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Abstract - In this paper, we proposed a linear model to analyze the transverse vibrations in the plane of a beam suspended by 

cables. We conducted a dynamic study of this structure, and the results of the frequencies, as well as the mode shapes of the 

beam, were obtained. We began our methodology by introducing the equations of motion, which were established at various 

intervals in the plane of the system, along with their boundary and continuity conditions. Subsequently, we iteratively solved the 
generalized transcendental frequency equation using the Newton-Raphson method. Once our results were validated by existing 

literature, we continued our analysis by conducting a parametric study. Masses at different positions and with different values 

were added, along with a thermal load. We obtained the numerical results of the dynamic study for different positions of the 

added masses and different values of the thermal load. Through this method, we were able to gain a thorough understanding of 

the dynamic behavior of the structure in different situations.  

Keywords - Cable-stayed beam, Linear frequencies.  

1. Introduction  
Cable-stayed beams play a crucial role in contemporary 

engineering, offering sophisticated and high-performance 

solutions for bridges. They provide the ability to span long 

distances while reducing the use of massive supports, which 

is crucial for minimizing environmental impact and 

construction costs. This innovative solution is perfectly 

illustrated by cable bridges, which stand out from 

conventional bridges by their ability to distribute weight 

thanks to cables attached to the towers. It is essential to 

conduct a thorough analysis of traffic loads, permanent loads, 

and climatic and dynamic loads associated with vehicle 
movement in the design and construction of cable bridges. The 

interaction between cable and beam models is carefully 

examined to ensure their longevity and long-term safety. In 

order to have an in-depth understanding of the complex 

interactions between the structural elements of cable-stayed 

bridges, special attention is paid to vibrations both in situ and 

out of the plane. Using a multi-cable beam model, Cong et al. 

[1] examined these interactions by assessing the impact of 

cable mass, rigidity, and flattening ratios on vibration modes. 

Using differential equations to model the system, Fujino et al. 

[2] contributed by focusing on nonlinear vibrations caused by 
variations in cable length and tension. Under different 

conditions of excitation, P. Warnitchai et al. [3] and Xia et 

Fujino [4] continued to study auto-parametric vibrations and 

their linear and nonlinear interactions. The transfer matrix 

method was used by Su et al. [5] to analyze in detail the free 

vibrations in the plane, while Li et al. [6] and El Ouni et al. [7] 

were interested in the effects of wind and earthquakes on the 

dynamics of cables. Ma's research [8] examined in detail the 

consequences of cable vibrations, comparing different 

methods of modeling. Guattuli et al. [9, 10] and Guattuli et 

Lepidi [11, 12] studied the links between cables and beams, 

highlighting the impact of moving loads and internal 
resonance on the dynamic responses of cables. 

http://www.internationaljournalssrg.org/
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Author previously investigated the effects of a point mass 

on clamped beams, employing analytical methods and 

parametric studies to examine how the mass location 

influences beam frequencies and mode shapes while also 

exploring the impact of geometrical non-linearity. Author 

delved into the geometrically non-linear vibrations of fully 
clamped, multi-stepped beams carrying multiple masses. 

Utilizing Euler-Bernoulli beam theory and Von Karman 

assumptions, these studies derived expressions for kinetic and 

strain energy, reduced the problem to a non-linear algebraic 

system through Hamilton's principle, and conducted 

parametric studies to assess nonlinearity effects on dynamic 

behavior. Author studied the influence of environmental 

elements on the dynamics of beams, highlighting the 

influences of humidity and temperature on vibrations. Aloupis 

et al. [13] examined how to identify damage in cable-stayed 

bridges by analyzing the distribution of dead and thermal 

loads. They proposed digital techniques to simulate damage 
and study its impact on the structural characteristics of the 

bridge. Zhang et al. [14] used the D'Alembert principle to 

analyze the vibration modes and frequencies of suspended 

bridges, especially those with three pillars. They addressed 

how these theoretical approaches can be applied to more 

accurately predict the dynamic behavior of bridges and 

proposed comparative analysis with concrete examples of 

engineering. 

The research conducted by Cunha et al. [15] and Ren et 

al. [16] provides a comprehensive vision by addressing 

various topics such as aerodynamic stability, seismic design, 
and modal analysis methods to improve the performance of 

cables. Abdel-Ghaffar and Khalifa [17] focused on the 

consequences of various forms of cable movement, such as 

oscillations and vertical movements, on the dynamic 

characteristics of cable-stayed bridges. They emphasized the 

need to take these dynamics into account in structural analysis 

and design in order to improve bridge earthquake resistance. 

Another research by Nazmy and Abdel-Ghaffar on the 

analysis of the three-dimensional seismic response of cable-

stayed bridges has been deepened [18], focusing on the impact 

of multi-support seismic excitations. They proposed an in-

depth methodological approach to grasp the impact of non-
uniform excitations on bridge dynamics and suggested 

specific analysis methods for practical engineering 

applications. Subsequent publications, such as those by Cong 

et al. [19] and Wilson et Gravelle [20], have extended the 

analysis of damage and response to seismic events, thus 

providing methodological advice for design. 

Other publications highlight structures suitable for cable-

stayed bridges, such as the author, who studied free and forced 

vibrations in shallow arches, taking into account geometric 

non-linearity. These works, using equations based on Euler-

Bernoulli's theory, enable a deeper understanding of the 
dynamic characteristics of arch structures essential for the 

design of bridges. 

All these studies highlight the importance of dynamic 

interactions in cable-stayed bridges and suspended structures. 

In this study, we present a linear model to study transverse 

vibrations in the plane of a beam suspended by cables. We 

were able to understand the dynamic behavior of the structure 

using concentrated masses and added thermal loads through a 
detailed parametric study. Numerical results on the dynamic 

behavior of the structure in different situations were obtained 

by introducing the motion equations and iteratively solving 

the generalized transcendental frequency equation using the 

Newton-Raphson method, validating the results against the 

existing literature. Subsequently, a parametric analysis was 

performed by adding masses at different locations with a 

temperature load. This allowed us to observe the behavior of 

this structure under various loads and situations, which 

prepared a thorough study to solve other phenomena, 

including geometrically nonlinear vibrations. 

