2[𝑀∗]{𝐴} = {0} (17) 
 

[𝑀∗] and  [𝐾∗] are the dimensionless mass and rigidity 
matrices defined by their general terms in which the 

functions 𝐹, 𝐺1 , 𝐺2 , 𝐻1, 𝐻2 have been generated as follows:  

𝐹(𝛼∗) = 𝑛tan(𝛼∗) 

𝐺1(𝛼∗) = cos𝑛(𝛼∗)𝐺2(𝛼∗) = cos−3𝑛(𝛼∗) 

𝐻1(𝛼∗) = 𝐹(𝛼∗) × 𝐺2(𝛼∗)𝐻2(𝛼∗) = 𝐹2(𝛼∗) × 𝐺2(𝛼∗) 
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Equation (17) stands for the Rayleigh-Ritz 

dimensionless formulation of the linear arc vibration; it is a 

simple linear algebraic system. The 𝑁 eigenvalues Ω𝑖 and the 

eigenvectors associated, which are the contribution 

coefficient vectors {𝐴} expressed by Equation (12), are found 

numerically using MatLab software. The components 𝑎𝑖 of 

these eigenvectors allow us to calculate the mode shapes 
expressed in Equation (5), 

 

3. Numerical Results and Discussion 
The descriptive analysis has been implemented in 

MatLab software where a computer code has been written to 

calculate numerically the dimensionless frequency 

parameters Ω = 𝑅0
2√

𝜇𝑆0

𝐸𝐼0
𝜔 and their associated mode shapes 

 

by solving Equation (?). Remember that 𝑅0, 𝑆0 and 𝐼0 are the 

radius, the area and the second moment of inertia of the 

cross-section of the arc, respectively, at the axis middle (𝛼 =
𝜃

2
). The validation of this implementation has been done by 

comparing the calculated results with those obtained by 

different methods of solving the same problem. This 

validation is reported in subsection (3.2). The geometric 

parameters considered are the opening angle 𝜃, the taper 

ratio 𝜂, the arc geometric nature as displayed in Table 3 and 

the taper type as shown in Figure 3. 𝜂 being the tapered ratio. 

The influence of the variation of the cross-section and the arc 

geometry on the solution convergence is studied in the next 

subsection. Five laws for varying the height of the arches 

shown in Figure 4 are studied. 

 

 

 

 
(a): Symmetric 1 (b): Symmetric 2 

 

 

 

 
(c): Asymmetric 1 (d): Asymmetric 2 

Fig. 3 Variable cross-section of investigated arches 

 

𝑚𝑖𝑗
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(18) 
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Case Arc Shape The Height Variation Law  

1 Symmetric 
ℎ1(𝛼∗) = (1 − 𝜂(2𝛼∗ − 1)) 0 < 𝛼∗ < 0.5 

ℎ1(𝛼∗) = (1 + 𝜂(2𝛼∗ − 1)) 0.5 < 𝛼∗ < 1 

2 Asymmetric 1 ℎ2(𝛼∗) = (1 + 𝜂(2𝛼∗ − 1)) 0 < 𝛼∗ < 1 

3 Asymmetric 2 ℎ3(𝛼∗) = (1 − 𝜂(2𝛼∗ − 1)) 0 < 𝛼∗ < 1 

4 Quadratic ℎ4(𝛼∗) = (1 + 𝜂(2𝛼∗ − 1))2 0 < 𝛼∗ < 1 

5 Symmetric 2 : Sin ℎ5(𝛼∗) = (1 − 𝜂(𝑠𝑖𝑛(𝜋𝛼∗) − 1)) 0 < 𝛼∗ < 1 

Fig. 4 Five Laws for Varying the Height of the Arches  

3.1. Convergence Study  
To check the convergence of the first four frequency 

parameters Ω𝑖 of tapered asymmetric CC arches, the 

normalized relative deviations are defined as follows:  

 

Δ𝑖 =
Ω𝑖−Ω𝑃

Ω𝑃
× 100    𝑖 = 1   𝑡𝑜   4 (19) 

 

