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Abstract - Due to the complex nature of slope engineering, accurately predicting slope stability using traditional techniques 
can be difficult. It is, therefore, crucial to identify the correct technique for slope stability prediction in order to prevent 

disasters caused by slope failures. This study provides a comprehensive analysis of three ensemble models: Random Forest 

(RF), CatBoost, and Stacking. The models were evaluated for a wide range of hyperparameters to find the optimal settings 

for each model, resulting in the best solution. Six potentially relevant features, including height (H), pore water ratio (ru), 

unit weight (Ƴ), cohesion (c), slope angle (β) and angle of internal friction (ɸ), were selected as prediction indicators. The 

generalization ability of classification models is enhanced by using a 5-fold CV. Evaluation indicators such as AUC and 

accuracy were analyzed, and Stacking was found to outperform the other ensemble models with the highest AUC of 0.898 

and accuracy of 0.854. The analysis of engineering examples shows that Stacking is a highly effective tool for predicting 

slope stability due to its ability to enhance capacity and efficiency in deformation prediction models. This makes it the most 

accurate tool available for forecasting slope stability. In addition, a comprehensive analysis of parameter sensitivity was 

conducted to determine the most significant characteristics for predicting slope stability. 

Keywords - Logistic regression, CatBoost, Slope stability, Random Forest, Hyperparameters, Optimization, Finite Element 

Method, Limit Equilibrium.

1. Introduction 
Due to complexities in the physical state of the soil, the 

accurate estimation of slope stability is a difficult problem. 

The increasing slope failures that led to enormous economic 

and social losses were brought attention of researchers and 

engineers. In order to mitigate or prevent such damages, it 

is imperative to conduct a thorough slope stability analysis 

and implement appropriate stabilization measures. A deeper 

comprehension of the mechanisms contributing to slope 

failure is essential for effectively eradicating such events. 

Slope engineering is a system that is complicated, non-

linear, dynamic, and not without uncertainty. Various 

geological and engineering aspects, including 
unpredictability, fuzziness, and variability, as well as other 

uncertain qualities, have a comprehensive impact on its 

stability.   
 

It is important to note that the relationship between 

slope stability and the elements that influence it is 

significantly non-linear. A common tendency in slope 

stability research is a shift away from traditional 

deterministic notions and toward a more complete 

recognition of the uncertainty caused by the broad range of 
slope parameters. Traditional approaches such as the limit 

equilibrium method [1–3], discontinuous deformation 

analysis [4, 5], and finite element method [6–9] are 

extensive and inaccurate due to the complicated mechanism 

that influences slope stability. However, efforts are made to 

minimize the losses by numerical and analytical modelling 

such that appropriate actions can be taken by making 

accurate predictions. 

In recent years, due to advancements in computational 

techniques, many researchers have started employing 

machine learning techniques as an alternative method for 

slope stability analysis. These techniques evaluate slope 

stability based on parameters such as slope geometry and 

slope material properties, giving remarkable results. Lin et 
al. [10] carried out a comparative study of 11 ML models 

considering six slope factors. Samui [11] investigated the 

use of support vector machines to predict the factor of safety 

as a regression model and slope status as a classification 

model. Cheng et al. [12] utilized the K-Nearest Neighbour 

integrated with the Bayesian framework for slope stability 

prediction. Fattahi [13] adapted three neuro-fuzzy inference 

system (ANFIS) models, including the Subtractive 

Clustering Method (SCM), Grid Partitioning (GP) and 

Fuzzy C-means Clustering Method (FCM) for the 

prediction of FOS.  

 
Hoang et al. [14] conducted a comparative study of 

slope stability prediction using advanced machine learning 

methods, including Least Squares Support Vector Machines 

(LSSVM), Radial Basis Function Neural Networks 

(RBFNN) and Extreme Learning Machine (ELM). Das et 

al. [15] applied a differential evolution neural network for 

slope stability analysis, developing both classification and 

regression models. Manouchehrian et al. [16] developed a 

regression model for the prediction of slope stability using 

a Genetic Algorithm (GA). A comparison study was carried 

out by Erzin et al. [17] to predict the Factor of Safety (FOS) 
of homogeneous finite slopes by utilizing Multiple 
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Regression (MR) and Artificial Neural Network (ANN). Qi 

et al. [18] proposed and compared six Artificial Intelligence 

(AI) approaches, including Support Vector Machine (SVM), 

Random Forest (RF), Logistic Regression (LR), Gradient 

Boosting Machine (GBM), Decision Tree (DT) and Multi-

Layer Perceptron Neural Network (MLPNN) for slope 
stability prediction integrated with Firefly Algorithm (FA) 

for the hyper-parameter optimization. Karir et al. [19] 

studied various ML models, including gradient boosting, 

Extreme Gradient Boost (XBG), Support Vector Regressor 

(SVR), Random Forest (RF) and Artificial Neural Network 

(ANN) for factor of safety prediction. Recent studies have 

documented numerous hybrid models used for analyzing 

slope stability, including different types of data [20–25]. 

 

All of the machine learning models that were stated 

above help us better understand slope behavior and the 

complexity of slope. Nevertheless, the complexity of the 
problem continues to vary for the same data type, and this 

is because each model has its own set of limits.  

 

The purpose of slope stability analysis is to generate 

better prediction results for machine learning algorithms 

that are more recent and robust. Because of this, it is 

essential to discover powerful and high-accuracy ensemble 

learning algorithms in order to achieve results that are 

superior to those obtained by standalone algorithms in terms 

of slope stability. The combination of multiple ML models 

results in the formation of a “strong learner” that is more 
comprehensive through the process of ensemble learning.  

 

It is possible to generate more accurate prediction 

results with ensemble learning, which also can improve 

generalization performance and broader application 

applicability [26-28]. Kardani et al. [29] applied a hybrid 

stacking ensemble approach, including an Artificial Bee 

Colony (ABC) algorithm for enhancing the prediction of 

slope stability. Wang et al. [30] developed a highly effective 

reliability analysis method using Extreme Gradient 

Boosting (XGBoost) to assess the probability of slope 

failure in earth dams. Zhang et al. [31] developed a model 
for the prediction of Factor of Safety (FOS) against basal 

heave for deep-braced excavations using Random Forest 

Regressor (RFR) and Extreme Gradient Boosting 

(XGBoost).  