2. Problem Formulation  
The cable-stayed beam, composed of several cables 

attached to two rigid towers, forms a structure where each 

cable is fixed at both the upper end of each tower and the beam 

itself. This setup divides the beam into segments defined by 

the junctions 𝑆𝑗 . The static equilibrium configuration of this 

beam is described by the displacements of the cables 

𝑈𝑐𝑗 , 𝑉𝑐𝑗 ,𝑊𝑐𝑗  (𝑗 = 1, 2, . . . , 𝑛) and the transverse 

displacements of the beam 𝑉𝑏𝑖(𝑖 = 1, 2, . . . , 𝑛). as illustrated in 
Figure 1. The deformation of the cables follows a parabolic 

curve due to the small ratio between height 𝐷𝑐𝑗 and length 𝑙𝑐𝑗 

less than 1/10. 

𝑌𝑐𝑗 = 4𝐷𝑐𝑗 (
𝑋𝑐𝑗
𝑙𝑐𝑗

− (
𝑋𝑐𝑗
𝑙𝑐𝑗
)

2

) (1) 

Since the axial stiffness of the beam is much greater than 

that of the cables, the axial movement of the beam can be 

neglected. The towers are assumed to be rigid, and vibrations 
minimal, validated by experiments and finite element 

analyses. The properties of the beam material, such as Kevlar, 

are critical in the context of mass and temperature. Kevlar's 

relatively low thermal conductivity simplifies heat transfer, 

often modeled by the equation: 

𝑘
𝑑2𝑇

𝑑𝑧2
= 0 (2) 

Where 𝑘 represents the thermal conductivity of Kevlar, 
the solution to this equation shows that the temperature 

remains constant or varies linearly within the material. The 

assumptions considered for modeling this beam include one-

dimensional homogeneous elastic continuity, Lagrange strain 

of the centerline for the axial extensions of the cables, and 

neglecting the flexural, torsional, and shear stiffness of the 

cables. Suppose that 𝑥 represents the coordinate along the 

neutral axis of the beam, measured from the right end and that 

𝜂 represents the coordinate of the position of the added mass. 
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Fig. 1 Configuration of the multi-cable-stayed beam model 

Using the above assumptions and simplifications and 

applying the classical Hamilton principle along with the 

standard condensation procedure, the following equations of 

in-plane motion, which govern the transverse vibrations of the 
cable and sub-beam, are obtained. 

𝑚𝑐𝑗

𝜕2𝑉𝑐𝑗
𝜕𝑡2

+ 𝜁𝑐𝑗
𝜕𝑉𝑐𝑗
𝜕𝑡

− 

𝜕 [𝐻𝑐𝑗
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

+𝐸𝑐𝑗𝐴𝑐𝑗 (
𝜕𝑌𝑐𝑗
𝜕𝑋𝑐𝑗

+
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

)𝑒𝑐𝑗]

𝜕𝑋𝑐𝑗
= 𝑃𝑐𝑗 

(3) 

𝑚𝑏𝑖

𝜕2𝑉𝑏𝑖
𝜕𝑡2

+ 𝜁𝑏𝑖
𝜕𝑉𝑏𝑖
𝜕𝑡

+ 𝐸𝑏𝑖𝐼𝑣𝑏𝑖𝑉𝑏𝑖
𝑖𝑣 = 𝑃𝑣𝑏𝑖  (4) 

Where 𝑚𝑐𝑗, 𝜁𝑐𝑗, 𝐻𝑐𝑗, 𝐸𝑐𝑗, 𝐴𝑐𝑗, are the mass per unit 

length, damping factor, initial tension, Young’s modulus and 

cross-section area of the j-th cable, respectively. 𝑚𝑏𝑖, 𝜁𝑏𝑖, 𝐸𝑏𝑖, 
𝐼𝑣𝑏𝑖. Are the mass per unit length, damping factor, Young’s 

modulus, and the in-plane second-moment inertia of the cross-

section of the i-th sub-beam, respectively. 𝑃𝑐𝑗and 𝑃𝑣𝑏𝑖 are the 

in-plane external excitations that are distributed along the 

cables and beams, respectively. 𝑒𝑐𝑗 represents the uniform 

dynamic elongation of the j-th cable, which is expressed as:  

𝑒𝑐𝑗 = 𝑉𝑐𝑗(𝑋𝑐𝑗, 𝑡) tan𝜃 + 

∫ (
𝜕𝑌𝑐𝑗
𝜕𝑋𝑐𝑗

 
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

+
1

2
(
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

)

2

)𝑑𝑋𝑐𝑗

𝑙𝑐𝑗

0

 
(5) 

 

For the multi-cable-stayed beam model, the partial 

differential equations outlined in Equations (3) and (4) require 

specific boundary and compliance conditions. 

{
 
 
 

 
 
 

𝑉𝑏1(0, 𝑡) = 𝑉𝑏(𝑛+1)(𝑙𝑏 , 𝑡) = 0 

𝑉𝑏𝑖(𝑆𝑗 , 𝑡) = 𝑉𝑏(𝑖+1)(𝑆𝑗, 𝑡)

𝜕𝑉𝑏𝑖(𝑆𝑗 , 𝑡)

𝜕𝑋𝑏𝑖
=
𝜕𝑉𝑏(𝑖+1)(𝑆𝑗, 𝑡)

𝜕𝑋𝑏(𝑖+1)

𝑈𝑐𝑗(𝑙𝑐𝑗, 𝑡) sin 𝜃𝑗 +𝑉𝑐𝑗(𝑙𝑐𝑗, 𝑡) sin𝜃𝑗 = 0

𝑉𝑐𝑗(0, 𝑡) = 0

 (6) 

The relevant continuous mechanical conditions at each 
junction, as described in Equation (9), must be fulfilled. These 

conditions are derived from the variational process. 𝑄𝑖 and 𝑀𝑖 

represent the shear forces and bending moments on the left 

side of the junction while 𝑄𝑖+1 and 𝑀𝑖+1 represent those on 

the right side. The longitudinal and transverse tension 

components in the j-th cable are respectively.  