In which Ω𝑖 is the 𝑖𝑡ℎ frequency parameter calculated for 

several values of the number of the trial arc functions 𝑁 =
4,5, . .. and Ω𝑃 is the same 𝑖𝑡ℎ frequency parameter, but 

calculated from the value 𝑃 which is the maximum value of 

𝑁: 𝑃 = 𝑀𝑎𝑥(𝑁). These normalized relative differences Δ𝑖 

are calculated and plotted as a function of 𝑁 two cases: by 

varying the taper ratio and by varying the geometric nature of 

the arc. For the first convergence study, the arc under 

consideration (illustrated in Figure 5(d)) is a CC tapered 

circular; it has an opening angle 𝜃 = 120∘, and the height 

variation is the "case 3" type. 

Figure 6 gives the curves of convergence study for the 

first four frequency parameters Ω𝑖 𝑖 = 1 to 4, according to an 

integer 𝑁 with five values of the tapered ratio 𝜂 =
0,0.1,0.2,0.3,0.4. These curves allow us to conclude, in a 

general way, that the convergence is fast and for 𝑁 = 7 these 

normalized relative differences verify Δ𝑖 ≤ 0.5% for the 

lowest four frequency parameters Ω𝑖. The second remark that 

can be drawn from these curves is that the tapered ratio 
decreases the convergence rapidity. Fortunately, this effect is 

small. The tapered ratio influence on the convergence is 

explained by the fact that the trial arc functions used in the 

present Rayleigh-Ritz Formulation are calculated on the 

basis of an arc with a constant section, so when the section 

varies (𝜂 increases), the calculation program needs more trial 

arc functions (𝑁 increases). The second convergence study 

concerns 60∘ CC arches (asymmetric 2, "case 3") for five 

types of arc  

 

geometric nature: cycloid, circular, spiral, catenary, and 

parabola, corresponding to 𝑛 = 1,0, −1, −2, −3 , 

respectively, 𝑛 being the integer defining the arc geometric 

nature given in Table 3. The convergence study for the first 

four frequency parameters Ω𝑖 𝑖 = 1 to 4, according to the 

integer, 𝑁 is summarized in Figure 7. Also, this figure allows 

us to conclude, in a general way, that the convergence is fast 

and for 𝑁 = 6 the normalized relative differences Δ𝑖 ≤ 1% 

for the lowest four frequency parameters Ω𝑖 and the cited 

five types of arc geometric nature.  

 

The second remark that can be noticed from these curves 
is that the convergence rapidity is inversely proportional to 

the absolute value of 𝑛the fastest convergence for circular 

arches (𝑛 = 0); the convergence studies for a cycloid arc 

(𝑛 = 1) and a spiral arc (𝑛 = −1) are almost identical. The 

slow convergence is that of the parabola arc (𝑛 = −3). 

  

Indeed, this was expected; the influence of the arc's 

geometric nature on the convergence is explained by the fact 

that the arc trial functions used in the present Rayleigh-Ritz 
formulation are calculated on the basis of a circular arc. As a 

result, when the absolute value of the integer defining the 

geometric nature of the arc 𝑛 increases, the calculation 

program requires more trial arc functions (𝑁 increases).It can 

be concluded that the convergence of the Rayleigh-Ritz 

formulation, presented here, is less sensitive to the variation 

of the radius. It is seen that using more than 7 arc trial 

functions will yield normalized relative differences Δ ≤
0.01% for CC circular arc and Δ ≤ 0.4% for parabolic arc 
respectively.To study higher order convergence, a 30Â° CC 

parabola arc with a tapered ratio 𝜂 = 0.4 is studied. Table 3 

gives the convergence of the solution up to the eighth order 

for a number of test functions varying from 8 to 11. This 

table shows that, in the worst case, the eighth frequency 

parameter converges easily for N=11

 