 

The results above suggest that ensemble learning 

algorithms present a promising method for predicting slope 

stability. However, there is a scarcity of studies that 

concentrate on ensemble algorithm classifiers for this 

particular application. Therefore, it is imperative to 

investigate additional ensemble classifiers that are better 
suited for examining non-linear slope behavior.  

 

Furthermore, there is no comprehensive evaluation of 

classifier ensemble algorithms for predicting slope stability. 

To enhance the accuracy of forecasting non-linear slope 

behavior and develop a straightforward model that can be 

extensively adopted, it is crucial to continue exploring 

ensemble algorithms that are more effectively designed for 

analyzing non-linear slope behavior. 

 

Therefore, the objective of this study is to conduct a 

comparative analysis among different ensemble learning 

classifiers with the specific goal of predicting slope stability. 
The study will explore and evaluate the performance of 

Random Forest (RF), CatBoost and Stacking Ensemble 

Learning classifiers. These particular ensemble learning 

classifiers have been chosen due to their increasing 

popularity and application within engineering disciplines.  

 

Despite their widespread use, there remains a gap in the 

literature regarding a thorough comparison of these 

algorithms for slope stability prediction. Hence, this 

research seeks to address this gap by providing a detailed 

assessment of their effectiveness and suitability. This study 

is outlined as follows: Section 2 provides a concise 
introduction to the ensemble learning classifiers. Section 3 

introduces the dataset of slopes and the techniques used to 

categorize their stability. Section 4 presents the outcomes 

and analysis derived from the performance criteria. The 

study’s result is presented in Section 5. 

 

2. Ensemble Learning Approaches 
Ensemble learning is a machine learning technique that 

integrates predictions from numerous independent models 

(learners) to improve overall prediction performance, as 

shown in Figure 1. Instead of relying on a single model, 

ensemble techniques create more accurate predictions by 

using the diversity and complementary qualities of 
numerous models.  

 

The fundamental idea of ensemble learning is that when 

a set of weak learners is joined, it can generate a strong 

learner that outperforms any individual model in the 

ensemble. In addition to decision trees, linear models, 

neural networks, and any other sort of model that is capable 

of learning from data, these weak learners can also be neural 

networks. 

 

Ensemble learning has three topologies based on how 
base learners are combined: parallel, serial, and hybrid. RF 

represents the parallel structure in which basic learners 

function independently, and their predictions are combined 

via a parallel method. The serial structure, represented by 

boosting (CatBoost), trains base learners progressively, with 

each succeeding learner focusing on rectifying the errors of 

the prior ones.  

 

Stacking represents a hybrid structure that includes 

aspects of both parallel and serial architectures in order to 

utilize the strengths of several base learners. In this study, 

some common classifiers and ensemble methods were 
employed, which were effectively implemented in various 

fields of geotechnical engineering, delivering excellent 

results [18, 26, 32, 33].
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Fig. 1 Schematic diagram of ensemble learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic diagram of random forest 

2.1. Random Forest 

The Random Forest (RF) algorithm is a type of 
ensemble method based on bagging and decision trees used 

in machine learning. The structure diagram of a random 

forest is depicted in Figure 2. With a bagging approach, the 

technique first extracts m multiples of the training data, after 

which multiple decision trees are built on distinct subsets of 

the training data. Their predictions are combined to form a 

final prediction based on the performance (based on the 

score derived from the number of votes in the classification 

tree) of multiple decision trees [34–36]. Every decision tree 

in the forest is constructed by utilizing a random subset of 

the independent variables and a random subset of the 

observations. This minimizes the correlation between the 
trees while increasing their prediction effectiveness. The 

main advantage of RF is its ability to handle a large number 

of input variables and complex interactions between them. 

Another benefit of the random forest technique is variable 

significance estimation. This is accomplished by assessing 

the loss in prediction accuracy as a variable is randomly 

permuted in the data. Therefore, RF has been one of the 

highly accurate and most robust algorithms in many studies. 

[37-40]. 
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Fig. 3 Schematic diagram of CatBoost 

 
 

2.2. CatBoost 
CatBoost, also known as “Categorical Boosting”, is a 

new Gradient Boosting Decision Tree (GBDT) algorithm 

specifically designed for handling categorical variables in 

datasets [41, 42]. Compared to other gradient boosting 

algorithms (Figure 3), CatBoost differs in many ways. 

Firstly, it has built-in support for categorical variables, 

eliminating the need for preprocessing like one-hot 

encoding. This enhances efficiency during the training 

process. Secondly, it utilizes the gradient boosting algorithm 

to construct an ensemble of decision trees sequentially, with 

each tree correcting the errors of its predecessors. 

Additionally, CatBoost employs various optimizations, such 
as ordered boosting, to improve training speed and memory 

efficiency. It also incorporates regularization techniques 

like L2 regularization to prevent overfitting during training. 

Moreover, CatBoost provides built-in support for cross-

validation, simplifying the evaluation of model performance 

and hyperparameter tuning. It is highly regarded for its high 
performance across a wide range of datasets, particularly 

those containing both numerical and categorical features. 

Recently, CatBoost has been widely used in several fields, 

such as finance [43], health care [44], and academics [45] 

and has been applied to other forms of data, including time 

series data [46]. CatBoost is remarkable for its handling of 

categorical variables, in which the original variable is 

replaced with a set of binary features corresponding to each 

category. The approach, as highlighted by [41], provides an 

advantage by utilizing random combinations to estimate leaf 

values while selecting tree structures. This technique 

successfully reduces overfitting, which is common in 
conventional gradient boosting algorithms. It is worth 

mentioning that CatBoost utilizes binary decision trees as 

its fundamental predictor, which greatly enhances its strong 

performance across various domains and datasets [47]. 
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2.3. Stacking 

Stacking, or stacked generalization [48], is an effective 

ensemble learning method that combines the predictions 

from multiple base models using a meta-learner or higher-

level model. The primary goal of stacking is to learn how to 

effectively combine the predictions of the basic models to 
increase overall performance. The stacking algorithm offers 

a simple structure, high performance, and great 

classification capabilities. The stacking structure, with the 

first layer consisting of base models and the second layer 

comprising the meta-model. Stacking offers enhanced non-

linear expression capabilities compared to individual 

prediction models. This is achieved by utilizing the 

predicted values from each model in the first layer as input 

features for the subsequent layer, resulting in a reduction of 

generalization error. Subsequently, a meta-learner, also 

referred to as a “blender” or “stacker,” is developed to 

combine these predictions into final predictions. The meta-
learner can encompass any machine learning algorithm, 

such as linear regression or neural networks. To maximize 

combination weights and minimize error, the meta-learner 

is trained on a validation set with base model predictions. 