𝑇𝑥𝑗 = 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗 (7) 

𝑇𝑦𝑗 = 𝐻𝑐𝑗
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗 , 𝑡) + 

𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗 (
𝜕𝑌𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗) +
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗, 𝑡)) 
(8) 

By ensuring the force balance at each junction, the 

mechanical condition can be obtained. 

𝐸𝑏𝑖𝐼𝑏𝑖
𝜕3𝑉𝑏𝑖

𝜕𝑋𝑏𝑖
3 (𝑆𝑗 , 𝑡) − 𝐸𝑏(𝑖+1)𝐼𝑏(𝑖+1)

𝜕3𝑉𝑏(𝑖+1)

𝜕𝑋𝑏(𝑖+1)
3 (𝑆𝑗 , 𝑡)        

= 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗 sin 𝜃𝑗 + [𝐻𝑐𝑗
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗 , 𝑡) + 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗 (
𝜕𝑌𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗 , 𝑡) +
𝜕𝑉𝑐𝑗
𝜕𝑋𝑐𝑗

(𝑙𝑐𝑗 , 𝑡))]cos 𝜃𝑗 

𝜕2𝑉𝑏𝑖

𝜕𝑋𝑏𝑖
2 (𝑆𝑗 , 𝑡) =

𝜕2𝑉𝑏(𝑖+1)

𝜕𝑋𝑏(𝑖+1)
2 (𝑆𝑗 , 𝑡) 

𝜕2𝑉𝑏1

𝜕𝑋𝑏1
2 (0, 𝑡) =

𝜕2𝑉𝑏(𝑛+1)

𝜕𝑋𝑏(𝑛+1)
2 (𝑙𝑏 , 𝑡) 

(9) 
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The initial temperature is assumed to be 𝑇0 , while the 

temperature variation can be uniformly increased to a final 

value of  𝑇, and the temperature difference.  
Δ𝑇 = 𝑇 − 𝑇0 (10) 

The equations of motion for axial and transverse beam 
vibrations are frequently considered in the literature and have 

been adopted according to [21] as follows.  
𝜕𝑁𝑋𝑏𝑖
𝜕𝑋𝑏𝑖

= 0 (11) 

𝜕2𝑀𝑋𝑏𝑖
𝜕𝑋𝑏𝑖

2 +
𝜕

𝜕𝑋𝑏𝑖
(𝑁𝑋𝑏𝑖

𝜕𝑉𝑏𝑖(𝑋𝑏𝑖 , 𝑡)

𝜕𝑋𝑏𝑖
) = 𝐼𝑣𝑏𝑖

𝜕2𝑉𝑏𝑖(𝑋𝑏𝑖 , 𝑡)

𝜕𝑡2
 

(12) 

𝑁𝑋𝑏𝑖 Et 𝑀𝑋𝑏𝑖
 are the axial force and bending moment, 

respectively, acting at the midpoint of the beam. These forces 

account for the effect of thermal loads and are expressed 

relative to [22, 23] as follows. 

(
𝑁𝑋𝑏𝑖
𝑀𝑋𝑏𝑖

) = (
𝐴11 𝐵11
𝐵11 𝐷11

)

(

 

𝜕𝑈𝑏𝑖(𝑋𝑏𝑖 , 𝑡)

𝜕𝑋𝑏𝑖

−
𝜕2𝑉𝑏𝑖(𝑋𝑏𝑖 , 𝑡)

𝜕𝑡2 )

 − (
𝑁𝑋𝑏𝑖
𝑇

𝑀𝑋𝑏𝑖
𝑇 ) (13) 

Where 𝑁𝑋𝑏𝑖 Et 𝑀𝑋𝑏𝑖
 are generated by the temperature 

change, they are calculated using the formulations given in 

accordance with [24] as follows. 

(𝑁𝑋𝑏𝑖
𝑇    𝑀𝑋𝑏𝑖

𝑇  ) = ∫ (𝐸𝛼Δ𝑇)(𝑙, 𝑧 − 𝑧0) 𝑑𝑧
𝐻/2

−𝐻/2

 
(14) 

𝑧0 =
∫ 𝑧𝐸 𝑑𝑧
𝐻/2

−𝐻/2

∫ 𝐸 𝑑𝑧
𝐻/2

−𝐻/2

 (15) 

Earlier research indicates that asymmetrical bridges are 

particularly vulnerable to damage because vibration energy 

tends to focus on fewer cables when the excitation frequencies 

match the system's natural frequencies corresponding to 

localized mode shape [25]. Therefore, a symmetrical model 

was adopted for this study with the assumptions that:  
𝑚𝑏𝑖 = 𝑚𝑏 , 𝑚𝑐𝑗 = 𝑚𝑐 , 𝐸𝑐𝑗𝐴𝑐𝑗 = 𝐸𝑐𝐴𝑐 ,  𝐸𝑏𝑖𝐼𝑣𝑏𝑖 = 𝐸𝑏𝐼𝑏 (16) 

A non-dimensional version of Equations (3) and (4), 

along with the corresponding boundary conditions, Equations 

(5) and (9), can be derived by introducing the following 

variables. 
 

Where 𝜔0 is a specified frequency, like the system's 

primary in-plane natural frequency, and it can be taken as 1. 
Additionally, the following dimensionless quantities are 

defined. 