Table 3. Convergence study for a 30∘ CC parabola tapered arc with η=0.4 

 𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 𝛀𝟕 𝛀𝟖 

N=8 198.829 363.593 650.627 953.221 1385.620 1889.660 2667.659 8199.810 

N=9 198.763 363.180 649.329 947.565 1364.835 1815.892 2424.949 3179.051 

N=10 198.748 363.096 649.097 946.650 1361.689 1804.421 2388.641 3107.409 

N=11 198.732 363.062 649.013 946.576 1361.651 1804.410 2388.230 3086.101 
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For example, for a 20∘ CS parabola tapered arc ("case 

3") with 𝜂 = 0.4 and for 𝑁 = 8 trial arc functions, the first 

eight frequency parameters Ω𝑖 and their contribution 

coefficients 𝑎𝑖 are summarized in Table 4. The arc vibration 

modes can be easily computed using Equation (2), the lower 

ones are written as:  

 
 𝑚𝑜𝑑𝑒  1,     𝑣(𝛼) = 0.9861𝑣1(𝛼) + 0.1597𝑣2(𝛼) + 0.0439𝑣3(𝛼) + 0.0076𝑣4(𝛼)

+0.0045𝑣5(𝛼) + 0.0010𝑣6(𝛼) + 0.0008𝑣7(𝛼) + 0.0001𝑣8(𝛼)
 𝑚𝑜𝑑𝑒  2,     𝑣(𝛼) = 0,3772𝑣1(𝛼) − 0,8615𝑣2(𝛼) − 0,3334𝑣3(𝛼) − 0,0569𝑣4(𝛼)

−0,0327𝑣5(𝛼) − 0,0064𝑣6(𝛼) − 0,0053𝑣7(𝛼) − 0,0007𝑣8(𝛼)

 

 

 
 

(20) 

 
Fig. 5 Convergence study for the first four frequency parameters of a tapered 𝟏𝟐𝟎∘CC circular arc 

 

 
Fig. 6 Convergence study for the first four frequency parameters of 𝟔𝟎∘CC curved 
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Table 4. First eight frequency parameters 𝜴𝒊 and their contribution coefficients 𝒂𝒊 for a 𝟐𝟎∘ CS parabola tapered arc with  𝜼 = 𝟎. 𝟒. 

 𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 𝛀𝟕 𝛀𝟖 

 393.193 755.174 1372.983 2045.153 2969.230 4001.288 5400.885 7415.685 

𝑎1 9.86E-01 3.77E-01 1.23E-01 -6.29E-02 1.19E-01 -4.91E-02 -9.37E-02 -1.26E-02 

𝑎2 1.60E-01 -8.62E-01 1.78E-01 -5.40E-03 -6.68E-03 -1.74E-02 1.14E-02 -2.45E-02 

𝑎3 4.39E-02 -3.33E-01 -9.35E-01 -5.09E-01 2.77E-03 -8.16E-03 -3.62E-02 4.37E-03 

𝑎4 7.61E-03 -5.69E-02 -2.56E-01 6.94E-01 3.04E-01 4.37E-02 -1.08E-04 -7.86E-03 

𝑎5 4.53E-03 -3.27E-02 -1.12E-01 4.89E-01 -8.62E-01 -6.04E-01 6.74E-02 7.42E-03 

𝑎6 9.55E-04 -6.44E-03 -2.34E-02 1.08E-01 -3.39E-01 5.67E-01 -3.48E-01 5.75E-02 

𝑎7 7.94E-04 -5.29E-03 -1.42E-02 6.43E-02 -1.85E-01 5.46E-01 8.80E-01 -5.52E-01 

𝑎8 1.20E-04 -7.28E-04 -2.38E-03 9.95E-03 -3.32E-02 1.05E-01 3.00E-01 8.31E-01 
 

Table 5. First two frequency parameters Ω1,2 for CC symmetric tapered circular arches  η=0,1. (Case 1) 

 Present ES [27] RRM[3] CDM[20] GDQR[20] DQM[15] 