Finally, the trained base models provide predictions on the 

test set, which are fed back into the trained meta-learner to 

produce the final predictions. 

 

The stacking algorithm in this study uses Logistic 

Regression (LR), Support Vector Classifier (SVC), 

CatBoost, Random Forest (RF) and K-Nearest Neighbor 
(KNN) as primary learners (Base Models) with Logistic 

Regression (LR), functioning as the secondary learner 

(Meta-Model). Stacking is a flexible method that improves 

the accuracy of predictions by combining high-level and 

low-level models. 

3. Materials and Methodology 
3.1. Data Preprocessing and Visualization 

When building a classification model for slope stability, 

it is crucial to select the features that have a significant 

impact on slope stability. This involves following certain 

feature selection principles. To train the model efficiently 
and prevent dimensionality-related problems, we first select 

the essential features from the available feature set. The use 

of this strategic selection helps reduce the likelihood of 

experiencing issues that are related to high-dimensional 

data. Second, the learning process’s complexity is reduced 

by eliminating features that are irrelevant to succeeding 

learning stages. This not only improves the efficiency of the 

computations but also ensures that the model emphasizes 

the most important features of slope stability, which in turn 

improves the model’s overall prediction performance. 

Applying these principles carefully in feature selection is 
crucial for creating a strong classification model designed 

for the complexities of slope stability evaluation. At present, 

the magnitude of slope angle (β), pore water ratio (ru), 

height (H), unit weight (Ƴ), cohesion (c) and angle of 

internal friction (ɸ) have extensive use in slope stability 

prediction. This study uses 444 slope stability cases for the 

prediction of slope status [stable (1) or unstable (0)] 

collected from [49], modelled as a classification problem 

(Figure 4). The dataset is normalized using Equation (1) 

prior to conducting the analysis. It helps to remove the 

effects of different scales, units, and distributions, which 

can lead to biased model training and reduced accuracy. By 

scaling the data to a common range, we can improve the 

model’s ability to generalize and make accurate predictions 

on new, unseen data.  

ynormalization = 
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
          (1) 

Where y is a normalized input parameter, x is the 

original input parameter, xmax is the maximum parameter, 

and xmin is the minimum parameter. 

 

The distribution and variability of each input variable 

on slope status are shown in Figure 5. The violin plots of the 

dataset are shown in Figure 6. The violin plot displays the 

distribution and density of a dataset across different 

categories or groups. The width of the violin at any point 

indicates the density of data at that point. The thicker parts 
of the violin represent regions of high density, while the 

thinner parts represent regions of low density. The 

horizontal line inside the violin represents the median value 

of the data. By examining the violin plots, the variables Ƴ, 

ɸ, β, and ru have a wide distribution pattern, as seen from 

the spread of the violin plot shapes. This indicates that the 

data points for these variables are widely dispersed. On the 

other hand, the variables c and H exhibit a densely clustered 

distribution with a higher frequency of data points at certain 

values, as seen from the narrow violin shapes. 

 
Fig. 4 Dataset pie chart 

For maximum classification accuracy, it is ideal that 

each value of every feature on the diagram is associated with 

only one class label, either stable or unstable. Figure 7 

illustrates the classification of slope stability using various 

indicators. The graphic illustrates cases where a single 

indicator value corresponds to both slope classifications. 

One possible explanation for this behavior is that the data 

do not exhibit linear separability, which makes it difficult to 

establish distinct bounds for the feature values. 

3.2. Model Development and Optimization 

This study investigates the applicability of three 

ensemble learning algorithms (Stacking, CatBoost and RF) 

in slope stability classification. When dealing with 

supervised classification problems, it is essential to evaluate 
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the performance of classification models on new data to 

determine their capacity for generalization. To accomplish 

this, the dataset is usually split into two subsets: the training 

set, which contains most of the data, is used to train the 

model and optimize hyperparameters, and the testing set, 

which is a smaller subset of the dataset, is exclusively used 

to assess the model’s capacity to generalize to new, unseen 

instances.

 

Fig. 5 Correlation matrix of dataset 

 
Fig. 6 Violin plots showing the distribution of slope cases

Within this study’s framework, around 70% of the 

original dataset, which equates to 311 cases, is selected as 

the training set. Approximately 30% of the dataset, which is 

equivalent to 133 cases, has been selected as the testing set. 
This split ensures that the model is trained on a sufficiently 

wide range of datasets, as well as a separate, independent 

subset for rigorous evaluation of its performance on unseen 

data. The training process for each ensemble model involves 

exploring various combinations of hyperparameters, as 

detailed in Table 1. By systematically evaluating these 

combinations, the optimal hyperparameters are identified to 
achieve the best model performance. These optimal 

hyperparameters are then utilized for making predictions on 

unseen data, ensuring the model’s effectiveness in real-
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world scenarios. Ensemble learning models are evaluated 

through a process known as 5-fold cross-validation. This 

involves randomly dividing the training data into five 

subsets of equal size, where four subsets are used for 

training the model, and the remaining subset is used for 

verifying the model’s performance. This process is repeated 
five times, with each subset being used as the test set in turn. 

By averaging the results across the five iterations, we can 

determine the performance of the ensemble learning method 

on the training data. This technique helps to ensure that the 

model is robust and can generalize well to new data. The 

Area Under the Curve (AUC), Accuracy and Sensitivity 

metrics are used to evaluate the ensemble learning 

algorithm’s overall performance across both the training 

and testing sets. The AUC metric gives a comprehensive 

evaluation of the model’s predictive capacity, taking into 

account its ability to discriminate between classes as well as 

its robustness over varied thresholds. By analyzing the AUC 

on both training and testing data, the ensemble learning 

algorithm’s ability to capture underlying patterns and 
generalize to previously encountered instances can be 

extensively reviewed and validated. Sensitivity provides 

insight into how well a model can detect positive instances 

or events. A high sensitivity value indicates that the model 

has a low rate of false negatives, meaning it is effective at 

correctly identifying positive instances. The 

hyperparameter optimization settings for all the models, 

along with their prediction results, are shown in Table 1.

