Review of Mixed Finite Element Approach for the Analysis of Fiber Reinforced Polymer Composite Laminates

International Journal of Civil Engineering
© 2022 by SSRG - IJCE Journal
Volume 9 Issue 7
Year of Publication : 2022
Authors : Kamal S Patel, G D Ramtekkar
pdf
How to Cite?

Kamal S Patel, G D Ramtekkar, "Review of Mixed Finite Element Approach for the Analysis of Fiber Reinforced Polymer Composite Laminates," SSRG International Journal of Civil Engineering, vol. 9,  no. 7, pp. 6-10, 2022. Crossref, https://doi.org/10.14445/23488352/IJCE-V9I7P102

Abstract:

Composite laminates are very popular nowadays. With the advancement of machines and quality, there is a shift in the use pattern of composite materials. As its importance increases, the requirement for precise analysis also increases. Various methods have been developed to analyze the inter-laminar stresses in the laminated composites accurately. In this work critical review of the approach made to analyze the laminated composite beam, with a particular focus on the mixed finite element method, has been done.

Keywords:

Mixed finite element method, Composite laminate beam, Rissner’s mixed variational theorem, Higher-order shear deformation theory.

References:

[1] T.K. Nguyen, B.D. Nguyen, et al., “A Novel Unified Model for Laminated Composite Beams,” Composite Structures, vol. 238, p. 111943, 2020. Crossref, http://doi.org/10.1016/j.compstruct.2020.111943
[2] R. M. J. Groh and A. Tessler, “Computationally Efficient Beam Elements for Accurate Stresses in Sandwich Laminates and Laminated Composites with Delaminations,” Computer Methods in Applied Mechanics and Engineering, vol. 320, pp. 369–395, 2017. Crossref, http://doi.org/10.1016/j.cma.2017.03.035 Kamal S Patel& G D Ramtekkar/ IJCE, 9(7), 6-10, 2022 9
[3] A. Loredo, M. D’Ottavio, et al., “A Family of Higher-Order Single Layer Plate Models Meeting C Z 0 -Requirements for Arbitrary Laminates,” Composite Structures, vol. 225, p. 111146, 2019. Crossref, http://doi.org/10.1016/j.compstruct.2019.111146
[4] F. Auricchio and E. Sacco, “Refined First-Order Shear Deformation Theory Models for Composite Laminates,” Journal of Applied Mechanics, vol. 70, no. 3, pp. 381–390, 2003. Crossref, http://doi.org/10.1115/1.1572901
[5] E. Carrera, “Historical Review of Zig-Zag Theories for Multilayered Plates and Shells,” Applied Mechanics Reviews, vol. 56, no. 3, pp. 287–308, 2003. Crossref, http://doi.org/10.1115/1.1557614
[6] L. Demasi, “Refined Multilayered Plate Elements Based on Murakami Zig–Zag Functions,” Composite Structures, vol. 70, no. 3, pp. 308–316, 2005. Crossref, http://doi.org/10.1016/j.compstruct.2004.08.036
[7] L. Iurlaro, M. Gherlone, et al., “Refined Zigzag Theory for Laminated Composite and Sandwich Plates Derived from Reissner’s Mixed Variational Theorem,” Composite Structures, vol. 133, pp. 809–817, 2015. Crossref, http://doi.org/10.1016/j.compstruct.2015.08.004
[8] W. Zhen and C. Wanji, “A Global Higher-Order Zig-Zag Model in Terms of the HW Variational Theorem for Multilayered Composite Beams,” Composite Structures, vol. 158, pp. 128–136, 2016. Crossref, http://doi.org/10.1016/j.compstruct.2016.09.021
[9] H. Arya, R. P. Shimpi, and N. K. Naik, “A Zigzag Model for Laminated Composite Beams,” Composite Structures, vol. 56, no. 1, pp. 21–24, 2002. Crossref, http://doi.org/10.1016/S0263-8223(01)00178-7
[10] A. Tessler, M. Di Sciuva, and M. Gherlone, “A Refined Zigzag Beam Theory for Composite and Sandwich Beams,” Journal of Composite Materials, vol. 43, no. 9, pp. 1051–1081, 2009. Crossref, http://doi.org/10.1177/0021998308097730
[11] P. Vidal and O. Polit, “A Sine Finite Element Using a Zig-Zag Function for the Analysis of Laminated Composite Beams,” Composites Part B: Engineering, vol. 42, no. 6, pp. 1671–1682, 2011. Crossref, http://doi.org/10.1016/j.compositesb.2011.03.012
[12] V. R. Aitharaju and R. C. Averill, “C0 Zig-Zag Finite Element for Analysis of Laminated Composite Beams,” Journal of Engineering Mechanics, vol. 125, no. 3, pp. 323–330, 1999. Crossref, http://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(323)
[13] U. Icardi, “A Three-Dimensional Zig-Zag Theory for Analysis of Thick Laminated Beams,” Composite Structures, vol. 52, no. 1, pp. 123–135, 2001. Crossref, http://doi.org/10.1016/S0263-8223(00)00189-6
[14] U. Icardi, “Applications of Zig-Zag Theories to Sandwich Beams,” Mechanics of Advanced Materials and Structures, vol. 10, no. 1, pp. 77–97, 2003. Crossref, http://doi.org/10.1080/15376490306737