𝜌 =
𝑚𝑐

𝑚𝑏
   ,   𝜇𝑐𝑗 =

𝐸𝑐𝐴𝑐

𝐻𝑐𝑗
   ,   𝜒 =

𝐸𝑏𝐼𝑏

𝑙𝑏
2𝐸𝑐𝐴𝑐

  ,  𝛾𝑐𝑗 =
𝑙𝑏

𝑙𝑐𝑗
 (18) 

Furthermore, the following dimensionless spatial 

frequencies of the cable and sub-beam are introduced. 

𝛽𝑏𝑖
4 =

𝑚𝑏𝑙𝑏
4𝜔0

2

𝐸𝑏𝐼𝑏
    ,    𝛽𝑐𝑗

2 =
𝑚𝑐𝑙𝑐𝑗

2𝜔0
2

𝐻𝑐𝑗
 

𝛽𝑏𝑖
2 = 𝜔√

𝑚𝑏𝑙𝑏
4

𝐸𝑏𝐼𝑏
         ,        𝛽𝑐𝑗 = 𝜔√

𝑚𝑐𝑙𝑐𝑗
2

𝐻𝑐𝑗
 

(19) 

 

Where 𝜔 denotes the dimensional temporal frequencies 

of the system's in-plane and out-of-plane modal motions, 

respectively. The relationship between the spatial frequencies 

of the cable and sub-beam can be derived by solving Equation 

(19) for 𝜔, and it is expressed as follows. 

𝛽𝑣𝑐𝑗 = 𝛽𝑣𝑏
2
𝛼𝑗
𝛾𝑐𝑗

 (20) 

Where 𝛼𝑗  is defined as:  

𝛼𝑗 = √𝜇𝑐𝑗𝜌𝜒 (21) 

By expanding the dimensionless equation of the cable and 
ignoring the nonlinear and structural damping terms, the 

linearized self-adjoint boundary value problem of the multi-

cable-stayed beam model can be derived using the separation 

of variables method and the one-dimensional coordinate 

system, (x), 𝑥𝑐𝑗 = 𝑥𝑏𝑖 = 𝑥 

−𝛽𝑣𝑏
4 𝑤𝑣𝑏𝑖 +

𝜕4𝑤𝑣𝑏𝑖
𝜕𝑥4

= 0 (22) 

𝛽𝑣𝑐𝑗
3 𝑤𝑣𝑐𝑗 +

𝜕2𝑤𝑣𝑐𝑗
𝜕𝑥2

= 8𝜇𝑐𝑗𝑑𝑐𝑗𝑒𝑐𝑗 (23) 

 

Additionally, the linearized geometric and mechanical boundary conditions can be derived simultaneously and are expressed 

as follows. 
𝑤𝑣𝑐1(0) = 𝑤𝑣𝑐2(0) = 0,  𝑤𝑣𝑐1(1) = 𝛾𝑐1𝑤𝑣𝑏1(𝑠1) 𝑐𝑜𝑠 𝜃 ,  𝑤𝑣𝑐2(1) = 𝛾𝑐2𝑤𝑣𝑏2(𝑠2) 𝑐𝑜𝑠 𝜃

𝑤𝑣𝑏1(0) = 𝑤𝑣𝑏3(1) =
𝜕2𝑤𝑣𝑏1

𝜕𝑥2
|
𝑥=0

=
𝜕2𝑤𝑣𝑏3

𝜕𝑥2
|
𝑥=1

= 0,  𝑤𝑣𝑏1(𝑠1) = 𝑤𝑣𝑏2(𝑠1),
𝜕𝑤𝑣𝑏1

𝜕𝑥
|
𝑥=𝑠1

=
𝜕𝑤𝑣𝑏3

𝜕𝑥
|
𝑥=𝑠2

𝜕2𝑤𝑣𝑏1

𝜕𝑥2
|
𝑥=𝑠1

=
𝜕2𝑤𝑣𝑏2

𝜕𝑥2
|
𝑥=𝑠2

, 𝑤𝑣𝑏2(𝑠2) = 𝑤𝑣𝑏3(𝑠2),
𝜕𝑤𝑣𝑏2

𝜕𝑥
|
𝑥=𝑠2

=
𝜕𝑤𝑣𝑏3

𝜕𝑥
|
𝑥=𝑠2

,
𝜕2𝑤𝑣𝑏2

𝜕𝑥2
|
𝑥=𝑠2

=
𝜕2𝑤𝑣𝑏3

𝜕𝑥2
|
𝑥=𝑠2

𝜒 [
𝜕3𝑤𝑣𝑏1

𝜕𝑥3
|
𝑥=𝑠1

−
𝜕3𝑤𝑣𝑏2

𝜕𝑥3
|
𝑥=𝑠1

] − (𝑠𝑖𝑛 𝜃 +
𝜕𝑦𝑐1

𝜕𝑥
|
𝑥=1

𝑐𝑜𝑠 𝜃1) 𝑒𝑐1 −
𝑐𝑜𝑠 𝜃

𝜇

𝜕𝑤𝑣𝑐1

𝜕𝑥
|
𝑥=1

= 0

𝜒 [
𝜕3𝑤𝑣𝑏2

𝜕𝑥3
|
𝑥=𝑠2

−
𝜕3𝑤𝑣𝑏3

𝜕𝑥3
|
𝑥=𝑠2

] − (𝑠𝑖𝑛 𝜃 +
𝜕𝑦𝑐2

𝜕𝑥
|
𝑥=1

𝑐𝑜𝑠 𝜃1) 𝑒𝑐2 −
𝑐𝑜𝑠 𝜃

𝜇

𝜕𝑤𝑣𝑐2

𝜕𝑥
|
𝑥=1

= 0

 

 (24) 

{
 
 
 
 

 
 