 
Fig. 7 Slope stability assessment across various parameters 

Table 1. Hyperparameters of each model for optimal classification 

Model Hyperparameters 
Optimal 

Hyperparameters 
AUC Accuracy Sensitivity 

RF 

n_estimators = 

[50,100,150,200,250,300,350,400,45

0,500] 

50 0.831 0.867 0.890 

CatBoost 

learning_rate = [0.1,0.01,0.001] 0.1 

0.830 0.854 0.859 n_estimators = 

[50,100,200,300,400,500] 
400 

SVC 

kernel = [‘linear’, ‘poly’, ‘rbf’] rbf 

0.739 0.777 0.750 
C = 

[1,50,100,150,200,250,300,350,400,

450,500] 

500 

Degree = [1,2,3,4,5,6] 3 

KNN n_neighbor = [10,20,30,40,50,60,70] 30 0.794 0.793 0.859 

LR 

max_iter = [500] 500 

0.615 0.638 0.687 
C = 

[1,50,100,150,200,250,300,350,400,

450,500] 

1 

Stacking Nil Nil 0.898 0.854 0.859 
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4. Results and Discussions 
This study also employs SVC, KNN, and LR classifiers 

to assess their performance in slope stability prediction 

against ensemble models, including RF, CatBoost and 

Stacking. It is significant to mention that the performance 

of the classifier is heavily influenced by the AUC, with a 

value of 1.0 denoting optimal performance. The ROC 

curves of classification models in Figure 8 show that the 

AUC of LR is 0.615 SVC is 0.739, KNN is 0.794, CatBoost 

is 0.830, RF is 0.831, and Stacking is 0.898. The varying 

AUC values among different classifiers can be attributed to 

the differences in their underlying algorithms, model 

complexity, and how well they capture the relationships 

between features and the target variable. The ROC curves 

of ensemble learning models such as RF, CatBoost, and 

Stacking are located slightly higher in the top left corner of 

the plot in comparison to the other models. These models 

have AUC values exceeding 0.80, which is somewhat better 

than that of SVM, LR, and KNN. The results indicate that 
ensemble classifiers (RF, CatBoost, and Stacking) exhibit 

superior AUC values, implying better discriminatory ability 

and overall performance when compared to standalone 

classifiers (SVC, KNN, and LR). Figure 9 shows the 

confusion matrix of classification models. It can be seen 

from the figure that the total misclassifications in RF and 

CatBoost are 23, Stacking is 27, KNN is 28, SVC is 35, and 

LR is 52. 

 
Fig. 8 ROC curves of classification models on the testing dataset 

 
Fig. 9 Confusion matrix of classification models 
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Fig. 10 Sensitivity of classification models 

Sensitivity analysis, as illustrated in Figure 10, further 

emphasized these disparities in performance among 

classifiers. It can be inferred from Figure 10 that the RF 

model is highly sensitive, with a sensitivity score of 0.89. 

Meanwhile, the stacking, KNN, and catboost models have 
comparable sensitivity scores of 0.859. The LR model, with 

a sensitivity score of 0.687, is the least sensitive among all 

the models. These variations underscore the importance of 

selecting the appropriate classifier based on the specific 

characteristics of the dataset and the problem at hand to 

achieve optimal classification results. It is evident from the 

results that classification models, such as LR, encountered 

more challenges in prediction compared to Stacking, 

highlighting the importance of thoughtful model selection 

in the classification process. However, out of three 

ensemble models (RF, CatBoost and Stacking), Stacking 

gave higher results than RF and CatBoost classifier due to 
its ability to discriminate and better ranking of positive 

samples despite having lower sensitivity compared to RF.  

4.1. Feature Importance Analysis 
The concept of feature importance is a crucial element 

in the development of reliable machine learning models. It 

involves evaluating the relevance of each input feature in 

the decision-making process. Essentially, feature 

importance quantifies the impact of a specific feature on the 

model’s predictions. In Figure 11, the feature importance of 

all classifiers is illustrated, and the figure indicates that the 

feature importance for Stacking is significantly higher than 

that of LR, SVC, RF, KNN, and CatBoost. This suggests 

that features H, β, c, Ƴ, and ru exert a substantial influence 

and are relatively more important for predicting slope 

stability compared to feature ɸ. Understanding feature 
importance is crucial for identifying which features have a 

greater impact on a model’s predictive ability. This 

understanding is essential for interpreting the model’s 

behavior and selecting the most influential features for 

better performance. 

4.2. Sensitivity Analysis 

To prevent slope failure, it is critical to assess the 

sensitivity of features that contribute to triggering such 

events. Evaluating the sensitivity of these features is crucial 

for assessing slope stability and building efficient support 

structures. To quantify the sensitivity of features in each 

model, their impact on predictive performance is assessed 
at the optimum hyperparameters for each classification 

model. This sensitivity study gives vital insights into the 

influential features triggering slope stability, enabling 

informed decision-making and preemptive efforts to limit 

the risk of slope failure. Figure 12 shows the sensitivity of 

features for each classification model. The results 

demonstrate that for LR, ru is highly sensitive, whereas ɸ is 

low sensitive. Similarly, in the case of RF, the sensitivity to 

H is quite high, while the sensitivity to Ƴ is relatively low. 

In the case of KNN, the sensitivity of ru is significantly 

high, whereas the sensitivity of ɸ is quite modest. In the case 
of SVC, the variables H and β exhibit a high degree of 

sensitivity, while Ƴ and ɸ demonstrate a low level of 

sensitivity. In CatBoost, the variables H and β exhibit great 

sensitivity, while Ƴ has poor sensitivity. When it comes to 

stacking, H and β exhibit a high level of sensitivity 

compared to other features. The feature ranking in Figure 13 

is determined by averaging the sensitivity of all 

classification models: H (0.913), ru (0.895), β (0.874), c 

(0.817), Ƴ (0.502), and ɸ (0.400). It is evident that H, ru, β, 

and c are highly sensitive to slope stability. Therefore, 

ensuring the accurate and reasonable selection of values for 

H, ru, β, and c in artificial slopes is crucial, taking into 
account field tests and on-ground conditions. The higher 

values of H and β indicate that the geometry variables are 

highly sensitive towards slope stability.  
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Similarly, c, being the most important soil property is 

also highly sensitive towards slope stability. The binding 

property of soil material will change significantly, thereby 

affecting the integrity of soil structure (internal strength). 

