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Abstract - Cable-stayed beams represent one of the most widely discussed topics in the current scientific world, attracting 

immense attention from researchers in the fields of civil and mechanical engineering. To investigate the behavior of transverse 

vibrations in the plane of coupled cables and beams resting on elastic supports, a linear single-beam and multi-cable mechanical 

model was developed. In this work, general expressions are derived for the multi-cable beam based on the fundamental principle 

of the Euler-Bernoulli method. By taking into account the impact of nonlinear geometric factors caused by the initial sag of the 

cables, the multi-cable beam model by segments is analyzed. Firstly, using the example of a double-cabled beam as a case study 

for the clamped-clamped, clamped-simply supported, and simply supported at both ends beam configurations, the solution of 

the free vibration eigenvalues in the plane is performed by combining the boundary and continuity conditions using the robust 

Newton-Raphson algorithm. The results obtained are compared with those of the reference articles and show good agreement. 

Next, the analysis is extended to a two-cable supported beam resting on elastic supports. A parametric study is conducted to 
evaluate the effectiveness of these supports in mitigating the structural vibrations of the cable-stayed beam. Different 

configurations are explored, including the variation of the stiffness, position, and number of elastic supports, ranging from a 

single elastic support to two and three elastic supports. The impact of these elastic supports on the dynamic behavior of the 

beam is examined in detail, thus promoting the improvement of the dynamic performance and flexibility of cable-stayed 

structures. This study demonstrates that strategic manipulation of the stiffness and configuration of elastic supports is essential 

for improving the dynamic performance and robustness of cable-stayed structures. This not only ensures the safety and reliability 

of the structure but also optimizes its performance under different loading scenarios, making this approach an effective solution 

for advanced applications in civil and mechanical engineering. 

 

Keywords - Cable-stayed beam vibration, Elastic support, Frequency analysis, Modal analysis, Linear vibration, Mode shape, 

Newton-Raphson algorithm, Parametric analysis. 

 

1. Introduction 
Cable-beam coupled structures, composed of flexible 

cables and elastic beams, offer significant structural 

advantages in the fields of civil and mechanical engineering. 

These structural advantages are manifested in the realization 

of long-span structures, ease of construction, affordable 

construction costs, the realization of optimized structures, and 

better structural performance under the effect of loads 

(permanent, operating, or thermal) and constraints. This 

allows for wide adaptation and application in large-scale real 

projects (buildings, bridges, footbridges, etc.). 

Over the past few decades, the need for large-span projects 
has continued to increase day by day. Long spans pose new 

challenges in terms of calculation (maximum deflection, 

displacement, deformation, and stresses) and construction 

(construction technologies and investment in execution 

means). With this requirement for long spans, the dynamic 

behavior of structures becomes increasingly complex and 

sensitive to small perturbations due to coupling interactions, 

leading to and requiring carefully controlled structural 

analysis. It is, therefore, essential to analyze and study the 

overall dynamic behavior and coupling properties of cables 

and beams from different perspectives. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Suspended cables in reinforced, pre-stressed, and steel 

concrete bridges, fixed and mobile cranes and pylons, as well 

as beams and cables in lattice structures, can all be considered 

cable-beam coupled and composite structures. 

Up to now, numerous scientific studies have been 

conducted on beam-cable models subjected to various types of 
loads and disturbances, with the aim of exploring the 

interaction mechanisms. In 2020, Y. Cong H. Kang [1] first 

proposed an in-depth study of the dynamic behavior of cable-

stayed bridges, using a linear multi-cable beam model to 

analyze vibrations in the horizontal and vertical planes. 

Subsequently, the co-authors [2] discussed the modeling of a 

cable-stayed bridge with CFRP cables, performing a modal 

analysis of the system. The examination focused on the impact 

of increasing the axial stiffness of the cables and the flexural 

stiffness of the beams on the system's vibration frequencies. 

T. Guo [3] explores the dynamic interactions between the 

cables and the bridge girder in cable-stayed structures by 
developing an asymptotically reduced coupled model. X. Su 

[4] studies free vibrations in the plane of a multi-cable stayed 

bridge using the transfer matrix method. Y. Cong [5] and  H. 

Kang [6] deal with the analysis of the dynamics of cable-

stayed bridges, considering both the nonlinear geometry of the 

cables and shallow arches using methods such as the Finite 

Element Method (FEM) solution and the application of the 

Galerkin method. 

Cao et al. [7] investigated the vibrations of a complex 

cable-stayed bridge with four cables and girders. They derived 

both linear and nonlinear differential vibration equations, both 
in-plane and out-of-plane. The research conducted by Kang et 

al. [8] involved applying the theory of vibrations of taut cables 

and Euler beams to develop a theory of in-plane internal 

vibrations. R. Ma [9] examines the static response and 

dynamic modal properties of a 1088m main span cable-stayed 

bridge under strong winds, focusing on the effect of cable 

vibration on the overall bridge behavior. C. Gentile et F. M. 

Y. Cabrera [10] analyze the dynamic behavior of two recently 

constructed curved cable-stayed bridges using large-scale 

tests and theoretical models. X. Su and H. Kang  [11] examine 

a novel nonlinear system, a cable-stayed beam model with a 

tuned mass damper. The coauthors of [12] have developed a 
novel dynamic theory and analysis of the nonlinear dynamic 

behavior of a cable-stayed bridge model under harmonic 

excitation, showing that partial differential equations solved 

via Galerkin's method reveal complex phenomena such as 

asymmetric jumps in the cables during subharmonic 

resonance. The same coauthors have studied the energy 

transfer between the deck and cables in cable-stayed bridges 

through resonance analysis, taking into account the coupling 

effect of adjacent cables. 

Considering a bridge model in its entirety, the mode 

shapes of the cable-stayed beam were determined by Wang et 
al. [13] using a piecewise function. Zhu et al. [14] developed 

a continuous model for an inclined cable and a nonlinear 

cable-stayed beam, incorporating an in-plane degree of 

freedom to account for cable damage. The studies  [15] and 

[16] focus on the modeling and analysis of the dynamic 

behavior of cable-stayed beam structures. They use methods 

such as Galerkin discretization and the scale method. V. 
Gattulli et al. [17] and  M. Lepidi [18] propose analytical 

models to study the nonlinear interactions between beam and 

cable dynamics in cable-stayed systems. 

However, work on beams resting on elastic supports has 

been addressed repeatedly. P. Chang [19] proposed an exact 

and explicit solution for the free vibrations of Euler-Bernoulli 

beams supported by an arbitrary number of translational 

supports at arbitrary positions under variable boundary 

conditions. A. Ahmed previously established the theoretical 

formulation of the problem of nonlinear transverse vibrations 

of Bernoulli-Euler beams resting on elastic supports and 

masses. I. El Hantati already studied the nonlinear vibrations 
of beams with elastic supports (translation and rotation) at the 

end using Euler-Bernoulli and von Karman's theories to 

calculate their modes and frequencies. O. Outassafte explored 

the geometric nonlinearity in the vibrations of a shallow arch 

elastically restrained at the ends by elastic support (translation 

and rotation). 

Linear and nonlinear vibrations using Euler-Bernoulli 

beam theory have been studied multiple times. For instance, 

El Hantati before examined the nonlinear free and forced 

vibrations of tapered beams based on Euler-Bernoulli beam 

theory and von Karman's geometric nonlinearity assumptions, 
determining the nonlinear frequencies and modes as well as 

the associated stress distributions. Outassafte O. earlier 

investigated the geometrical nonlinearity in the in-plane free 

vibration of an inextensible circular arch with uniform cross-

section and elastic rotational restraints at both ends. El 

Khouddar Y. was studied the nonlinear free and forced 

vibrations subjected to harmonic excitations of laminated 

composite beams using Euler-Bernoulli beam theory and 

Green-Lagrange's geometric nonlinearity hypothesis. In 

earlier, Adri A. analytically analyzed the frequencies and 

mode shapes of a clamped beam carrying a point mass at 

different positions, conducting a parametric study using the 
Newton-Raphson method to solve the transcendental 

frequency equation. 

Indeed, the analysis of cable-stayed beams under thermal 

loads has been carried out in some case studies. Y. Zhao [20] 

studied the effect of temperature on the vibration of a cable-

stayed beam. The thermal effect is considered by using two 

non-dimensional factors for the cable tension force and sag. In 

addition to research efforts to understand the response of 

structures to thermal loads, a study was also conducted by Y. 

El Khouddar previously studied of free and forced vibrations 

of a beam made of functionally graded materials while taking 
into account temperature variations. The nonlinear 
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equilibrium equations are obtained by Hamilton's principle 

and solved by a multimode approach. A parametric study 

explores the influence of various factors, including 

temperature variations, on nonlinear vibration solutions. The 

analysis of bridges by structural monitoring systems in [21] 

allows for real-time monitoring of the condition of bridges. By 
eliminating the effects of dynamic loads, the data can 

represent the response of the structure to dead and thermal 

loads only, offering a promising tool for identifying damage. 

To date, previous research has not fully addressed the 

complexity of systems where beams and cables are coupled 

and rest on translational elastic supports while being subjected 

to variations in position, stiffness, and number of elastic 

supports. This gap in research is particularly significant as it 

could provide essential insights into global structural 

behavior, which is vital for the development of active 

monitoring systems tailored to such structures. 

With this motivation, the present study focuses on 
examining a cable-stayed beam supported by elastic supports. 

Firstly, the study begins with the analysis of free vibrations of 

a double-cabled beam with different clamped-clamped, 

clamped-simply supported, and simply supported beam 

configurations using an eigenvalue problem approach. The 

Newton-Raphson algorithm is implemented to handle 

boundary and continuity conditions. 