𝜃∘ Fundamental Frequency Parameter Ω1 

10 2149.7606 2149.7316 2034 2138.3 2149.7593 2149.7594 

20 535.4505 535.4431 506.54 532.59 535.45 535.45 

30 236.5185 236.5152 223.7 235.26 236.5183 236.5183 

40 131.9089 131.9070 124.73 131.2 131.9088 131.9088 

50 83.5074 83.50616   83.5073 83.5073 

𝜃∘ Second Frequency Parameter Ω2 

10 3859.2687 3859.201 3859.9 3821.7 3859.2373 3858.7878 

20 963.4396 963.4217 963.59 954.09 963.4309 963.4028 

30 427.1773 427.1692 427.24 422.92 427.1733 427.1678 

40 239.4889 239.4843 239.52 237.17 239.4866 239.4849 

50 152.6196 152.6167   152.6181 152.6174 
 

Table 6. The First frequency parameter Ω1 of a SS asymmetric tapered circular arc η=0,1.(Case 2) 

𝜽∘ Present ES[27] RRM[3] FEM[3] CDM[20] GDQM[20] QM[15] DTM[24] GDQ[24] 

10 1290.4855 1290.48392 1286.5  1287.8 1290.485 1290.485 1290.5 1290.5 

20 320.7633 320.762901 319.09 320.81 320.11 320.7631 320.7631 320.76 320.76 

30 141.2012 141.201091  141.05 140.92 141.2012  141.2 141.2 

40 78.3731 78.3730359 78.069 78.438 78.22 78.3731 78.3731 78.323 78.323 

50 49.3123 49.3122615 49.124  49.218 49.3123  49.312 49.312 

60 33.5460 33.5460425 33.43 33.621 33.484 33.5461 33.5461 33.546 33.546 

80 17.9206 17.9206083    17.9206 17.9206   

 

4. Results Validation 
The first arc investigated is a circular symmetrical CC 

arc depicted in Figure 5(a) (case 1), with a taper ratio 𝜂 =

0.1. The first two frequency parameters Ω = 𝑅0
2√

𝜇𝑆0

𝐸𝐼0
𝜔 are 

listed in Table 5 and compared to those in the bibliography. 

It should be noted that the current results are very similar to 

those obtained by other methods, such as the generalized 

differential quadrature rule (GDQR) developed by Liu [13] 
and the differential quadrature method (DQM) investigated 

by Karami [14], the difference percentages are very small 

and do not exceed 4 × 10−4%. Moreover, the difference 

percentages between the present results and those found by 

the so-called Cell Discretization Method (CDM) [13] remain 

less than 0.99%it is well known that the CDM and RRM 

predict a lower and upper bound respectively to the exact 

solution. The results found by Tufekci [16] are accurate 

enough, but the results found using RRM [24] present 

different percentages that reach 5% compared to the rest of 
the results in Table 5. This is explained by the trial arc 

functions, which are polynomial approximations. Thanks to 

the good choice of the trial arc functions used in the present 

Rayleigh-Ritz formulation, the results found here are the 

most accurate of those given by the other research based on 

the RRM. Table 6 gives the fundamental frequency 

parameters Ω1 of an asymmetric circular SS arc (Figure 

5(c)), the height variation function is ℎ(𝛼∗) = (1 + 𝜂(2𝛼∗ −
1)) (case 2), and the taper ratio is 𝜂 = 0.1. An excellent 
agreement with the results listed in this table is noticed; 

again, the results found using the Rayleigh-Ritz method by 

Laura [3] are less accurate than another method in this table. 
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The first two frequency parameters Ω1,2 of tapered 

symmetric SS and CC circular arches shown in Figure 5(b) 

with varying cross-sections represented by the sin function 

(case 5) with two values of the taper ratio 𝜂 = 0,1 are 

summarized in Table 7. This later table compares the present 

results to those by Shin [24], who have used two methods, 

the Differential Transformation Method (DTM) and the 
Generalized Differential Quadrature Method (GDQM). 

Again, an excellent agreement with all results presented in 

this table. 

  

The comparison with the same references is given in 

Table 8 for a symmetric SS arc plotted in Figure 5(b) with 

varying sections represented by the quadratic function 

ℎ4(𝛼∗) = (1 + 𝜂(2𝛼∗ − 1))2 for 0 < 𝛼∗ < 1 (Case 4). The 
present comparison is also excellent. Table 9 lists the 

fundamental frequency parameter Ω1 of a circular CC arc 

with several values of tapered ratios 𝜂.  