 
 𝑥𝑐𝑗 =

𝑋𝑐𝑗
𝑙𝑐𝑗
  , 𝑦𝑐𝑗 =

𝑌𝑐𝑗
𝑙𝑐𝑗
  , 𝑣𝑐𝑗 =

𝑉𝑐𝑗
𝑙𝑐𝑗
  , 𝑑𝑐𝑗 =

𝐷𝑐𝑗
𝑙𝑐𝑗
   

𝜉𝑐𝑗 =
𝜁𝑐𝑗

𝑚𝑐𝑗𝜔0
   , 𝜉𝑏𝑖 =

𝜁𝑏𝑖
𝑚𝑏𝑖𝜔0

𝑥𝑏𝑖 =
𝑋𝑏𝑖
𝑙𝑏
  , 𝑣𝑏𝑖 =

𝑉𝑏𝑖
𝑙𝑏
  , 𝑠𝑏𝑖 =

𝑆𝑏𝑖
𝑙𝑏
 

𝜏 = 𝜔0𝑡   , 𝜆 =
𝑁𝑋𝑏𝑖
𝑇

𝐷11
=
𝑁𝑥𝑏𝑖
𝑇

𝐸𝑏𝐼𝑏

 (17) 
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Where  𝑤𝑣𝑐𝑗 and  𝑤𝑣𝑏𝑖 are modal eigenfunctions is the linearized dynamic elongation of the cable and is expressed as follows.  

𝑒𝑐𝑗 = 𝑤𝑐𝑗(1) tan 𝜃𝑗 +∫
𝜕𝑦𝑐𝑗
𝜕𝑋𝑐𝑗

 
𝜕𝑤𝑐𝑗
𝜕𝑋𝑐𝑗

𝑑𝑥𝑐𝑗

1

0

 (25) 

The compatibility conditions associated with the added masses are:

𝑤𝑣𝑏𝑖(𝑥)|𝑥=𝜂 = 𝑤𝑣𝑏(𝑖+1)(𝑥)|𝑥=𝜂
𝑑𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥
|
𝑥=𝜂

=
𝑑𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥
|
𝑥=𝜂

,
𝑑2𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥2
|
𝑥=𝜂

=
𝑑2𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥2
|
𝑥=𝜂

𝑑3𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥3
|
𝑥=𝜂

=
𝑑3𝑤𝑣𝑏𝑖(𝑥)

𝑑𝑥3
|
𝑥=𝜂

+𝑀𝜔2
𝜕𝑤𝑣𝑏𝑖(𝑥)

𝜕𝑥
|
𝑥=𝜂

 (26) 

It is widely recognized that the exact closed-form solutions of Equations (x) and (x) take the following form. 

𝑤𝑣𝑏𝑖(𝑥) = 𝐴𝑏𝑖 𝑠𝑖𝑛(√
1

2
𝜆 +

1

2
√𝜆2+ 4𝛽𝑣𝑏𝑖(𝑥))+ 𝐵𝑏𝑖 𝑐𝑜𝑠 (√

1

2
𝜆 +

1

2
√𝜆2 + 4𝛽𝑣𝑏𝑖(𝑥))

+ 𝐶𝑏𝑖 𝑠𝑖𝑛ℎ(√−
1

2
𝜆 +

1

2
√𝜆2+ 4𝛽𝑣𝑏𝑖(𝑥))+𝐷𝑏𝑖 𝑐𝑜𝑠ℎ(√−

1

2
𝜆 +

1

2
√𝜆2+ 4𝛽𝑣𝑏𝑖(𝑥)) 

(27) 

𝑤𝑣𝑐𝑗(𝑥) = 𝐸𝑐𝑗 𝑠𝑖𝑛(𝛽𝑣𝑐𝑗𝑥) + 𝐹𝑐𝑗 𝑐𝑜𝑠(𝛽𝑣𝑐𝑗𝑥) + ∆𝑐𝑗 (28) 

Where, 

∆𝑐𝑗  =  
8𝜇𝑐𝑗𝑑𝑐𝑗𝑒𝑐𝑗
𝛽𝑣𝑐𝑗
2  (29) 

 

By manipulating Equations (27) and (28) with the 
relevant geometrical and mechanical compliance conditions 

(24) and (26), the following characteristic equation can be 

obtained: 

𝐹(𝜔)Λ = 0 (30) 

Where 𝐹(𝜔) is the coefficient matrix. Λ is the vector 

consisting of coefficients in Equations (x) and (x), which is 

defined as:  

Λ = [… ,𝐴𝑏𝑖 , 𝐵𝑏𝑖 , 𝐶𝑏𝑖 , 𝐷𝑏𝑖 , … , 𝐸𝑐𝑗 , 𝐹𝑐𝑗 ,… ]
𝑇
 

(31) 

The frequency 𝜔 can be determined by setting the 

determinant of the coefficient matrix 𝐹(𝜔) in Equation (x) to 

zero. Once 𝜔 is found, the coefficient vector Λ can be readily 

determined by considering the boundary conditions. The 

mode functions of each order can then be derived, where the 

normalization is done such that max. {𝑤𝑣𝑏𝑖 , 𝑤𝑣𝑐𝑗} = 1 

 

3. Results and Discussion  
3.1. Double-Cable-Stayed Beam Model 

The system's numerical solution was achieved using the 

Newton-Raphson method, implemented in MATLAB. The 

beam, characterized as homogeneous and isotropic, is fixed at 

both ends and supported by elastic cables at positions                           

𝑥 = 1/3𝑙𝑏 and = 2/3𝑙𝑏, where 𝑙𝑏 denotes the beam's total 

length. This section includes a comparative analysis with 

findings documented in existing literature prior to addressing 

the study's main focus: examining the vibrations of beams 
suspended by two cables while supporting concentric masses. 