Next, the study moves on to a cable-stayed bridge with 

two cables and elastic supports. A series of parametric 

analyses is conducted to evaluate the impact of these supports 

on vibration reduction. Various stiffness, positioning, and 
number of support configurations are explored, demonstrating 

the value of elastic supports in enhancing the dynamic 

performance and robustness of cable-stayed structures. 

The objective of this study is to address the identified 

gaps in the current literature by providing an in-depth analysis 

of the dynamic behavior of cable-stayed beams, with 

particular attention to the effects of elastic supports. The 

results obtained can serve as a foundation for the future 

development of monitoring and structural optimization 

systems, thus contributing to the design of safer and more 

efficient structures. 

2. Elastic Support 
Bridge bearings play a pivotal role in the dynamic 

behavior of bridges, particularly in the realm of mechanical 

vibrations. These devices, often regarded as elastic supports, 

enable structures to bear vertical loads while allowing 

horizontal movements and rotations necessary to 

accommodate deformations and thermal expansions. Elastic 
supports can be composed of various materials and 

mechanisms, such as neoprene pads, pot bearings, or disc 

bearings, which offer varying degrees of stiffness and 

flexibility. By optimizing support rigidity, it is possible to 

reduce internal stresses and enhance the durability and 

stability of the structure. 

 

These devices balance the necessary rigidity to support 

vertical loads and the flexibility to allow for anticipated 

deformations, utilizing combinations of steel plates and 

rubber. Including the rigidity of the bearings in structural 
calculation models is essential for precise analysis, especially 

in contexts where these supports can help reduce forces. 

 

Accurate analysis and modeling of elastic supports are 

crucial for predicting the vibrational behavior of bridges under 

diverse loading conditions. This enables the design of safer 

and more resilient infrastructure. Parametric studies of the 

vibrations of a multi-cable-stayed beam resting on elastic 

supports offer valuable insights into understanding the 

influence of support properties on the natural frequencies and 

vibration modes of the structure. 

 
Fig. 1 Illustration of an elastomeric bearing (elastic support) in a cable-stayed brid
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Fig. 2 Configurations of multiple cable-stayed beams with multiple elastic supports under thermal loads 

 

3. Problem Formulation 
3.1. Basic Configuration and Hypotheses  

In this article, we present a simplified model of a cable-

stayed bridge deck using a beam with multiple cables (as 

illustrated in Figure 2). This model focuses on analyzing in-

plane movements within the deck. The beam ends are simply 

supported, and each cable is anchored to the rigid tower at its 

upper end and connected to the beam at its other end, 

designated as junctions 𝑠𝑗 . The different beam support 

scenarios that will be considered in the first section of the 

work include Clamped-Clamped (CC), Clamped-Simply 

supported (CS), and Simply Supported (SS) at both end 

configurations. These cables are inclined at an angle 𝜃 relative 

to the horizontal plane. To account for the flexibility of the 

bridge supports, the beam is modeled with translational elastic 

supports of stiffness 𝐾𝑡𝑖(𝑖 = 1, 2, . . . , 𝑛) at mid-span and both 

ends. The junctions effectively divide the beam into individual 

segments, each modeled as a separate beam element 𝑖. The 

entire structure is subjected to a uniform thermal load due to a 

temperature change ∆𝑇 = 𝑇 − 𝑇0 , where ∆𝑇 represents the 

difference between the current temperature 𝑇 and a reference 

temperature 𝑇0. While real bridges experience thermal 

gradients across the depth of the beam, such complexities are 

not considered in this simplified model for better tractability.  

The cable displacement components precisely describe 
the static equilibrium configuration of this model of beam 

𝑢𝑐𝑗 ,  𝑣𝑐𝑗, 𝑤𝑐𝑗 (𝑗 = 1, 2, . . . , 𝑛), and by the transverse 

displacements of the beam   𝑣𝑏𝑖 (𝑖 = 1, 2, . . . , 𝑛), thereby 

emphasizing the importance of the elements in understanding 

the system, as illustrated in Figure 2. 

 

It is assumed that the deformation of each cable follows a 

parabolic trajectory 𝑦𝑐𝑗 = 4𝑑𝑐𝑗[𝑥𝑐𝑗/𝑙𝑐𝑗 − (𝑥𝑐𝑗/𝑙𝑐𝑗)2], where 

the deflection ratio 𝑑𝑐𝑗 relative to the cable length 𝑙𝑐𝑗 is less 

than 1/10 .  

 

The towers in which the cables are anchored are 

considered rigid due to minimal vibrations affecting them, 

which has been confirmed by experimental tests and finite 

element analysis [11]. Given the high stiffness ratio (axial to 

flexural) during transverse vibrations, the axial displacement 

of the beam is negligible, as demonstrated by 𝐸𝑏𝐴𝑏/𝑙𝑏 >>
48𝐸𝑏𝐴𝑏/𝑙𝑏

3. Considering the minimal impact of the horizontal 

component of cable tension on the overall behavior of the 

system [22], this component can be disregarded. Furthermore, 
the hypotheses presented in  [22] are retained for this analysis. 

 Material Hypothesis and Linear Behavior: The cables and 

the beam are assumed to behave linearly and elastically, 

with a proportional relationship between stress and 

deformation. 

 Description of Axial Deformations of Cables: Lagrangian 

deformation of the median line is used to describe the 

elongation of the cables. 

 Simplifications Concerning the Cables: Longitudinal inertia 

forces, stiffnesses related to flexure, torsion, and shear of 

the cables are neglected. 
 Simplifications Concerning the Beam: For the beam, axial 

deformations, torsional and shear deformations, as well as 

geometric nonlinearities, are neglected. 

 

3.2. Equations of Motion and Boundary Conditions 

3.2.1. Beams Suspended by Two Cables 

In accordance with the assumptions mentioned above, 

Hamilton's principle is employed to derive the equations of 

motion for the composite system in the plane, following 

appropriate reduction. 

𝑚𝑏𝑖
𝜕2𝑣𝑏𝑖

∗ (𝑥𝑖)

𝜕𝑡2 + 𝜉𝑏𝑖
∗ 𝜕𝑣𝑏𝑖(𝑥𝑖)

𝜕𝑡
+ 𝐸𝑏𝑖𝐼𝑏𝑖𝑣𝑏𝑖

𝑖𝑣∗
(𝑥𝑖) =

0 where 𝑠𝑖−1 < 𝑥𝑖 < 𝑠𝑖 

 

𝑚𝑐𝑗

𝜕2𝑣𝑐𝑗
∗

𝜕𝑡2
+ 𝜉𝑐𝑗

∗
𝜕𝑣∗

𝑐𝑗

𝜕𝑡
− [𝐻𝑐𝑗

𝜕2𝑣𝑐𝑗
∗

𝜕𝑥𝑐𝑗
2

+ 𝐸𝑐𝑗𝐴𝑐𝑗(
𝜕2𝑦𝑗

∗

𝜕𝑥𝑐𝑗
2

+
𝜕2𝑣𝑐𝑗

∗

𝜕𝑥𝑐𝑗
2 )𝑒𝑗

∗(𝑡)] = 0 

(1) 

 

𝑒𝑐𝑗 represents the uniform dynamic elongation of cable 𝑗 : 

𝑒𝑗
∗(𝑡) =

𝑢𝑐𝑗
∗ (𝑙𝑐𝑗, 𝑡)

𝑙𝑐𝑗

+
1

𝑙𝑐𝑗

∫ (
𝜕𝑦𝑗

∗

𝜕𝑥𝑗

 
𝜕𝑣𝑐𝑗

∗

𝜕𝑥𝑗

+
1

2
(

𝜕𝑣𝑐𝑗
∗

𝜕𝑥𝑗

)

2

) 𝑑𝑥𝑗
∗

𝑙𝑐𝑗

0

   

(𝑗 = 1, 2, … , 𝑛;  𝑖 = 1, 2, … , 𝑛 + 1)

 (2) 
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The terms 
𝜕2𝑣𝑐𝑗

∗

𝜕𝑡²
 and 

𝜕2𝑣𝑏𝑖
∗ (𝑥𝑖)

𝜕𝑡²
 represent the second 

derivatives with respect to time, while 𝑣𝑏𝑖
𝑖𝑣∗

 is the fourth 

derivative with respect to the coordinates; 
𝜕𝑦𝑗

∗

𝜕𝑥𝑗
,

𝜕2𝑦𝑗
∗

𝜕𝑥𝑐𝑗²
,

𝜕𝑣𝑐𝑗
∗

𝜕𝑥𝑗
 and 

 
𝜕2𝑣𝑐𝑗

∗

𝜕𝑥𝑐𝑗²
 respectively represent the first and second derivatives 

with respect to coordinates. 𝑚𝑐𝑗 , 𝜉𝑐𝑗
∗ , 𝑚𝑏𝑖  and 𝜉𝑏𝑖

∗  denote the 

unit mass and the damping coefficient of the cable 𝑗 and 

segment 𝑖. 𝐻𝑐𝑗 is the horizontal component of the initial 

tension of diagonal cable 𝑗 in the local coordinate system. 

𝐸𝑐𝑗 ,  𝐴𝑐𝑗 are the Young's modulus and the cross-sectional area 

of cable 𝑗.  𝐸𝑏𝑖 𝑎𝑛𝑑 𝐼𝑏𝑖 represent Young's modulus and the 

second moment of inertia in the plane for beam segment 𝑖. 
𝑒𝑗

∗(𝑡)  denotes the uniform dynamic elongation of cable 𝑗. 