Two sets of results are presented in this table: the first 

one is about an asymmetric CC arc shown in Figure 6(d) 

with a linear variable thickness according to the function ℎ2, 

the fundamental frequency parameters for opening angles 

𝜃 = 10∘, 20∘, 40∘, 60∘, 80∘ and tapered ratio 𝜂 =
0.1,0.2,0.3,0.4are compared to those found by Karami 

(DQM) [15] and Lui (GDQR) [20]. The differences in 

percentage between the present results and those of Refs [15] 

and [20] remain less 0.0045%. The second set of results 

compares the fundamental frequency parameter of a 

symmetrical CC arc shown in Figure 5(a) having a linear 

variable thickness according to the function ℎ1with the 

results given by author for opening angles 𝜃 =
20∘, 30∘, 40∘, 50∘ and tapered ratio 𝜂 = 0,0.1,0.2,0.3. Even 

though they are very close to each other, the results of this 

work are more accurate than those given by an author 

because the results corresponding to 𝜂 = 0 those given by De 

Rosa [10] (DQM) are identical to those given by this work. 

 
Table 7. First two frequency parameters Ω1,2 of SS and CC symmetric tapered circular arc η=0,1. (Case 5) 

  Fundamental frequency parameter  Second frequency parameter 

 𝜃∘ Present ES[27] DTM[24] GDQM[24]  Present ES[27] DTM [24] GDQM[22] 

SS 10 2127.1342 2127.716 2127.1 2127.1  3816.4893 3823.409 3816.5 3816.5 

 20 529.8201 529.9307 529.82 529.82  952.7674 954.4785 952.76 952.76 

 30 234.0355 234.0592 234.04 234.04  422.4511 423.198 422.45 422.45 

 40 130.5273 130.5212 130.53 30.53  236.8437 237.2532 236.84 236.84 

 50 82.6354 82.616 82.635 82.635  150.9376 151.191 150.94 150.94 

 60 56.6380 56.61197 56.638 56.638  104.2764 104.4451 104.28 104.28 

 

CC 01 1333.8494  1333.8 1333.8  2874.7293  2874.8 2874.8 

 20 331.5784  331.58 331.58  717.2857  717.3 717.3 

 30 145.9884  145.99 145.99  317.7622  317.77 317.77 

 40 81.0501  81.05 81.05  177.9327  177.94 177.94 

 50 51.0122  51.012 51.012  113.2157  113.22 113.22 

 60 34.7148  34.715 34.715  78.0650  78.067 78.067 

 
Table 8.  First two frequency parameters Ω 1,2 of an SS symmetric tapered circular arc η=0,1. (Case 4) 

 Fundamental frequency parameter Second frequency parameter 

 Present ES[27] DTM[24] GDQM[24] Present ES[24] DTM[24] GDQM[24] 

10 1285.1103 1285.106 1285.1 1285.1 2750.3173 2750.391 2750.4 2750.4 

20 319.4265 319.4256 319.43 319.43 686.2288 686.2475 686.25 686.25 

30 140.6123 140.6119 140.61 140.61 303.9934 304.0019 304 304 

40 78.0457 78.04555 78.046 78.046 170.2146 170.2196 170.22 170.22 

50 49.1059 49.1058 49.106 49.106 108.2981 108.3014 108.3 108.3 

60 33.4052 33.40521 33.405 33.405 74.6686 74.67106 74.671 74.671 
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Table 9. The fundamental frequency parameter Ω 1 of a CC tapered circular arc with several values of tapered ratio η 

  A CC asymmetric arc : ℎ2 (Case 2) 