Extensive parametric analysis will be conducted, adjusting 

variables such as the placement, magnitude, and quantity of 

masses, as well as a variable thermal load applied to the beam, 

to explore their impact on the amplitudes and frequencies of 

linear vibrations. The numerical solution of the system was 

obtained using MATLAB, where the Newton-Raphson 

algorithm was employed to solve the equations derived from 

the establishment of the boundary conditions and continuity 

conditions. To verify the linearized dynamic model developed 

in this study, an asymmetric cable-stayed beam model 
featuring two identical cables was analyzed. These cables 

divide the beam into three equal sub-beams at their junctions 

with the deck beam. The properties assigned to the deck beam 

are Young’s modulus 34.5 𝐺𝑃𝑎, cross-sectional moment of 

inertia 9.8 𝑚4, cross-sectional area 16,3 𝑚2, mass per unit 

length of 4,4 × 104 𝑘𝑔/𝑚, and the total length 300𝑚. For the 

cables, the properties include Young's modulus 210 𝐺𝑃𝑎, 

cross-sectional area 6,273 × 10−3 𝑚2, mass per unit length 

10,4 𝑘𝑔/𝑚, an initial force 1 𝑀𝑛, and an inclination angle of 

𝜋/6 𝑟𝑎𝑑. The gravitational acceleration applied in this study 

is 9.8 𝑚/𝑠2. Table 1 offers a detailed comparison of the 
frequency values from this study with those referenced in prior 

literature, highlighting the precision of our current findings. 
The data demonstrates substantial consistency, with only 

negligible discrepancies observed in the frequencies of the 

first ten-mode shapes. This consistency suggests that the 
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methodologies and analytical approaches used in this research 

are both effective and dependable, aligning closely with well-

established data in the field.  

We began our methodology by introducing the equations 

of motion, which were established at various intervals in the 

plane of the system, along with their boundary and continuity 

conditions. Subsequently, we iteratively solved the 

generalized transcendental frequency equation using the 

Newton-Raphson method. Once our results were validated by 

existing literature, the table compares the first 10 natural 

frequencies of a double-cable-stayed beam model calculated 

by two different methods: our results against the Finite 

Element Method (FEM) and the reference values.It shows the 

natural frequencies for each method, along with the 
percentage error compared to the reference values. Both 

methods demonstrate high accuracy, with small errors relative 

to the reference data. 

3.2. Influence of a Single Mass on Frequencies 

In this first case study, we examine a beam suspended by 

two elastic cables fixed at the same position as the double-

cable-stayed beam. The suspension configuration is such that 

the beam supports a single, concentric mass. This mass can 

vary in intensity and position relative to the beam, allowing us 
to study different loading scenarios and their impacts on the 

system.The main objective of this case study is to analyze how 

variations in the position and intensity of the mass influence 

the vibrational behavior of the beam. Specifically, we aim to 

understand how these factors modify the first three 

dimensionless natural frequencies of the suspended beam. The 

results presented in Table 2 provide an overview of the 

variations in vibrational behavior in response to changes in the 

mass parameters. 

Table 1. The first 10 natural frequencies of the double-cable-stayed beam model

Natural frequency 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Present 0,1366 0,2313 0,4354 0,7849 1,2162 1,3427 1,3428 1,7417 2,3741 2,6855 

Ref [1] 0,1355 0,2307 0,4354 0,7848 1,2162 1,3503 1,3503 1,7417 2,3740 2,6854 

Error (%) 0,8118 0,2601 0,0000 0,0127 0,0000 -0,5628 -0,5554 0,0000 0,0042 0,0037 

FEM 0,1360 0,2307 0,4349 0,7840 1,2147 1,3436 1,3437 1,7391 2,3696 2,6890 

Error (%) 0,4412 0,2601 0,1150 0,1148 0,1235 -0,0670 -0,0670 0,1495 0,1899 -0,1302 

 

 

 

 
 

 

 
 

Fig. 2 Presentation of the first three mode shapes of a double-cable-stayed beam model 
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Fig. 3 The variation of the first three dimensionless natural frequencies 

of a suspended beam is analyzed as a function of the dimensionless 

mass intensity and the dimensionless position of the mass 

Fig. 4 The representation of the first three dimensionless natural 

frequencies of a suspended beam is depicted as a function of the 

dimensionless mass location for various values of dimensionless mass 

intensity 

Figures 3 illustrate how the location of the mass affects 

the dimensionless frequencies for specific dimensionless 

intensities of the mass (𝑀 = 0.2, 0.5, 1, and 2). It can be seen 

that the location of the crack changes the dimensionless 

frequencies of the beam, with frequency oscillations and a 

decreasing slope as the mass moves from the left end to the 

right end. These figures show that the frequency varies with 

the location of the mass, which is due to the fact that the mass 
has little effect on the vibratory response when it is located at 

the vibration nodes or inflection points. The effect of the mass 

on frequencies becomes greater when the mass is further away 

from these points. In addition, it can be seen that increasing 

the adimensional intensity of the mass reduces the frequency 

because this decreases the rigidity of the structure. It can also 

be seen that for all three modes, the frequencies are lower 

when the mass is close to the free end of the cantilever beams. 

In other words, the impact of the mass on the frequency is 

more significant near the rigid zone of the beam. Figure 4 
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illustrates that, for all three modes of vibration, the frequencies 

associated with a given mass intensity oscillate as the position 

of the mass moves from the fixed end to the other fixed end of 

the beam. In these figures, the number of oscillations increases 

with the number of modes, which is due to the fact that the 

oscillations are relative to the excitation frequency specific to 
each mode. In addition, the influence of the symmetry of the 

beam with respect to its central point can be seen in the 

normalized frequency curves, which are also symmetrical for 

a fixed beam. Table 2 shows the first three natural frequencies 

of a cable-stayed system fixed at both ends with a concentrated 

mass placed at its midpoint. The mass ratio studied ranges 

from 0 to 2. The results clearly show a reduction in natural 

frequencies for all three modes as the mass ratio increases. 

This trend is significant and corroborates the principles of the 

Rayleigh-Ritz theory, which proposes that the natural 

frequencies of a structure are inversely proportional to its 

mass. In practice, this means that adding mass to a system 

lowers its natural frequencies while removing mass increases 

them. Understanding this relationship is essential to 

comprehending how mass affects the dynamic behavior of 

structural systems. The data shows a clear trend: as the mass 

intensity increases, the natural frequencies decrease for all 

three modes. This trend supports the Rayleigh-Ritz theory, 
which states that natural frequencies are inversely 

proportional to mass. The position of the added mass also 

affects the frequencies, but the overall trend of decreasing 

frequencies with increasing mass intensity remains consistent. 