Optimizing these values is crucial in practical design to 

ensure slope stability. Additionally, the sensitivity of Ƴ and 

ɸ is comparatively lower than that of other features.

 

 
Fig. 11 Representation of feature importance for ML models

 
Fig. 12 Sensitivity analysis of features for classification models 
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Fig. 13 Ranking of features based on average sensitivity 

5. Conclusion 
This study proposes a comparative study among three 

ensemble learning classifiers, including RF, CatBoost and 

Stacking, in evaluating the stability of 444 slope cases. Six 
features, including H, ru, β, c, Ƴ and ɸ used for the 

prediction and generalization of classification models. The 

ensemble models were also compared with LR, SVC and 

KNN classifiers for slope stability classification. The 

following conclusions are drawn as per the analysis: 

 

Based on the ROC curves, the Stacking classifier 

achieved the highest AUC compared to other classifiers. 

This indicates that Stacking has the best overall 

performance in discriminating between stable and unstable 

slopes. Among the ensemble methods (RF, CatBoost, and 

Stacking), Stacking demonstrated superior performance 
with the highest AUC. This suggests that an ensemble 

classifier such as Stacking is a strong alternative to other 

classifiers for slope stability prediction, particularly when 

interpretability or handling imbalanced datasets is crucial. 

 

All features taken in the study exhibit sensitivity to 

slope stability, indicating that relying solely on a single 

parameter for discriminating slope stability is unreliable. 

The LR is highly sensitive to ru but less sensitive to ɸ, RF 

is highly sensitive to H but less sensitive to Ƴ, KNN is 

highly sensitive to ru but less sensitive to ɸ, SVC is highly 
sensitive to H and β but less sensitive to Ƴ and ɸ, CatBoost 

is highly sensitive to H and β but less sensitive to Ƴ, and 

Stacking is highly sensitive to H and β compared to other 

features. This in-depth analysis emphasizes the significance 

of considering geometrical parameters (such as H and β) and 

soil properties (such as cohesiveness represented by c) 

while predicting slope stability accurately. It emphasizes the 

complex nature of evaluating slope stability. It underscores 

the importance of taking into account a comprehensive 

range of characteristics instead of relying on individual 

metrics for precise forecasting. 

 

The complex relationship between slope stability and 

the various factors that affect it can be difficult to model 

accurately due to its non-linear and multidimensional 
nature. However, a study of an engineering case shows that 

the Stacking classifier is effective in navigating this intricate 

connection and making precise and reliable predictions. 

This highlights the importance of supervised learning in 

assessing slope stability. In the future, it may be possible to 

improve the effectiveness of ensemble learning algorithms 

(RF, CatBoost, and Stacking) by incorporating key samples 

and parameters that influence the dynamics of slope 

stability. Rainfall patterns, seismic activity, human 

interventions, and other environmental events are 

significant factors that affect slope stability outcomes. 
Integrating these features into the algorithmic structure has 

the potential to improve prediction accuracy, generalization 

abilities, and reliability in real-world scenarios. This area of 

future research aims to expand and improve the 

effectiveness of ensemble learning methods in addressing 

complex geotechnical issues. 

 

Author Contribution Statement 
SKA: Dataset collection, Conceptualization and Analysis; 

SKA, DK and SKS: Methodology; SKA: Drafting; DK and 

SKS: Review and Comments; SKA, DK and SKS: Final 

drafting and proofreading.



Saurabh Kumar Anuragi et al. / IJCE, 11(5), 168-180, 2024 

 

179 

References 
[1] James Michael Duncan, “State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes,” Journal of Geotechnical 

Engineering, vol. 122, no. 7, pp. 577-596, 1996. [CrossRef] [Google Scholar] [Publisher Link] 

[2] S.Y. Liu, L.T. Shao, and H.J. Li, “Slope Stability Analysis Using the Limit Equilibrium Method and Two Finite Element Methods,” 

Computers and Geotechnics, vol. 63, pp. 291-298, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Y.M. Cheng, T. Lansivaara, and W.B. Wei, “Two-Dimensional Slope Stability Analysis by Limit Equilibrium and Strength Reduction 

Methods,” Computers and Geotechnics, vol. 34, no. 3, pp. 137-150, 2007. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Fei Zheng et al., “Modified Predictor-Corrector Solution Approach for Efficient Discontinuous Deformation Analysis of Jointed Rock 

Masses,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 43, no. 2, pp. 599-624, 2019. [CrossRef] 

[Google Scholar] [Publisher Link] 

[5] Xiaoying Zhuang et al., “A Cover-Based Contact Detection Approach for Irregular Convex Polygons in Discontinuous Deformation 

Analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 45, no. 2, pp. 208-233, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[6] H. Zheng, D.F. Liu, and C.G. Li, “Slope Stability Analysis Based on Elasto-Plastic Finite Element Method,” International Journal 

for Numerical Methods in Engineering, vol. 64, no. 14, pp. 1871-1888, 2005. [CrossRef] [Google Scholar] [Publisher Link] 

[7] D.V. Griffiths, and P.A. Lane, “Slope Stability Analysis by Finite Elements,” Geotechnique, vol. 49, no. 3, pp. 387-403, 1999. 

[CrossRef] [Google Scholar] [Publisher Link] 

[8] Tamotsu Matsui, and Ka-Ching San, “Finite Element Slope Stability Analysis by Shear Strength Reduction Technique,” Soils and 

Foundations, vol. 32, no. 1, pp. 59-70, 1992. [CrossRef] [Google Scholar] [Publisher Link] 

[9] X. Li, “Finite Element Analysis of Slope Stability Using a Nonlinear Failure Criterion,” Computers and Geotechnics, vol. 34, no. 3, 

pp. 127-136, 2007. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Shan Lin et al., “Evaluation and Prediction of Slope Stability Using Machine Learning Approaches,” Frontiers of Structural and Civil 

Engineering, vol. 15, no. 4, pp. 821-833, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Pijush Samui, “Slope Stability Analysis: A Support Vector Machine Approach,” Environmental Geology, vol. 56, pp. 255-267, 2008. 