 

The analysis is based on the assumption regarding the 

beam's end conditions, as discussed above. The upper end of 
the cable is assumed to be fixed to the bridge tower, while the 

lower end is connected to the beam. Consequently, the 

composite system must adhere to the continuity conditions 

and the boundary conditions presented above. 

𝑣𝑏1
∗ (𝑥𝑗 , 𝑡)|

𝑥𝑗=0,𝑡
= 𝑣𝑏(𝑛+1)

∗ (𝑥𝑗 , 𝑡)|
𝑥𝑗=𝑙𝑏 ,𝑡

 , 

𝜕²𝑣𝑏1
∗

𝜕𝑥𝑗
2  |

𝑥𝑗=0,𝑡

= 0, 𝑣𝑐𝑗
∗ (𝑥𝑗 , 𝑡)|

𝑥𝑗=0,𝑡
= 0, 

𝜕²𝑣𝑏𝑗
∗

𝜕𝑥𝑗
2  |

𝑥𝑗=𝑠𝑗
∗,𝑡

=
𝜕²𝑣𝑏(𝑗+1)

∗

𝜕𝑥𝑗
2  |

𝑥𝑗=𝑠𝑗
∗,𝑡

, 

𝜕𝑣𝑏𝑗
∗

𝜕𝑥𝑗

 |
𝑥𝑗=𝑠𝑗

∗ ,𝑡

=
𝜕𝑣𝑏(𝑗+1)

∗

𝜕𝑥𝑗

 |
𝑥𝑗=𝑠𝑗

∗,𝑡

, 

𝜕2𝑣𝑏(𝑛+1)
∗

𝜕𝑥𝑗
2  |

𝑥𝑗=𝑙𝑏,𝑡

= 0,  

𝑣𝑏𝑗
∗ (𝑥𝑗 , 𝑡)|

𝑥𝑗=𝑠𝑗
∗,𝑡

= 𝑣𝑏(𝑗+1)
∗ (𝑥𝑗 , 𝑡)|

𝑥𝑗=𝑠𝑗
∗,𝑡

, 

𝑢𝑐𝑗
∗ (𝑥𝑗 , 𝑡) 𝑠𝑖𝑛 𝜃 + 𝑣𝑐𝑗

∗ (𝑥𝑗, 𝑡) 𝑐𝑜𝑠 𝜃|
𝑥𝑗=𝑙𝑐𝑗,𝑡

= 𝑣𝑏𝑗
∗ (𝑥𝑗, 𝑡) |

𝑥𝑗=𝑠𝑗
∗ ,𝑡

, 

(𝑢𝑐𝑗
∗ (𝑥𝑗 , 𝑡) 𝑐𝑜𝑠 𝜃 − 𝑣𝑐𝑗

∗ (𝑥𝑗 , 𝑡) 𝑠𝑖𝑛 𝜃)|
𝑥𝑗=𝑙𝑐𝑗 ,𝑡

= 0, 

𝑢𝑐𝑗
∗ (𝑥𝑗, 𝑡)|

𝑥𝑗=𝑙𝑐𝑗,𝑡
= 𝑣𝑏𝑗

∗ (𝑥𝑗, 𝑡) 𝑠𝑖𝑛 𝜃𝑗|
𝑥𝑗=𝑠𝑗

∗,𝑡
, 

𝑣𝑐𝑗
∗ (𝑥𝑗, 𝑡)|

𝑥𝑗=𝑙𝑐𝑗,𝑡
= 𝑣𝑏𝑗

∗ (𝑥𝑗 , 𝑡) 𝑐𝑜𝑠 𝜃𝑗|
𝑥𝑗=𝑠𝑗

∗,𝑡
, 

(𝑗 = 1, 2, … , 𝑛) 

(3) 

The application of Hamilton's principle of variation [7] 

also allows for the derivation of the following mechanical 

boundary conditions:  

𝐸𝑏𝑗𝐼𝑏𝑗

𝜕3𝑣𝑏𝑗
∗ (𝑠𝑗

∗, 𝑡)

𝜕𝑥𝑗
∗3

− 𝐸𝑏(𝑗+1)𝐼𝑏(𝑗+1)

𝜕3𝑣𝑏(𝑗+1)
∗ (𝑠𝑗

∗, 𝑡)

𝜕𝑥𝑗
∗3

= 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗
∗ (𝑡) sin 𝜃𝑗 + [𝐻𝑐𝑗  

𝜕𝑣𝑐𝑗
∗ (𝑙𝑐𝑗 , 𝑡)

𝜕𝑡
 

+ 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗
∗ (𝑡)(

𝜕𝑣𝑐𝑗
∗ (𝑙𝑐𝑗 , 𝑡)

𝜕𝑥𝑐𝑗

+
𝜕𝑦𝑐𝑗

∗ (𝑙𝑐𝑗)

𝜕𝑥𝑐𝑗

 )] cos 𝜃𝑗    

(𝑗 = 1, 2, … , 𝑛) 

(4) 

To reach more general conclusions, the following 
dimensionless variables are introduced: 

𝑥𝑗 =
𝑥𝑗

∗

𝑙𝑐𝑗

, 𝜏 = 𝜔0𝑡, 𝑦𝑖
𝑦𝑗

∗

𝑙𝑐𝑗

, 𝑢𝑗 =
𝑢𝑗

∗

𝑙𝑐𝑗

, 𝑣𝑗 =
𝑣𝑗

∗

𝑙𝑐𝑗

, 

𝛾𝑗 =
𝑙𝑏

𝑙𝑐𝑗

, 𝑠𝑗 =
𝑠∗

𝑙𝑏

, 𝜉𝑐𝑗 =
𝜉𝑐𝑗

∗

𝑚𝑐𝑗𝜔0

, 𝑑𝑗 =
𝑑𝑗

∗

𝑙𝑐𝑗

, 

 𝜇 =
𝐸𝑐𝐴𝑐

𝐻𝑐

, 𝛽𝑏
4 =

𝑚𝑏𝑙𝑏
4𝜔0

2

𝐸𝑏𝐼𝑏

, 𝜉𝑏𝑖 =
𝜉𝑏𝑖

∗

𝑚𝑏𝑖𝜔0

, 

 𝛽𝑐
2 =

𝑚𝑐𝑙𝑐
2𝜔0

2

𝐻𝑐

, 𝜒 =
𝐸𝑏𝐼𝑏

𝑙𝑏
2𝐸𝑐𝐴𝑐

, 𝜇 𝑗 =
𝐸𝑐𝑗𝐴𝑐𝑗

𝐻𝑐𝑗

,  

(𝑗 = 1, 2, … , 𝑛; 𝑖 = 1, 2, … , 𝑛 + 1) 

(5) 

The introduction of dimensionless variables allows for 

the reformulation of Equations (1) to (4) in a dimensionless 

form. By recasting the equations in dimensionless terms, more 

general and unit-independent equations are obtained, which 

facilitates the interpretation of results and comparison with 

other studies in the field. 

 

𝛽𝑏𝑖
4 (

𝜕2𝑣𝑏𝑖

𝜕𝑡2
+ 𝜉𝑏𝑖

𝜕𝑣𝑏𝑖

𝜕𝑡
) +

𝜕4𝑣𝑏𝑖

𝜕𝑥𝑖
4 = 0 

𝛽𝑐𝑗
2 (

𝜕2𝑣𝑐𝑗

𝜕𝑡2
+ 𝜉𝑏𝑗

𝜕𝑣𝑏𝑗

𝜕𝑡
) −

𝜕4𝑣𝑐𝑗

𝜕𝑥𝑐𝑗
4 − 𝜇𝑒 

(
𝜕3𝑦𝑐𝑗

𝜕𝑥𝑐𝑗
3 +

𝜕3𝑣𝑐𝑗

𝜕𝑥𝑐𝑗
3 ) = 0 

(𝑗 = 1, 2, … , 𝑛; 𝑖 = 1, 2, … , 𝑛 + 1) 

(6) 

The expression for the uniform dynamic elongation of the 

cable can be derived using the boundary conditions of 

Equation (3) as follows: 

𝑒𝑗 = 𝑣𝑐𝑗(1, 𝑡) 𝑡𝑎𝑛 𝜃𝑗 (7) 
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+ ∫ (
𝜕𝑦𝑐𝑗

𝜕𝑥𝑗

𝜕𝑣𝑐𝑗

𝜕𝑥𝑗

+
1

2
(

𝜕𝑣𝑐𝑗

𝜕𝑥𝑗

)

2

)  𝑑𝑥𝑗

1

0

 

(𝑗 = 1, 2, … , 𝑛) 

In the context of this analysis, the boundary conditions are 

formulated in dimensionless terms as follows: 

𝑣𝑏1(0, 𝑡) = 𝑣𝑏𝑚(1, 𝑡) = 0, 

𝜕2𝑣𝑏1

𝜕𝑥𝑗
2 |

𝑥𝑗=0,𝑡

= 0,  
𝜕2𝑣𝑏𝑚

𝜕𝑥𝑗
2 |

𝑥𝑗=1,𝑡

= 0, 

𝜕𝑣𝑏𝑗

𝜕𝑥𝑗

|
𝑥𝑗=𝑠𝑗,𝑡

=
𝜕𝑣𝑏(𝑗+1)

𝜕𝑥𝑗

|
𝑥𝑗=𝑠𝑗,𝑡

, 

𝑣𝑏𝑗(𝑠𝑗 , 𝑡) = 𝑣𝑏(𝑗+1)(𝑠𝑗 , 𝑡), 𝑣𝑐𝑗(0, 𝑡) = 0, 

𝜕2𝑣𝑏𝑗

𝜕𝑥𝑗
2 |

𝑥𝑗=𝑠𝑗,𝑡

=
𝜕2𝑣𝑏(𝑗+1)