This information is crucial for understanding how mass affects 

the dynamic behavior of structural systems.The effect of mass 

size is also shown in terms of curvature, as depicted in the 

figure. By varying the mass from 0 to 2, with this mass in the 

middle of the beam, we can see that the curvature is at its 

maximum when the magnitude of the mass is at its maximum. 

However, the curvature does not change at the ends of the 

beam.

Table 2. Analysis of the first three dimensionless natural frequencies of a double cable-stayed beam with an added mass at various locations and mass 

ratios 

Mass Intensity Mass Location 
Frequencies of the Beam 

1 2 3 

0.2 

0.2 5,2439 6,8430 9,2807 

0.4 5,2523 6,8148 9,2913 

0.6 5,2562 6,8110 9,2912 

0.8 5,2598 6,8036 9,2811 

0.5 

0.2 5,2170 6,8836 9,2544 

0.4 5,2372 6,8151 9,2820 

0.6 5,2469 6,8059 9,2817 

0.8 5,2556 6,7871 9,2565 

1 

0.2 5,1737 6,9469 9,2064 

0.4 5,2124 6,8156 9,2667 

0.6 5,2314 6,7974 9,2661 

0.8 5,2489 6,7594 9,2153 

2 

0.2 5,0922 7,0631 9,1456 

0.4 5,1633 6,8164 9,2370 

0.6 5,2006 6,7811 9,2351 

0.8 5,2348 6,7031 9,1456 
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Fig. 5 Presentation of the first three mode shapes of a beam with cables supporting a mass of intensity 𝑴 =  𝟐 at 𝒙 =  𝟎. 𝟓𝒍𝒃 

 
Fig. 6 The curvatures of a cable-stayed beam carrying a concentric mass at the middle, with varying mass magnitudes 

Table 3. The first three dimensionless natural frequencies of a beam are supported by two symmetrically positioned cables carrying two masses 

located symmetrically 

Mass Locations Mass Intensities 
Frequencies 

1 2 3 

𝜼 =0.2, 𝜼 =0.8 

0.2 5,2577 6,7942 9,2642 

0.5 5,2506 6,7632 9,2126 

1 5,2386 6,7100 9,1456 

2 5,2147 6,5936 9,1456 

𝜼 =0.4, 𝜼 =0.6 

0.2 5,2500 6,8075 9,2849 

0.5 5,2312 6,7966 9,2661 

1 5,2005 6,7785 9,2351 

2 5,1402 6,7410 9,1742 

𝜼 = 𝟏/𝟑, 𝜼 = 𝟐/𝟑 

0.2 5,2527 6,7994 9,2973 

0.5 5,2378 6,7761 9,2969 

1 5,2133 6,7368 9,2962 

2 5,1655 6,6533 9,2950 
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3.3. Influence of Multiple Concentrated Masses on the 

Frequencies 
In this part, we examine how the positions and intensities 

of multiple concentrated masses influence the natural 

frequencies of the cable-stayed beam. We establish a 

relationship between the natural frequency and both the 
intensity and position of the masses. In this simulation, we 

vary the intensity of the concentrated mass ratios from 0 to 2.  

Table 3 presents the results for the first three 

dimensionless natural frequencies of a beam supported by two 

symmetrically positioned cables carrying two masses located 

symmetrically. Tables 4 to 6 present the values of the first 

three-dimensional natural frequencies of a beam supporting 

three concentrated masses, two of which are positioned 
symmetrically and the other at the middle of the beam.  

In this investigation, we vary the position of the two 

concentrated masses near the ends of the beam, as well as their 

intensity, to observe their effects on the linear vibratory 

behavior of the beam. From Tables 3 to 6, it can be concluded 

that increases in the mass magnitude lead to a decrease in the 

natural frequencies of the beam. This inverse relationship is 
due to the added mass increasing the overall inertia of the 

system, which in turn reduces its ability to oscillate at higher 

frequencies. The decrease in natural frequencies is particularly 

significant when the beam supports a higher number of 

concentrated masses. This is because each additional mass 

further amplifies the inertia, compounding the effect on the 

system's dynamic behavior. As more masses are added, the 

beam becomes less stiff and more prone to lower frequency 

vibrations.  

The effect of varying the mass ratio was also investigated 

in terms of the curvature of the beam by varying 𝑀 from 0 to 

2, while the other parameters were set as follows:  𝑥 =
0.2𝑙𝑏 , 0.5𝑙𝑏 𝑒𝑡 0.8𝑙𝑏 

Figure 6 shows the obtained curvatures from a beam 

supporting three concentric masses located at                                         

𝑥 = 0.2𝑙𝑏 , 0.5𝑙𝑏 𝑒𝑡 0.8𝑙𝑏. The variation in the mass ratios 

shows a significant effect on the curvatures when the value of 

M increases from 0 to 2, this effect remains insignificant, 

especially at the middle.  

3.4. Influence of Thermal Loading on the Frequencies 
In this section, we investigate the impact of thermal 

loading on the free vibrations of a beam suspended from a 

cable.The beam studied in this section supports, in the first 

case, a single mass at the center with a mass ratio of 𝑀 =  0.5, 
the results of which are given in Table 7. In the second case, 

it supports two masses positioned symmetrically at 𝑥 = 0.2𝑙𝑏                                         

and 𝑥 = 0.8𝑙𝑏 , whose magnitudes are: 𝑀1  = 𝑀3   =  2. The 

effects of these masses on the linear vibration behavior are 

shown in Table 8. 