[CrossRef] [Google Scholar] [Publisher Link] 

[12] Min-Yuan Cheng, and Nhat-Duc Hoang, “Slope Collapse Prediction Using Bayesian Framework with K-Nearest Neighbor Density 

Estimation: Case Study in Taiwan,” Journal of Computing in Civil Engineering, vol. 30, no. 1, 2014. [CrossRef] [Google Scholar] 

[Publisher Link] 

[13] H. Fattahi, “Prediction of Slope Stability Using Adaptive Neuro-Fuzzy Inference System Based on Clustering Methods,” Journal of 

Mining and Environment, vol. 8, no. 2, pp. 163-177, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Nhat-Duc Hoang, and Dieu Tien Bui, “Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares 

Support Vector Machines, and Extreme Learning Machine,” Handbook of Neural Computation, pp. 333-344, 2017. [CrossRef] 

[Google Scholar] [Publisher Link] 

[15] Sarat Kumar Das et al., “Classification of Slopes and Prediction of Factor of Safety Using Differential Evolution Neural Networks,” 

Environmental Earth Sciences, vol. 64, pp. 201-210, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Amin Manouchehrian, Javad Gholamnejad, and Mostafa Sharifzadeh, “Development of a Model for Analysis of Slope Stability for 

Circular Mode Failure Using Genetic Algorithm,” Environmental Earth Sciences, vol. 71, pp. 1267-1277, 2014. [CrossRef] [Google 

Scholar] [Publisher Link] 

[17] Yusuf Erzin, and Tulin Cetin, “The Prediction of the Critical Factor of Safety of Homogeneous Finite Slopes Using Neural Networks 

and Multiple Regressions,” Computers Geosciences, vol. 51, pp. 305-313, 2013. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Chongchong Qi, and Xiaolin Tang, “Slope Stability Prediction Using Integrated Metaheuristic and Machine Learning Approaches: A 

Comparative Study,” Computers & Industrial Engineering, vol. 118, pp. 112-122, 2018. [CrossRef] [Google Scholar] [Publisher 

Link] 

[19] Dhruva Karir et al., “Stability Prediction of a Natural and Man-Made Slope Using Various Machine Learning Algorithms,” 

Transportation Geotechnics, vol. 34, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Chongchong Qi et al., “Comparative Study of Hybrid Artificial Intelligence Approaches for Predicting Hanging Wall Stability,” 

Journal of Computing in Civil Engineering, vol. 32, no. 2, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Min-Yuan Cheng, and Nhat-Duc Hoang, “Typhoon-Induced Slope Collapse Assessment Using a Novel Bee Colony Optimized 

Support Vector Classifier,” Natural Hazards, vol. 78, pp. 1961-1978, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Nhat-Duc Hoang, and Anh-Duc Pham, “Hybrid Artificial Intelligence Approach Based on Metaheuristic and Machine Learning for 

Slope Stability Assessment: A Multinational Data Analysis,” Expert Systems with Applications, vol. 46, pp. 60-68, 2016. [CrossRef] 

[Google Scholar] [Publisher Link] 

[23] Behrouz Gordan et al., “Prediction of Seismic Slope Stability through Combination of Particle Swarm Optimization and Neural 

Network,” Engineering with Computers, vol. 32, pp. 85-97, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Zhenyan Luo et al., “A Novel Artificial Intelligence Technique for Analyzing Slope Stability Using PSO-CA Model,” Engineering 

with Computers, vol. 37, pp. 533-544, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=State+of+the+art%3A+limit+equilibrium+and+finite-element+analysis+of+slopes&btnG=
https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1996)122:7(577)
https://doi.org/10.1016/j.compgeo.2014.10.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+stability+analysis+using+the+limit+equilibrium+method+and+two+finite+element+methods&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0266352X14001918
https://doi.org/10.1016/j.compgeo.2006.10.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two-dimensional+slope+stability+analysis+by+limit+equilibrium+and+strength+reduction+methods&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0266352X06001108
https://doi.org/10.1002/nag.2881
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+predictor%E2%80%90corrector+solution+approach+for+efficient+discontinuous+deformation+analysis+of+jointed+rock+masses&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2881
https://doi.org/10.1002/nag.3157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+cover%E2%80%90based+contact+detection+approach+for+irregular+convex+polygons+in+discontinuous+deformation+analysis&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/nag.3157
https://doi.org/10.1002/nme.1406
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+stability+analysis+based+on+elasto%E2%80%90plastic+finite+element+method&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/NME.1406
https://doi.org/10.1680/geot.1999.49.3.387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+Stability+Analysis+by+Finite+Elements&btnG=
https://www.icevirtuallibrary.com/doi/abs/10.1680/geot.1999.49.3.387
https://doi.org/10.3208/sandf1972.32.59
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+element+slope+stability+analysis+by+shear+strength+reduction+technique&btnG=
https://www.sciencedirect.com/science/article/pii/S0038080620319156
https://doi.org/10.1016/j.compgeo.2006.11.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+element+analysis+of+slope+stability+using+a+nonlinear+failure+criterion&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0266352X06001303
https://doi.org/10.1007/s11709-021-0742-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+and+prediction+of+slope+stability+using+machine+learning+approaches&btnG=
https://link.springer.com/article/10.1007/s11709-021-0742-8
https://doi.org/10.1007/s00254-007-1161-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+stability+analysis%3A+a+support+vector+machine+approach&btnG=
https://link.springer.com/article/10.1007/s00254-007-1161-4
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000456
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+collapse+prediction+using+Bayesian+framework+with+k-nearest+neighbor+density+estimation%3A+case+study+in+Taiwan&btnG=
https://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000456
https://doi.org/10.22044/jme.2016.637
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+slope+stability+using+adaptive+neuro-fuzzy+inference+system+based+on+clustering+methods&btnG=
http://jme.shahroodut.ac.ir/article_637_0.html
https://doi.org/10.1016/B978-0-12-811318-9.00018-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+Stability+Evaluation+Using+Radial+Basis+Function+Neural+Network%2C+Least+Squares+Support+Vector+Machines%2C+and+Extreme+Learning+Machine&btnG=
https://www.sciencedirect.com/science/article/pii/B9780128113189000181
https://doi.org/10.1007/s12665-010-0839-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+slopes+and+prediction+of+factor+of+safety+using+differential+evolution+neural+networks&btnG=
https://link.springer.com/article/10.1007/s12665-010-0839-1
https://doi.org/10.1007/s12665-013-2531-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+a+model+for+analysis+of+slope+stability+for+circular+mode+failure+using+genetic+algorithm&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+a+model+for+analysis+of+slope+stability+for+circular+mode+failure+using+genetic+algorithm&btnG=
https://link.springer.com/article/10.1007/s12665-013-2531-8
https://doi.org/10.1016/j.cageo.2012.09.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Prediction+of+the+Critical+Factor+of+Safety+of+Homogeneous+Finite+Slopes+Using+Neural+Networks+and+Multiple+Regressions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0098300412003123
https://doi.org/10.1016/j.cie.2018.02.028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Slope+Stability+Prediction+using+Integrated+Metaheuristic+and+Machine+Learning+Approaches%3A+A+Comparative+Study&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0360835218300640
https://www.sciencedirect.com/science/article/abs/pii/S0360835218300640
https://doi.org/10.1016/j.trgeo.2022.100745
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stability+prediction+of+a+natural+and+man-made+slope+using+various+machine+learning+algorithms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214391222000290
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000737
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+study+of+hybrid+artificial+intelligence+approaches+for+predicting+hanging+wall+stability&btnG=
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000737
https://doi.org/10.1007/s11069-015-1813-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Typhoon-induced+slope+collapse+assessment+using+a+novel+bee+colony+optimized+support+vector+classifier&btnG=
https://link.springer.com/article/10.1007/s11069-015-1813-8
https://doi.org/10.1016/j.eswa.2015.10.020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+artificial+intelligence+approach+based+on+metaheuristic+and+machine+learning+for+slope+stability+assessment%3A+A+multinational+data+analysis&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417415007150
https://doi.org/10.1007/s00366-015-0400-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+seismic+slope+stability+through+combination+of+particle+swarm+optimization+and+neural+network&btnG=
https://link.springer.com/article/10.1007/s00366-015-0400-7
https://doi.org/10.1007/s00366-019-00839-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+artificial+intelligence+technique+for+analyzing+slope+stability+using+PSO-CA+model&btnG=
https://link.springer.com/article/10.1007/s00366-019-00839-5