𝜕𝑥𝑗
2 |

𝑥𝑗=𝑠𝑗,𝑡

, 

𝑢𝑐𝑗(1, 𝑡) 𝑠𝑖𝑛 𝜃𝑗 + 𝑣𝑐1(1, 𝑡) 𝑐𝑜𝑠 𝜃𝑗 = 𝑣𝑏𝑗(𝑠𝑗 , 𝑡), 

𝑣𝑐𝑗(1, 𝑡) = 𝑣𝑏𝑗(𝑠𝑗 , 𝑡) 𝑐𝑜𝑠 𝜃𝑗 , 

𝐸𝑏𝑗𝐼𝑏𝑗

𝜕3𝑣𝑏𝑗(𝑠𝑗 , 𝑡)

𝜕𝑥𝑗
3 − 𝐸𝑏(𝑗+1)𝐼𝑏(𝑗+1)

𝜕3𝑣𝑏(𝑗+1)(𝑠𝑗 , 𝑡)

𝜕𝑥𝑗
3

= 

 𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗(𝑡) 𝑠𝑖𝑛 𝜃𝑗 + (𝐻𝑐𝑗

𝜕𝑣𝑐𝑗(1,𝑡)

𝜕𝑡
+

𝐸𝑐𝑗𝐴𝑐𝑗𝑒𝑐𝑗(𝑡) (
𝜕𝑣𝑐𝑗(1,𝑡)

𝜕𝑥𝑗
+

𝜕𝑦𝑐𝑗(1,𝑡)

𝜕𝑥𝑗
)) 𝑐𝑜𝑠 𝜃𝑗 

 

 

 

 

(8) 

By simplifying the differential equation of the cable's 

motion and neglecting the higher-order terms and the 

nonlinear squared terms in the integral of the uniform dynamic 

elongation of the cable 𝑒𝑐𝑗(𝑡), the equations for the undamped 

free vibrations of the cable and the beam are obtained as 

follows [23] : 

𝛽𝑐𝑗
2 𝜕²𝑣𝑐𝑖

𝜕𝑡²
−

𝜕²𝑣𝑐𝑖

𝜕𝑥𝑐𝑗
2 − 𝜇�̂�𝑗

𝜕²𝑦𝑐𝑖

𝜕𝑥𝑐𝑗
2 = 0 

𝛽𝑏𝑖
4 𝜕2𝑣𝑏𝑖

𝜕𝑡2
+

𝜕2𝑣𝑏𝑖

𝜕𝑥𝑖
4 = 0 

(𝑗 = 1, 2, … , 𝑛; 𝑖 = 1, 2, … , 𝑚) 

(9) 

In the equation above: 

�̂�𝑗 = 𝑣𝑐𝑗(1, 𝑡) 𝑡𝑎𝑛 𝜃𝑗 + ∫ (
𝜕𝑦𝑐𝑗

𝜕𝑥𝑐𝑗

𝜕𝑣𝑐𝑗

𝜕𝑥𝑐𝑗

) 𝑑𝑥𝑗

1

0

 

(𝑗 = 1, 2, … , 𝑛) 

(10) 

By adopting a similar approach, the mechanical boundary 

conditions can be represented in a linear form, as illustrated 

below: 

𝐸𝑏𝑗𝐼𝑏𝑗

𝑙𝑏
2

𝜕3𝑣𝑏𝑗

𝜕𝑥𝑗
3 (𝑠𝑗 , 𝑡)

−
𝐸𝑏(𝑗+1)𝐼𝑏(𝑗+1)

𝑙𝑏
2  

𝜕3𝑣𝑏(𝑗+1)

𝜕𝑥𝑗
3 (𝑠𝑗 , 𝑡)

= 𝐸𝑐𝑗𝐴𝑐𝑗 �̂�𝑐𝑗(𝑡) 𝑠𝑖𝑛 𝜃𝑗

+ [𝐻𝑐𝑗

𝜕𝑣𝑐𝑗

𝜕𝑡
(1, 𝑡)

+ 𝐸𝑐𝑗𝐴𝑐𝑗�̂�𝑐𝑗(𝑡)
𝜕𝑦𝑐𝑗

𝜕𝑥𝑐𝑗

(1, 𝑡)] 𝑐𝑜𝑠 𝜃𝑗 

(11) 

Previous research has revealed the susceptibility of 

asymmetric bridges to damage induced by vibrations. Indeed, 

the concentration of vibratory energy on a limited number of 

cables can occur under certain circumstances when the 

excitation frequencies are close to the natural frequencies of 

localized modal shapes. 

 

As a result, this work utilizes a model of a symmetric 

double-cable beam. Based on the theoretical principles 

previously discussed and considering a symmetrical 
configuration of cables anchored at one-third of the beam 

length with an angle of 30 degrees, the following variable 

substitutions will be made: 

𝐻𝑐𝑗 = 𝐻𝑐, 𝑑𝑗 = 𝑑, 𝜃𝑗 = 𝜃, 𝑚𝑐𝑗 = 𝑚𝑐 , 𝛾𝑐𝑗 = 𝛾𝑐 , 

𝐸𝑐𝑗𝐴𝑐𝑗 = 𝐸𝑐𝐴𝑐 , 𝑙𝑐𝑗 = 𝑙𝑐 , 𝑚𝑏𝑖 = 𝑚𝑏 ,  

𝐸𝑏𝑖𝐼𝑏𝑖 = 𝐸𝑏𝐼𝑏 , 

 (𝑗 = 1, 2;  𝑖 = 1, 2, 3) 

(12) 

Within this equation, 𝑑𝑗  denotes the dimensionless 

deflection of the 𝑗-th cable. By employing the method of 

separation of variables, we formulate the following 

relationship: 

𝑣𝑐𝑗 = 𝑤𝑐𝑗(𝑥)𝑒𝑖(𝜔 𝜔0)⁄ 𝜏; (𝑗 = 1, 2) 

𝑣𝑏𝑖 = 𝑤𝑏𝑖(𝑥)𝑒𝑖(𝜔 𝜔0)⁄ 𝜏  ; (𝑖 = 1, 2, 3) 

(13) 

Additionally, the following equality can be 

established:𝑥𝑐 = 𝑠 = 𝑥 

After substituting Equation (13) into the linear vibration 

equations of the cable and beam, we obtain [24]: 

𝛽𝑐𝑗
2𝑤𝑐𝑗 +

𝜕2𝑤𝑐𝑗

𝜕𝑥𝑐𝑗
2 = 8𝜇𝑑�̂�𝑗  (𝑗 = 1, 2) 

−𝛽𝑏𝑖
4𝑤𝑏𝑖 +

𝜕4𝑤𝑏𝑖

𝜕𝑥𝑖
4 = 0 (𝑖 = 1, 2, 3) 

(14) 

In which: 
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êj = wcj(1) tan θj + ∫ (
∂ycj

∂xcj

∂wcj

∂xcj

) dxcj

1

0

 

(j = 1, 2) 

(15) 

The incorporation of linear and rotational elastic supports 

at both ends of the beam allows for the analysis of different 

structural configurations by varying the values of the 

rotational and translational stiffness constants,  

𝐾T1, 𝐾𝑇2, 𝐾𝜃1 and 𝐾𝜃2. These configurations include the 

fixed-fixed, fixed-simply supported, and simply supported at 

both ends cases. The boundary conditions for a beam segment 

supported by linear and rotational elastic supports on each side 

are detailed in the previous study. 

∂3wb1

∂xi
3 |

xi=0

= −𝐾T1 wb1|xi=0 

∂²wb1

∂xi
2 |

xi=0

= 𝐾𝜃1
∂wb1

∂xi

|
xi=0

 

∂3wb3

∂xi
3 |

xi=1

= 𝐾T2 wb3|xi=1 

∂²wb3

∂xi
2 |

xi=1

= −𝐾𝜃2
∂wb3

∂xi

|
xi=1

 

(16) 

Furthermore, the associated boundary conditions are 

derived: 

wc1(0) = wc2(0) = 0,  

 wc1(1) = γ1wb1(s1) cos θ, 

 wc2(1) = γ2wb2(s2) cos θ, 

∂3wb1

∂xi
3 |

xi=0

= −𝐾T1 wb1(0) 

∂²wb1

∂xi
2 |

xi=0

= 𝐾𝜃1
∂wb1

∂xi

|
xi=0

 

∂3wb3

∂xi
3 |

xi=1

= 𝐾T2 wb3(1) 

∂²wb3

∂xi
2 |

xi=1

= −𝐾𝜃2
∂wb3

∂xi

|
xi=1

 

 wb1(s1) = wb2(s1),
∂wb1

∂xi

|
xi=s1

=
∂wb3

∂xi

|
xi=s2

, 

∂²wb1

∂xi
2 |

x1=s1

=
∂²wb2

∂xi
2 |

xi=s2

, 

(17) 

wb2(s2) = wb3(s2),
∂wb2

∂xi

|
xi=s2

=
∂wb3

∂xi

|
xi=s2

, 

 

∂²wb2

∂xi
2 |

x1=s2

=
∂²wb3

∂xi
2 |

xi=s2

, 

 

χ [
∂3wb1

∂xi
3 |

xi=s1

−
∂3wb2

∂xi
3 |

xi=s1

]

− (sin θ +
∂y1

∂xi
|

xi=1

cos θ1) ê1

−
cos θ

μ

∂wc1

∂xi
|

xi=1

= 0, 

χ [
∂3wb2

∂xi
3 |

xi=s2

−
∂3wb3

∂xi
3 |

xi=s2

]