Table 4. The first three dimensionless natural frequencies of a beam supporting three concentrated masses, two of which are positioned symmetrically 

and the other at the middle of the beam with 𝑴𝟐 = 𝟎. 𝟓 

Mass Locations Mass Intensities 
Frequencies 

1 2 3 

𝜼 =0.2, 𝜼 =0.8 

0.2 5,2378 6,7940 9,2165 

0.5 5,2307 6,7629 9,1608 

1 5,2188 6,7097 9,1456 

2 5,1954 6,5932 9,1456 

𝜼 =0.4, 𝜼 =0.6 

0.2 5,2301 6,8072 9,2394 

0.5 5,2116 6,7964 9,2206 

1 5,1810 6,7781 9,1896 

2 5,1211 6,7408 9,1456 

𝜼 = 𝟏/𝟑, 𝜼 = 𝟐/𝟑 

0.2 5,2327 6,7990 9,2516 

0.5 5,2181 6,7759 9,2513 

1 5,1938 6,7365 9,2505 

2 5,1465 6,6529 9,2491 

Table 5. The first three dimensionless natural frequencies of a beam supporting three concentrated masses, two of which are positioned symmetrically 

and the other at the middle of the beam with 𝑴𝟐 = 𝟏 

Mass locations Mass Intensities 
Frequencies 

1 2 3 

𝜼 =0.2, 𝜼 =0.8 

0.2 5,2178 6,7937 9,1674 

0.5 5,2110 6,7625 9,1456 

1 5,1994 6,7093 9,1456 

2 5,1763 6,5928 9,1456 

𝜼 =0.4, 𝜼 =0.6 
0.2 5,2103 6,8069 9,1929 

0.5 5,1920 6,7961 9,1740 
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1 5,1617 6,7778 9,1458 

2 5,1023 6,7405 9,1456 

𝜼 = 𝟏/𝟑, 𝜼 = 𝟐/𝟑 

0.2 5,2128 6,7987 9,2052 

0.5 5,1984 6,7756 9,2047 

1 5,1745 6,7361 9,2038 

2 5,1274 6,6526 9,2022 

Table 6. The first three dimensionless natural frequencies of a beam supporting three concentrated masses, two of which are positioned symmetrically 

and the other at the middle of the beam with 𝑴𝟐 = 𝟐 

Mass locations Mass Intensity 
Frequencies 

1 2 3 

𝜼 =0.2, 𝜼 =0.8 

0.2 5,1788 6,7932 9,1456 

0.5 5,1719 6,7621 9,1456 

1 5,1607 6,7086 9,1456 

2 5,1381 6,5919 9,1213 

𝜼 =0.4, 𝜼 =0.6 

0.2 5,1711 6,8064 9,1456 

0.5 5,1532 6,7957 9,1456 

1 5,1234 6,7774 9,1456 

2 5,0643 6,7400 9,1456 

𝜼 = 𝟏/𝟑, 𝜼 = 𝟐/𝟑 

0.2 5,1738 6,7983 9,1456 

0.5 5,1595 6,7751 9,1456 

1 5,1362 6,7356 9,1456 

2 5,0897 6,6518 9,1456 
 

 
Fig. 7 Curvatures of a cable-stayed beam carrying three concentric masses with various mass magnitudes  

Table 7. The frequencies of the beam, subjected to different thermal loads, are supported by a single concentric mass in the middle with a magnitude 

of 𝑴 = 𝟎. 𝟓 

Mode 
Thermal load 

𝚫𝑻 = 𝟓𝟎 𝑲 𝚫𝑻 = 𝟏𝟎𝟎 𝑲 𝚫𝑻 = 𝟏𝟓𝟎 𝑲 𝚫𝑻 = 𝟐𝟎𝟎 𝑲 
1 8,5889 9,2984 9,8367 10,1969 

2 9,8662 10,7167 11,1553 11,6635 

3 11,7224 12,6450 13,2283 13,6250 

Table 8. The frequencies of the beam subjected to different thermal loads, supported by a single concentric mass in the middle with magnitudes of 

𝑴𝟏  =  𝑴𝟑  =  𝟐 and 𝑴𝟐 = 𝟎 

Mode 
Thermal load 

𝚫𝑻 = 𝟓𝟎 𝑲 𝚫𝑻 = 𝟏𝟎𝟎 𝑲 𝚫𝑻 = 𝟏𝟓𝟎 𝑲 𝚫𝑻 = 𝟐𝟎𝟎 𝑲 

1 8,5671 9,2637 9,8119 10,1716 

2 9,7503 10,5872 11,1395 11,5215 

3 11,5937 12,5165 13,0750 13,5855 
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Fig. 8 The variation of the first three dimensionless natural frequencies of a suspended beam as a function of the dimensionless mass 

ratio and the thermal load 𝜟𝑻 

 

4. Conclusion  
The study delves into the dynamics of transverse 

vibrations in a stayed cable system when exposed to varying 

thermal loads and carrying concentrated masses positioned at 

different points along its length.  

The analysis begins by meticulously establishing 

boundary and continuity conditions at the junctions where the 
beam interfaces with the cable and at locations where the 

masses are attached, ensuring the structural integrity and the 

realistic simulation of physical behaviors.  

To tackle the complexity of the system, the Newton-

Raphson method, a robust numerical technique, is employed 

within the MATLAB environment. This iterative approach 

facilitates the efficient resolution of the nonlinear equations 

that describe the system’s behavior under dynamic loads. The 

investigation reveals that thermal loading plays a pivotal role 

in influencing the natural frequencies of the beam. As thermal 

loads escalate, there is a corresponding increase in the natural 
frequencies, suggesting a stiffening effect on the cable system 

due to the temperature rise. Moreover, the study underscores 

the variability in the system’s response introduced by the 

concentrated masses. The frequency and amplitude of the 

vibrations are found to be sensitive not only to the magnitude 

of the masses but also to their specific placements along the 

cable. These insights could prove invaluable for designing and 

optimizing cable-stayed structures in environments where 

thermal effects are significant, guiding engineers in making 

informed decisions about material selection, structural 

configuration, and mass distribution to achieve desired 

vibrational characteristics.  
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