Saurabh Kumar Anuragi et al. / IJCE, 11(5), 168-180, 2024 

 

180 

[25] Chongchong Qi, and Xiaolin Tang, “A Hybrid Ensemble Method for Improved Prediction of Slope Stability,” International Journal 

for Numerical and Analytical Methods in Geomechanics, vol. 42, no. 15, pp. 1823-1839, 2018. [CrossRef] [Google Scholar] 

[Publisher Link] 

[26] Ningthoujam Jibanchand, and Konsam Rambha Devi, “Application of Ensemble Learning in Predicting Shallow Foundation 

Settlement in Cohesionless Soil,” International Journal of Geotechnical Engineering, vol. 17, no. 3, pp. 234-245, 2023. [CrossRef] 

[Google Scholar] [Publisher Link] 

[27] Lihui Bai et al., “A Machine Learning Ensemble Model for Predicting Pavement Conditions Using Automatic Laser Crack 

Measurement Data,” International Journal of Pavement Engineering, vol. 24, no. 1, 2023. [CrossRef] [Google Scholar] [Publisher 

Link] 

[28] Jingqi Cui et al., “Composite Interpretability Optimization Ensemble Learning Inversion Surrounding Rock Mechanical Parameters 

and Support Optimization in Soft Rock Tunnels,” Computers and Geotechnics, vol. 165, 2024. [CrossRef] [Google Scholar] 

[Publisher Link] 

[29] Navid Kardani et al., “Improved Prediction of Slope Stability using a Hybrid Stacking Ensemble Method Based on Finite Element 

Analysis and Field Data,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 13, no. 1, pp. 188-201, 2021. [CrossRef] 

[Google Scholar] [Publisher Link] 

[30] Lin Wang et al., “Efficient Reliability Analysis of Earth Dam Slope Stability using Extreme Gradient Boosting Method,” Acta 

Geotechnica, vol. 15, pp. 3135-3150, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[31] Wengang Zhang et al., “Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient 

Boosting and Random Forest Regression,” Underground Space, vol. 7, no. 2, pp. 233-241, 2022. [CrossRef] [Google Scholar] 

[Publisher Link] 

[32] Zhice Fang et al., “A Comparative Study of Heterogeneous Ensemble-Learning Techniques for Landslide Susceptibility Mapping,” 

International Journal of Geographical Information Science, vol. 35, no. 2, pp. 321-347, 2021. [CrossRef] [Google Scholar] [Publisher 

Link] 

[33] Yang Chen et al., “Predicting Uniaxial Tensile Strength of Expansive Soil with Ensemble Learning Methods,” Computers and 

Geotechnics, vol. 150, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[34] Gérard Biau, and Erwan Scornet, “A Random Forest Guided Tour,” Test, vol. 25, pp. 197-227, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[35] Jaime Lynn Speiser et al., “A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modelling,” 

Expert Systems with Applications, vol. 134, pp. 93-101, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[36] Mariana Belgiu, and Lucian Drăguţ, “Random Forest in Remote Sensing: A Review of Applications and Future Directions,” ISPRS 

Journal of Photogrammetry and Remote Sensing, vol. 114, pp. 24-31, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[37] Husein Ali Zeini et al., “Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil,” Sustainability, 

vol. 15, no. 2, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[38] Binh Thai Pham et al., “A Novel Hybrid Soft Computing Model using Random Forest and Particle Swarm Optimization for Estimation 

of Undrained Shear Strength of Soil,” Sustainability, vol. 12, no. 6, pp. 1-16, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Nitish Puri, Harsh Deep Prasad, and Ashwani Jain, “Prediction of Geotechnical Parameters Using Machine Learning Techniques,” 

Procedia Computer Science, vol. 125, pp. 509-517, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[40] Vinicius Luiz Pacheco et al., “Cone Penetration Test Prediction Based on Random Forest Models and Deep Neural Networks,” 

Geotechnical and Geological Engineering, vol. 41, no. 8, pp. 4595-4628, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[41] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin, “Catboost: Gradient Boosting with Categorical Features Support,” arXiv 

preprint, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[42] Liudmila Prokhorenkova et al., “Catboost: Unbiased Boosting with Categorical Features,” Advances in Neural Information 

Processing Systems, vol. 31, 2018. [Google Scholar] [Publisher Link] 

[43] Mário Papík et al., “CatBoost: The Case of Bankruptcy Prediction,” International Conference on Business and Technology, pp. 3-17, 

2022. [CrossRef] [Google Scholar] [Publisher Link] 