  𝜃 = 10∘ 20∘ 40∘ 60∘ 80∘ 

𝜂 = 0.1 Present 2016.998 502.3076 123.6710 53.6080 29.1459 

 Ref [15] 2016.983 502.3033 123.6698 53.6074 29.1456 

 Ref [20] 2016.983 502.3033 123.6698 53.6075 29.1456 

𝜂 = 0.2 Present 2001.871 498.5421 122.7450 53.2074 28.9288 

 Ref [15] 2001.812 498.5259 122.7406 53.2053 28.9275 

 Ref [20] 2001.813 498.526 122.7406 53.2053 28.9275 

𝜂 = 0.3 Present 1976.206 492.1548 121.1744 52.5280 28.5605 

 *Ref [15] 1975.993 492.0976 121.1591 52.5208 28.5564 

 Ref [20] 1975.996 492.0978 121.1592 52.5209 28.5564 

𝜂 = 0.4 Present 1939.330 482.9810 118.9195 51.5528 28.0322 

 Ref [15] 1938.632 482.7954 118.8708 51.5304 28.0193 

 Ref [20] 1938.637 482.7959 118.8708 51.5305 28.0193 

 

  A CC symmetric arc ℎ1 (Case 1) 

  𝜃 = 20∘ 30∘ 40∘ 50∘  

𝜂 = 0 Present 503.55 222.37 123.98 78.45  

 Ref [10] 503.55 - 123.98 -  

 Ref [28] 504.11 223.11 124.97 79.78  

𝜂 = 0.1 Present 535.45 236.52 131.91 83.51  

 Ref [28] 536.02 237.24 132.86 84.76  

  538.95 238.07 132.78 84.06  

𝜂 = 0.2 Present 566.82 250.43 139.71 88.48  

 Ref [28] 567.39 251.13 140.62 89.67  

 Ref [27] 568.3 251.09 140.08 88.72  

𝜂 = 0.3 Present 597.73 264.14 147.40 93.38  

 Ref [28] 598.04 264.82 148.28 94.51  

 Ref [27] 597.3 263.95 147.29 93.32  

 

The results concerning the fundamental frequency 

parameters Ω̃1 = √
𝜇𝑆0

𝐸𝐼0
(𝑅0𝜃)2𝜔1 of tapered asymmetric CC 

and CS tapered arches with variable curvature are listed in 

Table 10 for tapered ratios 𝜂 = 0.1,0.2,0.3,0.4 and opening 

angles 𝜃 = 10∘, 20∘, 30∘, 40∘, 50∘, 60∘. The CC, SC tapered 

arc shown in Figures 5(d) and 5(c) have Varying cross-

sections according to the function ℎ2(𝛼∗) = 1 + 𝜂(2𝛼∗ − 1) 

and ℎ3(𝛼∗) = 1 − 𝜂(2𝛼∗ − 1) respectively. The results are 

very close to those given by Gutierrez [14] who has used 

polynomial coordinate functions and the Ritz method. The 
strong point of the present method, in accordance with that of 

Gutierrez, is that the present Rayleigh-Ritz method does not 

diverge. 
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Table 10.  The fundamental frequency parameter Ω̃1 of a CC and CS asymmetric tapered arc with variable curvature 

                               CC arc (Case 2: h2(α∗) = 1 + η(2α∗ − 1))            SC arc (Case 3 : h3(α∗) = 1 − η(2α∗ − 1)) 