− (sin θ +
∂y2

∂xi
|

xi=1

cos θ1) ê2

−
cos θ

μ

∂wc2

∂xi
|

xi=1

= 0, 

By analyzing Equations (14), their solutions can be 
expressed as follows: 

𝑤𝑏𝑖(𝑥) = 𝐴𝑖𝑏 𝑐𝑜𝑠 𝛽𝑏𝑥 +  𝐵𝑖𝑏 𝑠𝑖𝑛 𝛽𝑏𝑥
+ 𝐶𝑖𝑏 𝑐𝑜𝑠ℎ 𝛽𝑏𝑥
+  𝐷𝑖𝑏 𝑠𝑖𝑛ℎ 𝛽𝑏𝑥  (𝑖 = 1, 2, 3) 

𝑤𝑐𝑗(𝑥) = 𝐸𝑗𝑐 𝑠𝑖𝑛 𝛽𝑐𝑥 +  𝐹𝑗𝑐 𝑐𝑜𝑠 𝛽𝑐𝑥 + 𝐷𝑗𝑐  

(𝑗 = 1, 2)  

(18) 

In the equation above: 

𝐷𝑗𝑐 =
8𝜇𝑑�̂�𝑗

𝛽𝑐
2  

(19) 

By substituting Equation (18) into Equation (14), we 

arrive at: 

�̂�𝑗 = tan 𝜃 (𝐸𝑗𝑐 sin 𝛽𝑐 +  𝐹𝑗𝑐 cos 𝛽𝑐 + 𝐷𝑗𝑐) +

∫ 4𝑑(1 − 2𝑥𝑐)𝛽𝑐(𝐸𝑗𝑐 cos 𝛽𝑐 𝑥 −  𝐹𝑗𝑐 sin 𝛽𝑐
1

0
)𝑑𝑥𝑐

=  (𝑠𝑖𝑛𝛽𝑐 tan 𝜃 − 4𝑑 (𝑠𝑖𝑛𝛽𝑐 +
2(𝑐𝑜𝑠𝛽𝑐−1)

𝛽𝑐
)) 𝐸𝑗𝑐

+𝑡𝑎𝑛𝜃𝐷𝑗𝑐

+ (𝑐𝑜𝑠𝛽𝑐𝑡𝑎𝑛𝜃 − 4𝑑 (1 + 𝑐𝑜𝑠𝛽𝑐 −
2𝑠𝑖𝑛𝛽𝑐

𝛽𝑐
)) 𝐹𝑗𝑐

  (20) 

The following equation provides an expression equivalent 

to Equation (19): 
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𝐷𝑗𝑐 =
8𝜇𝑑�̂�𝑗

𝛽𝑐
2 =

8𝜇𝑑

𝛽𝑐
2 − 8𝜇𝑑𝑡𝑎𝑛𝜃

(�̂�𝑗 − 𝑡𝑎𝑛𝜃𝐷𝑗𝑐) 
(21) 

By substituting Equation (18) into Equation (20), we 

obtain: 

𝐷𝑗𝑐 = 𝜂𝑗1𝑐𝐸𝑗𝑐 + 𝜂𝑗2𝑐𝐹𝑗𝑐 (22) 

In the following equation: 

𝜂𝑗1𝑐 =
8𝜇𝑑

𝛽𝑐
2 − 8𝜇𝑑𝑡𝑎𝑛𝜃

𝑠𝑖𝑛𝛽𝑐𝑡𝑎𝑛𝜃

− 4𝑑 (𝑠𝑖𝑛𝛽𝑐 +
2(𝑐𝑜𝑠𝛽𝑐 − 1)

𝛽𝑐

) 

𝜂𝑗2𝑐 =
8𝜇𝑑

𝛽𝑐
2 − 8𝜇𝑑𝑡𝑎𝑛𝜃

(𝑐𝑜𝑠𝛽𝑐𝑡𝑎𝑛𝜃

− 4𝑑 (1 + 𝑐𝑜𝑠𝛽𝑐 −
2𝑠𝑖𝑛𝛽𝑐

𝛽𝑐

)) 

(𝑗 = 1, 2) 

(23) 

3.2.2. Elastic Support 
Integrating translational elastic supports into a suspended 

beam system represents a promising approach to enhancing 

the dynamic performance and versatility of suspended 

structures. The ability of elastic supports to absorb and 

dissipate energy, isolate vibrations, and exhibit nonlinear 

damping characteristics makes it a valuable addition to a wide 

range of engineering applications. 

𝜕4𝑤𝑏(𝑥)

𝜕𝑥4
+ 𝛽4𝑤𝑏(𝑥) = 0 

(24) 

The four remaining boundary conditions [25] at the 

intermediate elastic support at 𝑥1 = 𝜇 𝑎𝑛𝑑 𝑥2 = 𝜈 are: 

𝑤𝑏𝑘(𝑥𝑖)|𝑥𝑘=𝜇 = 𝑤𝑏𝑘(𝑥𝑘)|𝑥𝑘=𝜈 , 

𝑑𝑤𝑏𝑘(𝑥𝑘)

𝑑𝑥𝑘
|

𝑥𝑘=𝜇

=
𝑑𝑤𝑏𝑘(𝑥𝑘)

𝑑𝑥𝑘
|

𝑥𝑘=𝜈

, 

𝑑2𝑤𝑏𝑘(𝑥𝑘)

𝑑𝑥𝑘
2 |

𝑥𝑘=𝜇

=
𝑑2𝑤𝑏𝑘(𝑥𝑖)

𝑑𝑥𝑘
2 |

𝑥𝑘=𝜈

, 

𝑑3𝑤𝑏𝑘(𝑥𝑘)

𝑑𝑥𝑘
3 |

𝑥𝑘=𝜇

=
𝑑3𝑤𝑏𝑘(𝑥𝑘)

𝑑𝑥𝑘
3 |

𝑥𝑘=𝜈

+ 𝐾𝑡𝑘𝑤𝑏𝑘(𝑥𝑘)|𝑥𝑘=𝜇 , 

(𝑘 = 1, 2)  

(25) 

Equation (24) is satisfied by the following expression for 
the deflections of the spans: 

𝑤𝑏𝑖𝑘(𝑥) = 𝐴𝑘 cos 𝛽𝑖𝑥 + 𝐵𝑘 sin 𝛽𝑖𝑥 + 𝐶𝑘 cosh 𝛽𝑖𝑥
+  𝐷𝑘 sinh 𝛽𝑖𝑥 

 (𝑘 = 1, 2, … , 𝑛)  

(26) 

 

4. Comparative Study 
4.1. Symmetric Cable-Stayed Beam 

Based on the theoretical principles previously discussed 

in the formulation of the problem, by integrating the boundary 

conditions and continuity conditions of Equation (17) into 

Equations (18), a system of 16 linear equations is established. 

This system concerns the coefficients 𝐴𝑖𝑏, 𝐵𝑖𝑏, 𝐶𝑖𝑏, 𝐷𝑖𝑏, 

𝐸𝑗𝑐  𝑎𝑛𝑑 𝐹𝑗𝑐  where (𝑖 = 1,2,3, 𝑗 = 1,2 ). For this system to 

have a solution, the determinant of its coefficient matrix must 

be zero. This condition allows for the derivation of the 

characteristic equation of the combined structure, as shown in 
Equation (27). 

[𝑇]{𝑋} = 0 (27) 

Within this configuration, the elements 𝑡𝑚,𝑛  (where 𝑚 

and 𝑛 take integer values between 1 and 16 inclusively) of the 

matrix, 𝑇 correspond to the coefficients of the variables 𝐴𝑖𝑏, 

𝐵𝑖𝑏, 𝐶𝑖𝑏, 𝐷𝑖𝑏, 𝐸𝑗𝑐, 𝐹𝑗𝑐 where (𝑖 = 1,2,3, 𝑗 = 1,2 ) involved in 

the equations mentioned above. 

The determination of the frequency 𝜔 is carried out by 

setting the determinant of the coefficient matrix [𝑇] to zero. 

By using the Newton-Raphson method to determine the 

frequency 𝜔, the vector of coefficients is easily obtained by 

combining it with the boundary conditions. The mode shapes 

of each order then result from this determination. 

The representation of the vibration modes of a beam is 

achieved using piecewise functions, such as: 

𝑤𝑏𝑖(𝑥) = 𝐴𝑖𝑏 cos 𝛽𝑏𝑥𝑖 + 𝐵𝑖𝑏 sin 𝛽𝑏𝑥𝑖

+ 𝐶𝑖𝑏 cosh 𝛽𝑏𝑥𝑖 +  𝐷𝑖𝑏 sinh 𝛽𝑏𝑥𝑖 

𝑠𝑖−1 < 𝑠𝑖 < 𝑠1, 𝑠1 = 0, 𝑠3 = 1, 

(𝑖 = 1, 2, 3) 

(28) 

Taking practical engineering constraints into account, the 

following physical parameters have been selected. 
 