[44] B. Dhananjay, and J. Sivaraman, “Analysis and Classification of Heart Rate Using Catboost Feature Ranking Model,” Biomedical 

Signal Processing and Control, vol. 68, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[45] Abhisht Joshi et al., “CatBoost-An Ensemble Machine Learning Model for Prediction and Classification of Student Academic 

Performance,” Advances in Data Science and Adaptive Analysis, vol. 13, no. 3, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[46] Li Diao et al., “Short-Term Weather Forecast Based on Wavelet Denoising and Catboost,” Chinese Control Conference, pp. 3760-

3764, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[47] Guomin Huang et al., “Evaluation of Catboost Method for Prediction of Reference Evapotranspiration in Humid Regions,” Journal 

of Hydrology, vol. 574, pp. 1029-1041, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[48] David H. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, pp. 241-259, 1992. [CrossRef] [Google Scholar] 

[Publisher Link] 

[49] Shan Lin et al., “Comparative Performance of Eight Ensemble Learning Approaches for the Development of Models of Slope Stability 

Prediction,” Acta Geotechnica, vol. 17, no. 4, pp. 1477-1502, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1002/nag.2834
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+ensemble+method+for+improved+prediction+of+slope+stability&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2834
https://doi.org/10.1080/19386362.2023.2212996
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+ensemble+learning+in+predicting+shallow+foundation+settlement+in+cohesionless+soil&btnG=
https://www.tandfonline.com/doi/abs/10.1080/19386362.2023.2212996
https://doi.org/10.1080/10298436.2023.2188591
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+machine+learning+ensemble+model+for+predicting+pavement+conditions+using+automatic+laser+crack+measurement+data&btnG=
https://www.tandfonline.com/doi/abs/10.1080/10298436.2023.2188591
https://www.tandfonline.com/doi/abs/10.1080/10298436.2023.2188591
https://doi.org/10.1016/j.compgeo.2023.105877
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Composite+interpretability+optimization+ensemble+learning+inversion+surrounding+rock+mechanical+parameters+and+support+optimization+in+soft+rock+tunnels&btnG=
https://www.sciencedirect.com/science/article/pii/S0266352X23006341
https://doi.org/10.1016/j.jrmge.2020.05.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+prediction+of+slope+stability+using+a+hybrid+stacking+ensemble+method+based+on+finite+element+analysis+and+field+data&btnG=
https://www.sciencedirect.com/science/article/pii/S1674775520301451
https://doi.org/10.1007/s11440-020-00962-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+reliability+analysis+of+earth+dam+slope+stability+using+extreme+gradient+boosting+method&btnG=
https://link.springer.com/article/10.1007/s11440-020-00962-4
https://doi.org/10.1016/j.undsp.2020.03.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Assessment+of+basal+heave+stability+for+braced+excavations+in+anisotropic+clay+using+extreme+gradient+boosting+and+random+forest+regression&btnG=
https://www.sciencedirect.com/science/article/pii/S246796742030009X
https://doi.org/10.1080/13658816.2020.1808897
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparative+study+of+heterogeneous+ensemble-learning+techniques+for+landslide+susceptibility+mapping&btnG=
https://www.tandfonline.com/doi/abs/10.1080/13658816.2020.1808897
https://www.tandfonline.com/doi/abs/10.1080/13658816.2020.1808897
https://doi.org/10.1016/j.compgeo.2022.104904
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+uniaxial+tensile+strength+of+expansive+soil+with+ensemble+learning+methods&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0266352X22002464
https://doi.org/10.1007/s11749-016-0481-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+random+forest+guided+tour&btnG=
https://link.springer.com/article/10.1007/s11749-016-0481-7
https://doi.org/10.1016/j.eswa.2019.05.028
https://scholar.google.com/scholar?q=A+comparison+of+random+forest+variable+selection+methods+for+classification+prediction+modelling&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0957417419303574
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+forest+in+remote+sensing%3A+A+review+of+applications+and+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0924271616000265
https://doi.org/10.3390/su15021408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+forest+in+remote+sensing%3A+A+review+of+applications+and+future+directions&btnG=
https://www.mdpi.com/2071-1050/15/2/1408
https://www.mdpi.com/2071-1050/12/6/2218
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+hybrid+soft+computing+model+using+random+forest+and+particle+swarm+optimization+for+estimation+of+undrained+shear+strength+of+soil&btnG=
https://www.mdpi.com/2071-1050/12/6/2218
https://doi.org/10.1016/j.procs.2017.12.066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+geotechnical+parameters+using+machine+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050917328302
https://doi.org/10.1007/s10706-023-02535-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cone+penetration+test+prediction+based+on+random+forest+models+and+deep+neural+networks&btnG=
https://link.springer.com/article/10.1007/s10706-023-02535-0
https://doi.org/10.48550/arXiv.1810.11363
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CatBoost%3A+gradient+boosting+with+categorical+features+support&btnG=
https://arxiv.org/abs/1810.11363
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CatBoost%3A+unbiased+boosting+with+categorical+features&btnG=
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.1007/978-3-031-08084-5_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CatBoost%3A+The+case+of+bankruptcy+prediction&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-08084-5_3
https://doi.org/10.1016/j.bspc.2021.102610
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+and+Classification+of+Heart+Rate+Using+Catboost+Feature+Ranking+Model&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S174680942100207X
https://doi.org/10.1142/S2424922X21410023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CatBoost%E2%80%94An+Ensemble+Machine+Learning+Model+for+Prediction+and+Classification+of+Student+Academic+Performance&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S2424922X21410023
https://doi.org/10.23919/ChiCC.2019.8865324
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Short-term+weather+forecast+based+on+wavelet+denoising+and+catboost&btnG=
https://ieeexplore.ieee.org/abstract/document/8865324
https://doi.org/10.1016/j.jhydrol.2019.04.085
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+CatBoost+method+for+prediction+of+reference+evapotranspiration+in+humid+regions&btnG=
https://www.sciencedirect.com/science/article/pii/S0022169419304251
https://doi.org/10.1016/S0893-6080(05)80023-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stacked+Generalization&btnG=
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://doi.org/10.1007/s11440-021-01440-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+performance+of+eight+ensemble+learning+approaches+for+the+development+of+models+of+slope+stability+prediction&btnG=
https://link.springer.com/article/10.1007/s11440-021-01440-1