 θ  η = 0.1 η = 0.2 η = 0.3 η = 0.4  η = 0.1 η = 0.2 η = 0.3 η = 0.4 

Parabola 10 (a) 60.97 60.52 59.74 58.63  48.69 47.86 46.77 45.42 

  (b) 60.53 60.46 59.73 58.37  48.49 47.74 46.46 45.34 

 20 (a) 59.35 58.90 58.15 57.06  47.35 46.53 45.48 44.16 

  (b) 59.05 58.85 58.10 56.78  47.15 46.47 45.43 44.09 

 30 (a) 56.69 56.26 55.54 54.51  45.15 44.37 43.36 42.10 

  (b) 56.49 56.41 55.42 54.11  45.07 44.36 43.26 41.85 

 40 (a) 53.07 52.67 52.00 51.04  42.17 41.44 40.49 39.31 

  (b) 52.91 52.65 51.76 50.43  42.14 41.28 40.29 38.88 

 50 (a) 48.61 48.25 47.64 46.78  38.52 37.85 36.98 35.90 

  (b) 48.41 4.08 47.15 46.14  38.26 37.52 36.55 35.32 

 60 (a) 43.46 43.14 42.61 41.87  34.31 33.71 32.94 31.98 

  (b) 42.98 42.70 41.85 40.86  33.70 32.98 32.00 30.05 

Catenary 10 (a) 61.13 60.67 59.89 58.78  48.82 47.98 46.89 45.54 

  (b) 60.59 60.59 59.93 58.65  48.58 47.91 46.81 45.43 

 20 (a) 59.96 59.51 58.75 57.66  47.84 47.02 45.95 44.61 

  (b) 59.59 59.46 58.78 57.41  47.66 46.90 45.95 44.45 

 30 (a) 58.04 57.61 56.87 55.81  46.23 45.43 44.40 43.10 

  (b) 57.75 57.55 56.85 55.49  46.04 45.34 44.36 42.89 

 40 (a) 55.41 54.99 54.29 53.28  44.04 43.27 42.27 41.04 

  (b) 55.20 54.99 54.18 52.83  44.00 43.17 42.14 40.79 

 50 (a) 52.11 51.72 51.06 50.12  41.30 40.57 39.63 38.47 

  (b) 52.00 51.69 50.75 49.55  41.18 40.39 39.39 38.05 

 60 (a) 48.22 47.86 47.26 46.41  38.09 37.41 36.54 35.45 

  (b) 48.08 47.66 46.81 45.78  37.83 37.09 36.11 34.87 

Spiral 10 (a) 61.29 60.83 60.05 58.93  48.94 48.10 47.01 45.65 

  (b) 60.79 60.79 60.13 58.78  48.74 48.00 46.98 45.51 

 20 (a) 60.58 60.13 59.36 58.25  48.34 47.50 46.42 45.08 

  (b) 60.13 60.06 59.33 58.10  48.16 47.41 46.30 44.98 

 30 (a) 59.42 58.97 58.22 57.13  47.33 46.51 45.45 44.12 

  (b) 58.99 58.92 58.24 56.85  47.15 46.39 45.43 43.90 

 40 (a) 57.81 57.38 56.64 55.59  45.95 45.15 44.10 42.81 

  (b) 57.55 57.41 56.56 55.20  45.86 45.07 44.00 42.61 

 50 (a) 55.77 55.36 54.65 53.64  44.21 43.43 42.41 41.16 

  (b) 55.57 55.35 54.55 53.21  44.09 43.26 42.30 40.98 

 60 (a) 53.33 52.93 52.26 51.30  42.14 41.38 40.40 39.19 

  (b) 53.21 52.92 52.07 50.83  42.04 41.18 40.42 38.88 

Circle 10 (a) 61.44 60.98 60.20 59.08  49.07 48.23 47.13 45.77 

  (b) 60.92 60.92 60.26 58.92  48.82 48.08 47.07 45.69 

 20 (a) 61.20 60.75 59.97 58.85  48.84 47.99 46.90 45.54 

  (b) 60.72 60.66 60.00 58.65  48.58 47.83 46.81 45.43 

 30 (a) 60.81 60.36 59.59 58.48  48.45 47.61 46.52 45.16 

  (b) 60.33 60.26 59.59 58.31  48.24 47.49 46.47 45.07 

 40 (a) 60.28 59.82 59.06 57.96  47.92 47.08 45.99 44.63 

  (b) 59.80 59.73 59.05 57.82  47.74 46.90 45.95 44.54 

 50 (a) 59.60 59.15 58.40 57.31  47.26 46.41 45.32 43.97 

  (b) 59.12 59.05 58.37 57.13  47.07 46.21 45.25 43.81 

 60 (a) 58.79 58.35 57.60 56.53  46.47 45.62 44.53 43.19 

  (b) 58.31 58.24 57.68 56.35  46.21 45.51 44.54 43.08 



Ahmed BABAHAMMOU et al. / IJCE, 11(5), 41-55, 2024 

 

