Methane Generation from Kitchen Waste under Solid Phase Anaerobic Digestion
International Journal of Civil Engineering |
© 2017 by SSRG - IJCE Journal |
Volume 4 Issue 11 |
Year of Publication : 2017 |
Authors : S. Jayalakshmi |
How to Cite?
S. Jayalakshmi, "Methane Generation from Kitchen Waste under Solid Phase Anaerobic Digestion," SSRG International Journal of Civil Engineering, vol. 4, no. 11, pp. 15-20, 2017. Crossref, https://doi.org/10.14445/23488352/IJCE-V4I11P104
Abstract:
The present study is aimed at extraction of energy in terms of methane from the kitchen waste through high solids anaerobic digestion. Laboratory studies were conducted by varying the total solids concentration from 20% to 30% under controlled (28oC ± 5oC) and ambient (37oC) mesophilic condition. Maximum methane yield of 296.7 mL CH4 / gVS added and VS degradation of 62% was obtained at 20% TS concentration. The methane concentration in the biogas with 20% TS concentration was 38 ± 17 % under ambient mesophilic condition and 44 ± 17 % under controlled mesophilic condition.
Keywords:
Methane, Solid Phase Anaerobic Digestion, and Kitchen Waste.
References:
1. APHA (1998), ‘Standard methods for the examination of water and wastewater’, 20th Ed., American Public Health Association, Washington, DC.
2. Baere D.L. (2000), ‘Anaerobic digestion of solid waste: state of the art’, Water Sci. Technol., Vol. 41, No. 3, pp. 283-290.
3. Bolzonella D., Innocenti L., Pavan P., Traverso P. and Cecchi F. (2003), ‘Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase’, Bioresource Technology, Vol. 86, pp. 123-129.
4. Brummeler E.T., Aarnink M.M.J. and Koster I.W. (1992), ‘Dry anaerobic digestion of solid organic waste in a biocel reactor at pilot- scale plants’, Water Sci. Technol., Vol. 25, No.7, pp. 301-310.
5. Burton S.A.Q. and Crail W.I.A. (1998), ‘Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling’, Waste Management and Research, Vol. 16, pp. 41-53.
6. Buyukkamaci N. and Filibeli A. (2004), ‘Volatile fatty acid formation in an anaerobic hybrid reactor’, Process Biochemistry, Vol. 39, pp. 1491-1494.
7. Chynoweth D.P. and Ronisarson (1987), ‘Anaerobic digestion of biomass’, Elsevier Applied Science Publishers, pp. 22-27.
8. Ehrig H.J. (1989), ‘Leachate quality’, In: Christensen T.H., Cossu R., Stegman R. (Eds.) Sanitary Landfilling: Process Technology and Environmental Impact’, Academic Press, New York, pp. 123-127.
9. Fang H.H.P. and Liu H. (2002), ‘Effect of pH on hydrogen production from glucose by a mixed culture’, Bioresource Technology, Vol. 31, pp. 958-968.
10. Funchigami K., Ken-ichiro Mizuno, Torataro Minegishi, Hiroshi Atsuura and Satoru Iahimoto (2001), ‘Methane fermentation of night soil sludge and kitchen waste mixture’, NKK Technical Review, Vol. 85, pp. 44-50.
11. Gallert C., Henning and Winter J. (2003), ‘Scale-up of anaerobic digestion of the biowaste fraction from domestic wastes’, Water Research, Vol. 37, pp. 1433-1441.
12. Hawkes F.R., Dinsdale R., Hawkes D.L. and Hussy I. (2002), ‘Sustainable fermentative biohydrogen: Challenges for process optimization’, Int. J. Hydrogen Energy, Vol. 27, pp. 1339-1347.
13. Hori T., Haruta S., Ueno Y., Ishii M. and Igarashi Y. (2006), ‘Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester’, Appl. Environ. Microbiol., Vol. 72, No. 2, pp. 1623-1630.
14. Jewell W.J., Wright P.E., Fleszar N.P., Green G., Safinski A. and Zucker A. (1997), ‘Evaluation report of anaerobic digestion options for groups of dairy farms in upstate Newyork’, Department of Agriculture and Biological Engineering, Correll University, Hhaca, NY, pp. 55-68.
15. Kayhanian M. (1995), ‘Biodegradability of the organic fraction of municipal solid waste in a high solids anaerobic digester’, Waste Management and Research, Vol. 13, pp. 123-136.
16. Koster I.W. and Koomen E. (1988), ‘Ammonium inhibition of the maximum growth rate of hydrogenotrophic methanogens at varios pH levels and temperatures’, Microbiol. Biotechnol., Vol. 28, pp. 500-505.
17. Lastella G., Testa C., Cornacchia G., Notornicola M., Voltasio F. and Vinodkumar Sharma (2002), ‘Anaerobic digestion of semisolid organic waste: biogas production and its purification’, Energy Conversion and Management, Vol. 43, pp. 63-75.
18. Lin C.Y. and Lay C.H. (2004), ‘Carbon / nitrogen ratio effect on fermentative hydrogen production by mixed microflora’, Int. J. Hydrogen Energy, Vol. 29, pp. 41-45.
19. Metcalf I.N.C. and Eddy (1996), ‘Wastewater engineering treatment disposal reuse’, Tata Mcgraw-hill, New Delhi, ISBN 0-07-099461-7, pp 438-445.
20. Onay T.T. and Pholand F.G. (1998), ‘In-situ nitrogen management in controlled bioreactor landfills’, Water Research, Vol. 32, No. 5, pp. 1383 -1392.
21. Price G.A., Barlaz M.A. and Hater G.R. (2003), ‘Nitrogen management in bioreactor landfills’, Waste Management, Vol. 23, No. 7, pp. 675-688.
22. Ranade D.R. (1988), ‘Mixed biological aspects of anaerobic digestion’, J. Water Environ. Res., Vol. 67, pp. 52-58.
23. Themelis N.J., Kim H.Y. and Brady M. (2002), ‘Energy recovery from new york city solid wastes’, Waste Management and Research, Vol. 20, No. 3, pp. 223-233.
24. Vavilin V.A., Lokshina L.Y., Flotats X. and Angelidaki I. (2007), ‘Anaerobic degradation of solid material: multidimensial modelling of continuous-flow reactor with non-uniform influent concentration distributions’, Biotechnol. Bioengn.,Vol. 97, pp. 354-366.
25. Zinder S.H. (1994), ‘Syntrophic acetate oxidation and reversible acetogenesis’, In: Drake H.L. (Eds.) Acetogenesis, Chapman and Hall, New York, London, pp. 387-415.