To validate the theory presented in this article, a double 
cable-stayed beam model was developed using a 

computational program, employing the same parameters as 

those used in studies conducted in the literature. In addition to 

the previous work on the simply supported beam case, the 

present study includes the Clamped-Clamped (CC) and 

Clamped-Simply supported (CS) beam cases.  
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Table 1. Physical parameters (cable and beam) 

Cable Beam 

Material 
CFRP (Carbon Fiber 

Reinforced Polymer) 
Type 

Box-Girder Beam in 

Reinforced Concrete 

Linear Mass (𝐤𝐠/𝐦) 10,4 Linear Mass (𝐤𝐠/𝐦) 4,4 ∗ 104 

Cross-Sectional Area (𝐦𝟐) 6,273 ∗ 10−3 Cross-Sectional Area (𝐦𝟐) 16,3 

Elastic Modulus (𝐆𝐏𝐚) 210 Elastic Modulus (𝐆𝐏𝐚) 34,5 

Initial Force (𝐌𝐍) 1 
Moment of Inertia of the 

Section (𝐦𝟒) 
9,8 

Inclination Angle (degree) 30 Length (𝐦) 300 

Table 2. Comparison of the first six natural frequencies of double cable-stayed beams in SS, CS, and CC cases 

Natural Frequency 1st 2nd 3rd 4th 5th 6th 𝑲𝐓𝟏 𝑲𝐓𝟐 𝑲𝜽𝟏 𝑲𝜽𝟐 

Present Study (SS) 0,1362 0,2310 0,4354 0,7849 1,2162 1,3428 

0 0 0 0 Theoretical Value (SS) [2] 0,1355 0,2307 0,4354 0,7848 1,2162 1,3503 

ANSYS (SS) [2] 0,1360 0,2307 0,4349 0,7840 1,2147 1,3436 

Present Study (CC) 0,1680 0,3370 0,5940 0,9850 1,4700 2,0440 ∞ ∞ ∞ ∞ 

Present Study (CS) 0,1480 0,2770 0,5140 0,8810 1,3360 1,3420 ∞ 0 ∞ 0 

 

A numerical approach was implemented in MATLAB to 

solve the system of equations resulting from the imposed 

boundary and continuity conditions. The iterative Newton-

Raphson method was used for this purpose. 

Using the same parameters as those defined in previous 

studies reported in the literature, Table 2 presents a 

comparison between the first six natural frequencies of a 

cable-stayed beam, obtained by applying the theory presented 

in this article, and those derived from numerical simulations 

performed with the finite element model mentioned in the 

literature. 

Table 2 provides a detailed analysis of the different cases 

comparing the frequency values obtained in this study with 

those referenced in sources [2], thereby highlighting the 

accuracy of recent data. The results demonstrate exceptional 
consistency, with negligible errors regarding the frequencies 

of the first ten modal shapes. This finding indicates that the 

analytical methods and strategies employed in this research 

are robust, offering results that are not only precise but also 

consistent with recognized knowledge in this field of study.  

The configuration of a beam's supports significantly 

impacts its natural frequencies. These frequencies represent 

the inherent vibrational modes of the beam and are crucial for 

understanding its dynamic behavior. Three main 

configurations are typically analyzed: Simply Supported (SS), 

Clamped-Clamped (CC), and Clamped-Simply supported 

(CS): 

 Simply Supported (SS): In this configuration, both ends 

of the beam are free to rotate and translate. This minimal 

constraint allows for the most significant bending 

deformation, resulting in the lowest natural frequencies 

among the three configurations. The absence of fixity 

minimizes the beam's stiffness, leading to lower energy 

barriers for vibration and, consequently, lower 

frequencies. 

 Clamped-Clamped (CC): Conversely, the CC 

configuration features both ends of the beam fixed, 
completely preventing any rotational or translational 

movement. This fixed-end condition offers the maximum 

level of constraint, significantly increasing the beam's 

overall stiffness. The higher stiffness translates to a 

greater energy requirement to initiate vibration, leading to 

the highest natural frequencies observed in the three 

configurations. 

 Clamped-Simply Supported (CS): The CS configuration 

presents an intermediate case between SS and CC. One 

end of the beam is fixed, providing substantial stiffness, 

while the other end is simply supported, allowing for 
some degree of rotation and translation. This combination 

results in natural frequencies that are higher than those of 

the SS configuration but lower than those of the CC 

configuration. The clamped end offers significant 

constraint, but the simply supported end allows for some 

modal flexibility, resulting in a compromise between the 

two extreme cases. 

 

The natural frequencies of the cable-stayed beam vary 

significantly based on the support conditions. The SS 

configuration exhibits the lowest natural frequencies due to 
minimal constraints, the CC configuration shows the highest 

natural frequencies owing to maximum constraints, and the 

CS configuration falls in between. Understanding these 

variations is crucial for designing and analyzing the dynamic 

behavior of cable-stayed beams in different structural 

applications. 

The first four mode shapes are essential (Figure 3). We 

present these primary shapes to enhance understanding and 

facilitate the comparison of their behavior. 
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(a-1) The 1st order mode (CC) (b-1) The 1st order mode (CS) (c-1) The 1st order mode (SS) 

 

 
(a-2) The 2nd order mode (CC) (b-2) The 2nd order mode (CS) (c-2) The 2nd order mode (SS) 

 

 
(a-3) The 3rd order mode (CC) (b-3) The 3rd order mode (CS) (c-3) The 3rd order mode (SS) 

 
(a-4) The 4th order mode (CC) (b-4) The 4th order mode (CS) (c-4) The 4th order mode (SS) 

Fig. 3 The first 4 mode shapes of a double cable-stayed beam



Mohamed Berjal et al.  / IJCE, 11(7), 1-19, 2024 

11 

The parametric analysis of the modal behaviors of the 

double cable-stayed beam model, particularly with regard to 

the studied configurations, provides a valuable tool for the 

design and analysis of these structures. By understanding the 

influence of support conditions on natural frequencies and 

vibration modes, engineers can optimize the dynamic 
performance of double cable-stayed beams and ensure their 

structural integrity under various loads. 

 

Understanding the variations in natural frequencies based 

on support configurations is crucial for the optimal design of 

double cable-stayed beams. By carefully selecting the support 

conditions, engineers can: 

 Achieve the desired natural frequencies for the structure. 

 Avoid potential resonance issues. 

 Optimize the dynamic performance of the beam. 

 Ensure the safety and reliability of the structure under 
different loading conditions. 

4.2. Analysis of Calculation Examples 

The impact of flexural rigidity on structural frequencies 

is depicted in Figure 4. This analysis of axial rigidity and 

flexural rigidity will be applied to a cable-beam system with a 

simply supported beam. A general trend of increasing 

frequencies across all modes with rising flexural rigidity is 

observed, particularly evident for higher-order modes. This 

relationship can be attributed to the concomitant increase in 

the moment of inertia 𝐼𝑏 of the cross-section with flexural 

rigidity, enhancing the structure's resistance to deformation. 
By holding the modulus of elasticity constant, the effect of 

flexural rigidity on frequencies can be examined in detail.  

 

The findings reveal a proportional rise in the frequencies 

of various modes with increasing flexural rigidity. This 

observation holds particular significance for vibration-prone 

structures, as high frequencies can substantially impact 

structural stability and performance. In cases where the 

moment of inertia 𝐼𝑏 of the cross-section is considerably low, 

both flexural rigidity and the relative axial rigidity of the 

member are also diminished. This scenario leads to a decrease 
in the frequencies of all modes, potentially rendering the 

structure more susceptible to vibrations. 

When analyzing a beam as a simple continuous beam with 

two supports, a direct relationship between its flexural rigidity 

and the frequencies of its vibration modes becomes evident. 

Higher flexural rigidity corresponds to an increase in 

frequencies.  
 

However, this relationship is not strictly linear. In 

scenarios where the moment of inertia 𝐼𝑏 of the cross-section 

is substantial, the beam's flexural rigidity experiences a 

significant rise, while the relative axial rigidity of the member 

remains comparatively low. This disparity mitigates the 
impact of beam rigidity on frequencies, consequently slowing 

down the growth of the frequency curves. 

 
Fig. 4 Effect of beam flexural rigidity on the system's first four 

frequencies 

This effect is particularly prominent for the frequencies 

associated with the lower vibration modes of the structure. 

This implies that slower vibration modes exhibit greater 

sensitivity to variations in flexural rigidity compared to faster 

vibration modes.  

 

In practical engineering projects, it is crucial to account 

for this phenomenon, as it can potentially lead to vibration 

issues within structures. Therefore, particular attention should 
be paid to flexural rigidity, especially for structures prone to 

significant vibrations.  

 

The analysis depicted in Figure 5 explores the impact of 

the axial rigidity of a tension member on the first four natural 

frequencies of a structural system. Utilizing the exceptional 

properties of Carbon Fiber-Reinforced Polymer (CFRP) 

materials, known for their lightweight nature, high strength, 

and a wide range of adjustable elasticity moduli, the study 

maintains a constant cross-section for the tension member 

while varying its axial rigidity by adjusting the elasticity 
modulus. As the analysis reveals, a progressive increase in the 

axial rigidity of the tension member translates into a gradual 

elevation of the frequencies of the system's various modes.  

Unlike the observation made in Figure 4, where the 

influence was primarily concentrated on lower-order vibration 

modes, the enhancement of axial rigidity leads to an overall 

increase in system stiffness, manifested by a rise in the 

frequencies of higher-order modes. Interestingly, the third 

natural frequency of the system remains virtually unchanged.  

This behavior can be attributed to the fact that the third 

mode, corresponding to a global bending mode, is less 
sensitive to variations in the axial rigidity of the tension 

member and consequently has minimal impact on the overall 

dynamic characteristics of the system. 
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The analysis sheds light on the intricate relationship 

between beam flexural rigidity and tension member axial 

rigidity in relation to structural safety. On the one hand, 

increasing the beam's flexural rigidity tends to diminish the 

influence of the member's axial rigidity and amplify the stress 

jump. On the other hand, as illustrated in Figure 4, the 
frequencies of each mode of the structure elevate with 

increasing beam flexural rigidity.  

This frequency increase is accompanied by a rise in the 

modal energies of each mode, resulting in enhanced 

transmission of axial energy and an exacerbation of structural 

safety concerns. Consequently, it is crucial to control beam 

flexural rigidity within reasonable limits to prevent fatigue 

issues due to high-frequency vibrations and ensure the 

structural safety of the beam.  