 

53 

 10 (a) 61.60 61.14 60.35 59.23  49.19 48.35 47.25 45.89 

Cycloid  (b) 61.05 61.05 60.39 59.05  48.90 48.24 47.15 45.78 

 20 (a) 61.83 61.37 60.58 59.45  49.34 48.49 47.38 46.01 

  (b) 61.35 61.25 60.66 59.33  49.07 48.33 47.32 45.95 

 30 (a) 62.23 61.76 60.97 59.84  49.59 48.72 47.60 46.21 

  (b) 61.57 61.57 61.05 59.80  49.31 48.49 47.49 46.13 

 40 (a) 62.81 62.34 61.54 60.40  49.95 49.07 47.93 46.51 

  (b) 62.03 62.16 61.54 60.46  49.55 48.82 47.91 46.47 

 50 (a) 63.58 63.11 62.30 61.14  50.44 49.53 48.36 46.92 

  (b) 62.54 62.86 62.48 61.31  49.96 49.23 48.24 46.81 

 60 (a) 64.58 64.10 63.28 62.11  51.08 50.14 48.94 47.46 

  (b) 63.30 63.62 63.56 62.41  50.35 49.71 48.74 47.49 
(a) values of this work, (b) values of Ref [8] 

 

  
 
 

 

                       First mode                                              Second mode                          Third  mode 

 

                    Fourth mode                          Fifth mode                                                Sixtemode

                                                                                                       

Figure 7 plots the lowest six normalized mode shapes of 

a 120∘ tapered CC circular asymmetric arc with various 

tapered ratios 𝜂 = 0,0.2,0.4,0.6; the variation law of the 

section height is given by the function ℎ2 defined above. The 

dashed black line presents an arc before deformation, and the 

blue, orange, yellow and pulp curves correspond to arc 

modes corresponding to tapered ratios = 0,0.2,0.4,0.6 , 

respectively. For all the modes and whatever the value of the 

tapered ratio 𝜂, the slopes at the ends are zero because the arc 
is clamped at both ends. It is quite clear that the circular arc 

with constant section (𝜂 = 0), whose modes are represented 

by the blue curves, is a symmetrical arc; therefore, the odd 

modes are asymmetrical, and the even modes are 

symmetrical. On the other hand, 𝜂 ≠ 0i.e. when the arc has a 

variable section, the odd modes are no longer asymmetrical, 

and the even modes are no longer symmetrical. It is 
concluded that the taper ratio has a significant influence on 

the modes. 
 

5. Conclusion 
 This paper sounds quite comprehensive in its treatment 

of the Rayleigh-Ritz method for analyzing free vibrations of 

inextensible thin tapered arches with variable radii. The use 

of particular solutions of the governing differential equation 

for circular arcs with uniform cross-sections as trial arc 
functions, determined through symbolic and numerical 

calculations via MATLAB, is a robust approach. It is 

interesting to note the consideration of various end 

conditions and arc geometries, including parabolic, cycloid, 

catenary, circular, and spiral arcs, each with different cross-

 
Fig. 7 The lowest six normalized mode shapes of 120° tapered CC circular arches with various tapered ratios η = 0, 0.2, 0.4, 0.6. Dashed black lines 

represent arc before deformation. 
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section variations. The sensitivity of the convergence study 

to the tapered ratio indicates the importance of carefully 

considering this parameter in the analysis. The observation 

that frequency parameters are generally insensitive to arc 

geometry but influenced by the taper and opening angle 

underscores the complexity of the system under study. The 
differing behavior of frequency parameters for spiral arcs 

compared to others adds an intriguing dimension to the 

findings. 

The impact of cross-section taper on mode shapes 

suggests that the geometry of the arch plays a significant role 

in determining its vibrational characteristics.Overall, the 

assertion that the Rayleigh-Ritz formulation presented in the 

paper is the most accurate compared to previous studies 

using the same method is a strong claim, indicating the 
potential for this approach to be applied to a wide range of 

arch structures, including those made of functionally graded 

materials or carrying added masses. 
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