 
Fig. 5 Effect of beam axial rigidity on the system's first four frequencies 

The judicious utilization of CFRP materials with high 

elasticity and high strength can significantly improve the axial 

rigidity of tension members, thereby augmenting their 
capacity to withstand vibrations and deformations. Moreover, 

the enhancement of axial rigidity leads to a reduction of 

internal stresses within the beam, which diminishes the effects 

of bending on the supports of the tension member and 

decreases the shear forces borne by the beam. 

In summary, the analysis highlights the predominant 

influence of axial rigidity on natural frequencies and the 

structural safety of a beam. The employment of CFRP 

materials proves to be an effective solution for enhancing the 

axial rigidity of tension members and reinforcing the overall 

structural safety of the system. 
 

This section of the study is essential for demonstrating 

and validating the employed method as well as the chosen 

mathematical formulation. It aims to justify the use of this 

approach to address more concrete situations, particularly the 

analysis of beams supported by elastic supports, a common 

configuration in engineering. Elastic supports with varying 

stiffness and positioning represent these supports. 

5. Case Numerical Results and Discussions 
5.1. Case of Double Cable-Stayed Beam Supported by a 

Single Elastic Support  

A parametric study is conducted to evaluate the 

effectiveness of supports in reducing the structural vibrations 

of a cable-stayed beam. The objective is to determine the 

optimal positions of the supports to maximize structural 

stability. The proposed method relies on the demonstration of 

its accuracy and reliability through simplified cases, as 

described in previous references and comparisons.  
 

The application to more complex and practical cases is 

envisaged, with the aim of providing precise 

recommendations for the design and optimization of structures 

that minimize vibrations and maximize durability and safety. 

The continuation of this study involves examining a cable-

beam system with a simply supported beam. 

 

5.1.1. Parametric Study of a Double Cable-Stayed Beam, 

Supported by an Elastic Support Located at the Midpoint of 

the Beam with a Variable Stiffness 

The case under study involves a cable-stayed beam that is 
simply supported at both ends and supported by elastic 

supports with stiffness 𝐾𝑡1 placed in the middle of the beam 

(x = 0.5L). The dimensionless stiffness values range from 0 to 

1000. A parametric analysis is performed to determine the 

optimal position of the support that minimizes the beam's 

vibrations. 
 

Fig. 6 Configurations of a double cable-stayed beam supported by a single elastic support
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Table 3. Analysis of the first four natural frequencies of a double cable-stayed beam, supported by an elastic support with stiffness 𝑲𝒕𝟏 located at the 

midpoint of the beam 

Stiffness 
Frequencies 

Mode 1 Mode 2 Mode 3 Mode 4 

0 5,269409 6,845584 9,348907 12,592821 

10 5,309370 6,845800 9,356735 12,592884 

50 5,458432 6,846774 9,388008 12,593060 

100 5.622701 6.819242 9.387941 12.573431 

200 9,726650 12,595811 15,646078 18,622535 

1000 10,090200 12,599359 15,646078 18,622535 
 

 
Fig. 7 Curvatures corresponding to the deflection shapes of a simply supported beam with an elastic support located at 𝒙𝟏 = 𝟎. 𝟓𝐋 for different 

stiffnesses

In contrast to the first case examined in this study, the 
frequencies analyzed in this segment are dimensionless. The 

analysis reveals that as the value of the dimensionless stiffness 

increases, the natural frequencies of the four modes also 

increase. This result is significant because the elastic support 

adds stiffness to the system, thereby enhancing the overall 

rigidity of the structure. 

 

This increase in natural frequencies can be explained by 

the effect of the elastic support modeled by a translational 

elastic support placed in the middle of the beam. This support 

helps to reduce the amplitude of the vibrations. The decrease 
in amplitude leads to an increase in frequency, as the beam 

tends to vibrate at a higher frequency. 

Figure 7 demands an analysis of the curvatures based on 

the different stiffnesses of the elastic supports: 

 Black Curve (𝐾𝑡1 = 100): Minimal curvature at the 
center and support points, indicating minimal beam 

deflection. High support rigidity significantly reduces 

deflection, enhancing structural stability. 

 Red Curve (𝐾𝑡1 = 200): More pronounced curvature 
compared to the black curve, but still controlled. 

Moderate support rigidity balances flexibility and 

stability, allowing controlled deformations while 

maintaining structural stiffness. 

 Blue Curve (𝐾𝑡1 = 0): Most pronounced curvature, with 
high peaks at support points and maximum deflection at 

the center. The absence of support rigidity allows 

maximum deflection, which can be detrimental to 
structural stability. 

 

The results align with structural mechanics principles. 

Increased support rigidity reduces deflection and enhances 

overall stiffness, as expected. The curves clearly demonstrate 

the influence of support rigidity levels on beam deflections, 

validating theoretical principles. The study of the variation of 

the first four dimensionless natural frequencies as a function 

of the linear stiffness of the translational elastic support, 

located at a position of x = 0.5L, allows for a better 
understanding of the influence of elastic supports on the 

natural frequencies of a cable-stayed beam. 

5.1.2. Parametric Study of a Double Cable-Stayed Beam, 

Supported by an Elastic Support with a Variable Position 

The following methodology adopted involves placing the 

elastic support at different points along the beam, 

systematically varying its position.  

For each position of the elastic support, an analysis is 

performed to determine the natural frequencies of the four 

modes of vibration.
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Table 4. Analysis of the first four natural frequencies of a beam-stayed cable supported by an elastic support with a stiffness of 𝑲𝒕𝟏 = 𝟏𝟎𝟎, as a 

function of the elastic support position 

Position of 

Elastic Support 

Frequencies 

Mode 1 Mode 2 Mode 3A Mode 4 

0,25 9,342073 12,566342 15,711134 18,677227 

1/3 5,816707 6,736405 9,298534 12,550414 

0,5 5,458432 6,846774 9,388008 12,593060 

2/3 5,478216 6,953659 9,299228 12,596901 

0,75 5,409283 7,001665 9,346102 12,573411 

 

Fig. 8 Configurations of a double cable-stayed beam supported by multiple (two/three) elastic supports

 This result underscores the importance of structural 

stiffness in controlling vibrations. By increasing the stiffness 

of a structure, its natural frequencies can be elevated, shifting 

them out of the range of common excitation frequencies. This 

helps to minimize the risks of resonance and improve the 

overall vibrational performance of the structure. 

 

5.2. Case of a Double Cable-Stayed Beam Supported by 

Multiple Elastic Supports 

After examining the two scenarios of a double cable-
stayed beam supported by elastic support, where we varied the 

stiffness and position of the elastic support, it is essential to 

highlight that the first analysis focused on a simplified case 

with a single elastic support. However, in practical 

applications, structures may involve multiple support 

schemes, which complicate their dynamic behavior. Thus, to 

achieve designs that optimally meet practical requirements, it 

is crucial to conduct more in-depth analyses that consider 

these multiple support configurations. 

This configuration allows us to explore how the variation 

in the stiffness coefficients of these elastic supports influences 

the vibrational behavior of the beam.  

The primary objective is to determine how these 

variations affect the natural frequencies and modes of 

vibration of the beam, thereby providing crucial data for the 

development of more robust design solutions that are well-

suited to the real-world constraints of engineering structures. 

5.2.1. Parametric Study of a Double Cable-Stayed Beam, 

Supported by Two Elastic Supports with Variable Stiffness 
The following section of the study extends this approach 

by examining the behavior of a double cable-stayed beam 

supported by two elastic supports positioned symmetrically at 

relative positions of 1/3 and 2/3 of the beam's length (𝐿1/𝐿 =
1/3 and 𝐿3/𝐿 = 2/3).

Table 5. Analysis of the first four natural frequencies of a cable-stayed beam supported by two elastic supports with stiffness 𝑲𝒕𝟏 and 𝑲𝒕𝟑, positioned 

at L1/L = 1/3 and L3/L = 2/3, respectively 

Stiffness 
Frequencies 

Mode 1 Mode 2 Mode 3 Mode 4 

𝐾𝑡1 = 0, 𝐾𝑡3 = 0 5,26245 6,81466 9,29756 12,57275 

𝐾𝑡1 = 10, 𝐾𝑡3 = 0 5,27150 6,83003 9,30692 12,57497 

𝐾𝑡1 = 100, 𝐾𝑡3 = 100 5,35015 6,96964 9,39601 12,59705 

𝐾𝑡1 = 10, 𝐾𝑡3 = 1000 5,58825 7,65164 10,04704 12,85459 

𝐾𝑡1 = 100, 𝐾𝑡3 = 100 5,42587 7,08082 9,46714 12,61648 

𝐾𝑡1 = 10000, 𝐾𝑡3 = 1000 6,55999 10,27423 13,62499 15,71113 
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Fig.  9 Curvatures corresponding to the deflection shapes of a simply supported beam with two elastic supports located at 𝒙𝟏 = 𝟎. 𝟓𝐋 and 𝒙𝟐 =

𝟎. 𝟖𝐋 for different stiffnesses

Table 5 illustrates the dimensionless natural frequencies 

of a beam supported by two elastic supports placed 

symmetrically at positions(𝐿1/𝐿 = 1/3 and 𝐿3/𝐿 = 2/3). 
When adjusting the stiffness coefficients of these elastic 
supports, a notable variation in the frequencies is observed. 

This analysis reveals that increasing the stiffness of the elastic 

supports makes the structure more rigid. This increase in 

rigidity is attributable to the parallel arrangement of the elastic 

supports, where the total stiffness equals the sum of the 

stiffnesses of each elastic support. This aligns with the 

conclusions from Table 3, which indicated an increase in the 

structure's frequency as the stiffness of the elastic supports 

supporting the beam increased. 

Figure 9 requires a careful interpretation for a thorough 

analysis of the curvatures for different stiffnesses of the elastic 

supports:  

 Black Curve (𝐾𝑡1 = 𝐾𝑡3 = 200): The curvature is the 

lowest at the middle and support points, indicating 

minimal deflection of the beam. The high stiffness of the 
supports significantly reduces deflection, thereby 

increasing the overall rigidity of the structure. High 

support stiffness reduces deformations, which is 

beneficial for structures requiring increased stability.  

 Red Curve (𝐾𝑡1 = 𝐾𝑡3 = 100): The curvature is slightly 
more pronounced than in the previous case but remains 

significantly controlled compared to lower stiffnesses. 

Moderate support stiffness provides a balance between 

flexibility and stability, allowing for controlled 

deformations while maintaining good structural rigidity.  

 Blue Curve (𝐾𝑡1 = 𝐾𝑡3 = 0): The curvature is the most 
pronounced, showing higher peaks at the support points 

and greater deflection in the middle. This indicates that 

the beam undergoes maximum deformation in the 

absence of support stiffness. The absence of support 
stiffness allows for maximum deflection, which may be 

undesirable for applications requiring structural stability. 

The presented results are in agreement with structural 

mechanics theories. Higher support stiffness leads to reduced 

deflection and increased overall structural rigidity, as 

expected. The curves consistently demonstrate how different 

levels of support stiffness influence the beam's deflection 

shapes. Therefore, the results are logical and validated by 

theoretical principles. 

5.2.2. Parametric Study of a Double Cable-Stayed Beam, 

Supported by Three Elastic Supports with Variable Stiffness 
It is essential to conclude the study with an analysis of the 

dimensionless natural frequencies of a beam supported by 

three elastic supports: a central elastic support and two others 

placed symmetrically at the points 𝐿1/𝐿 = 1/3 and  𝐿3/𝐿 =
2/3. The dimensionless stiffness of the elastic support located 

at the center is set to 𝐾𝑡2 = 100.
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Table 6. Analysis of the first four natural frequencies of a cable-stayed beam supported by three elastic supports with stiffness 𝑲𝒕𝟏, 𝑲𝒕𝟐 and 𝑲𝒕𝟑, 

positioned at 𝑳𝟏/𝑳 = 𝟏/𝟑, 𝑳𝟐/𝑳 = 𝟏/𝟐 , and 𝑳𝟑/𝑳 = 𝟐/𝟑, respectively, where 𝑲𝒕𝟐 = 𝟏𝟎𝟎 

Stiffness 
Frequencies 

Mode 1 Mode 2 Mode 3 Mode 4 

𝐾𝑡1 = 0, 𝐾𝑡3 = 0 5,62270 6,81924 9,38794 12,57343 

𝐾𝑡1 = 10, 𝐾𝑡3 = 0 5,63097 6,83424 9,39606 12,57565 

𝐾𝑡1 = 100, 𝐾𝑡3 = 100 5,69748 6,97587 9,47390 12,59775 

𝐾𝑡1 = 10, 𝐾𝑡3 = 1000 5,88505 7,69239 10,08201 12,85459 

𝐾𝑡1 = 100, 𝐾𝑡3 = 100 5,76966 7,08289 9,53829 12,61713 

𝐾𝑡1 = 10000, 𝐾𝑡3 = 1000 6,96761 10,27668 13,62551 15,71120 

 
Fig. 10 Curvatures corresponding to the deflection shapes of a simply supported beam with three elastic supports located at 𝒙𝟏 = 𝟎. 𝟐𝐋,  𝒙𝟐 =

𝟎. 𝟓𝐋 and 𝒙𝟑 = 𝟎. 𝟖𝐋 for different stiffnesses

Adjusting the stiffness coefficients of these elastic 

supports results in notable variations in the frequencies. 

Analysis of these data reveals that increasing the stiffness of 

the elastic supports makes the overall structure more rigid. 

This increase in rigidity is primarily due to the central elastic 

support, which increases the total stiffness of the beam in its 

middle, functioning as a concentrated support. These results 

are consistent with those presented in Table 3, which indicated 

a rise in the structure's frequency corresponding to the 

increased stiffness of the support elastic supports. 

Figure 10 requires careful interpretation for a thorough 

analysis of curvatures for different elastic support stiffnesses; 

the results follow the same logic as the case of a beam simply 

supported by two elastic supports. Increasing the stiffness of 

the elastic supports (from 0 to 200) reduces the deflection of 

the beam, thus increasing the overall rigidity of the structure. 

This is evident from the decrease in curvature in the black and 

red curves compared to the blue curve.  

 

Elastic support points create stress points where the 

curvature can change significantly. With varying stiffnesses, 

the transition between elastically supported beam segments 

and unsupported segments is more or less pronounced. 

This section presents a modal analysis of the cable-stayed 

beam, focusing on the first two linear modes. The aim is to 
investigate how the configuration of the elastic supports 

influences the structural vibration behavior. The following 

illustrations depict the vibration modes of the beam under 

three different arrangements.
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(a) The 1st order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟓𝑳 

(c) The 1st order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟐𝑳 and 𝒙𝟐 = 𝟎. 𝟖𝑳 

(e) The 1st order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟐𝑳, 𝒙𝟐 = 𝟎. 𝟓𝑳 and 𝒙𝟑 = 𝟎. 𝟖𝑳 

 

 
(b) The 2nd order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟓𝑳 

(d) The 2nd order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟐𝑳 and 𝒙𝟐 = 𝟎. 𝟖𝑳 

(f) The 2nd order mode with elastic support at 

𝒙𝟏 = 𝟎. 𝟐𝑳, 𝒙𝟐 = 𝟎. 𝟓𝑳 and 𝒙𝟑 = 𝟎. 𝟖𝑳 

Fig. 11 Illustration of the first two linear modes of a beam incorporating cables and elastic supports. The diagrams on the left (a, b) correspond to a 

configuration where the beam is supported by a single elastic support located at x=0.5Lx = 0.5Lx= 𝟎. 𝟓𝑳. The diagrams in the center (c, d) depict the 

beam supported by two elastic supports located at  𝒙𝟏 = 𝟎. 𝟐𝑳 and 𝒙𝟐 = 𝟎. 𝟖𝑳. The diagrams on the right (e, f) correspond to a configuration where 

the beam is supported by three elastic supports located at 𝒙𝟏 = 𝟎. 𝟐𝑳, 𝒙𝟐 = 𝟎. 𝟓𝑳 and 𝒙𝟑 = 𝟎. 𝟖𝑳. 

The figures above present complex data that requires 

careful analysis and detailed description to facilitate 
comprehension. Here is a structured analysis of the 

observations and implications of these figures: 

 Mode (a) and (b): The presence of a single elastic support 

modifies the vibration modes by concentrating the 

amplitudes at the support point. 

 Mode (c) and (d): The presence of two elastic supports 

distributes the amplitudes more evenly along the beam, 

reducing deformations at the support points. 

 Mode (e) and (f): The presence of three elastic supports 

increases the overall stiffness of the beam, reducing the 

maximum amplitudes and distributing the nodes more 
regularly. 

 

The results from the figures clearly demonstrate the 

influence of the elastic support configuration on the beam's 

vibration modes. Adding elastic supports increases the beam's 

stiffness, which translates into reduced vibration amplitudes at 

the support points. Evenly distributed supports along the beam 

help to distribute loads and deformations more 

homogeneously. 

 

The analysis of the vibration modes of the cable-stayed 

beam with elastic supports highlights the importance of 
support configuration in controlling the structure's vibration 

behaviors. By adjusting the position and stiffness of the 

supports, it is possible to optimize the dynamic performance 

and stability of the beam, thus offering effective solutions for 

various engineering applications. 

6. Conclusion 
This research focused on analyzing the transverse 

vibrations of a cable-stayed beam resting on elastic supports 

within a linear framework. The differential equation 

governing the beam's vibrational behavior was solved under 

different configurations, and the obtained natural frequencies 

demonstrated consistency with existing literature data.  

 

Validation of these results was ensured through a 

meticulous convergence analysis of natural frequencies, as 

well as thorough comparisons between the employed method, 

the Finite Element Method (FEM), and experimental 

approaches, thus demonstrating the robustness of the 
employed technique. 
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Parametric studies were conducted on double-cabled 

beams with one or multiple elastic supports (two and three 

springs), revealing significant variations in the vibrational 

response. These variations highlight the importance of these 

factors in structural design and pave the way for further 

research on the optimization of cable-stayed structures. 
 

The study also explored the significant impact of various 

factors, such as the stiffness, number, and position of elastic 

supports, on vibration suppression effectiveness. The results 

revealed that increasing the stiffness of elastic supports makes 

the overall structure more rigid, thereby minimizing the risk 

of resonance and enhancing the overall vibrational 

performance of the structure. 

 

In conclusion, while this study focused on a linear 

approach, an extension to investigating the same system in a 

nonlinear context could offer even deeper insights into the 

dynamic behavior of cable-stayed structures. This extension 

would allow for better exploitation of the obtained results and 

significantly contribute to the design and optimization of these 

systems in practical applications. The adaptability and 

efficiency of the presented method show considerable 

potential for specific adjustments to real-world structures, thus 
enhancing their durability and functionality in various 

engineering contexts. Furthermore, incorporating elastomeric 

bearings into the design can greatly enhance the dynamic 

performance and longevity of these structures by effectively 

managing vibrational characteristics. 
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