[15] A. Tessler, M. Di Sciuva, and M. Gherlone, “A Refined Zigzag Beam Theory for Composite and Sandwich Beams,” Journal of Composite Materials, vol. 43, no. 9, pp. 1051–1081, 2009. Crossref, http://doi.org/10.1177/0021998308097730
[16] S. Kapuria, P. C. Dumir, et al., “Finite Element Model of Efficient Zig-Zag Theory for Static Analysis of Hybrid Piezoelectric Beams,” Computational Mechanics, vol. 34, no. 6, pp. 475–483, 2004. Crossref, http://doi.org/10.1007/s00466-004-0592-y.
[17] C.-P. Wu and H.-Y. Li, “The RMVT- and PVD-based Finite Layer Methods for the Three-Dimensional Analysis of Multilayered Composite and FGM Plates,” Composite Structures, vol. 92, no. 10, pp. 2476–2496, 2010. Crossref, http://doi.org/10.1016/j.compstruct.2010.03.001
[18] E. Carrera and L. Demasi, “Classical and Advanced Multilayered Plate Elements Based Upon PVD and RMVT. Part 2: Numerical Implementations,” International Journal for Numerical Methods in Engineering, vol. 55, no. 3, pp. 253–291, 2002. Crossref, http://doi.org/10.1002/nme.493
[19] E. Carrera and L. Demasi, “Classical and Advanced Multilayered Plate Elements Based Upon PVD And RMVT. Part 1: Derivation of Finite Element Matrices,” International Journal for Numerical Methods in Engineering, vol. 55, no. 2, pp. 191–231, 2002. Crossref, http://doi.org/10.1002/nme.492
[20] A. Kefal, K. A. Hasim, and M. Yildiz, “A Novel Isogeometric Beam Element Based on Mixed form of Refined Zigzag Theory for Thick Sandwich and Multilayered Composite Beams,” Composites Part B: Engineering, vol. 167, pp. 100–121, 2019. Crossref, http://doi.org/10.1016/j.compositesb.2018.11.102
[21] A. G. de Miguel, E. Carrera, et al., “Accurate Evaluation of Interlaminar Stresses in Composite Laminates via Mixed One-Dimensional Formulation,” AIAA Journal, vol. 56, no. 11, pp. 4582–4594, 2018. Crossref, http://doi.org/10.2514/1.J057189
[22] E. Carrera, “Developments, Ideas, and Evaluations Based Upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells,” Applied Mechanics Reviews, vol. 54, no. 4, pp. 301–329, 2001. Crossref, http://doi.org/10.1115/1.1385512
[23] K. S. Patel and G. Ramtekkar, “Application of Refined Mixed Finite Element Model for Analysis of Laminated Composite Beams,” IOP Conference Series: Earth and Environmental Science, vol. 982, no. 1, 2022. Crossref, http://doi.org/https://doi.org/10.1088/1755- 1315/982/1/012079
[24] K. S. Patel and G. Ramtekkar, “Analysis of Interlaminar Stress Concentration in Laminated Structure - A Review,” IOP Conference Series: Earth and Environmental Science, vol. 982, no. 1, 2022. Crossref, http://doi.org/https://doi.org/10.1088/1755- 1315/982/1/012080
[25] E. Hellinger, “The General Approaches to the Mechanics of Continua,” in Mechanik, Springer, pp. 601–694, 1907.
[26] E. Reissner, “On a Variational Theorem in Elasticity,” Journal of Mathematical Physics, vol. 29, no. 1–4, pp. 90–95, 1950. Crossref, http://doi.org/10.1002/sapm195029190 Kamal S Patel& G D Ramtekkar/ IJCE, 9(7), 6-10, 2022 10
[27] Y. M. Desai and G. S. Ramtekkar, “Mixed Finite Element Model for Laminated Composite Beams,” Structural Engineering and Mechanics, vol. 13, no. 3, pp. 261–276, 2002. Crossref, http://doi.org/10.12989/sem.2002.13.3.261
[28] G. S. Ramtekkar and Y. M. Desai, “On Free-Edge Effect and Onset of Delamination in FRPC Laminates Using Mixed Finite Element Model,” Journal of Reinforced Plastics and Composites, vol. 28, no. 3, pp. 317–341, 2009. Crossref, http://doi.org/10.1177/0731684407084243
[29] Y. M. Desai, G. S. Ramtekkar, and A. H. Shah, “A Novel 3D Mixed Finite-Element Model for Statics of Angle-Ply Laminates,” International Journal for Numerical Methods in Engineering, vol. 57, no. 12, pp. 1695–1716, 2003. Crossref, http://doi.org/10.1002/nme.737
[30] G. S. Ramtekkar, Y. M. Desai, and A. H. Shah, “Application of a Three-Dimensional Mixed Finite Element Model to the Flexure of Sandwich Plate,” Composite Structures, vol. 81, no. 22–23, pp. 2183–2198, 2003. 1 Crossref, http://doi.org/0.1016/S0045- 7949(03)00289-X
[31] G. S. Ramtekkar, Y. M. Desai, and A. H. Shah, “Mixed Finite-Element Model for Thick Composite Laminated Plates,” Mechanics of Advanced Materials and Structures, vol. 9, no. 2, pp. 133–156, 2002. Crossref, http://doi.org/10.1080/153764902753510516
[32] G. S. Ramtekkar and Y. M. Desai, “On Free-Edge Effect and Onset of Delamination in FRPC Laminates Using Mixed Finite Element Model,” Journal of Reinforced Plastics and Composites, vol. 28, no. 3, pp. 317–341, 2009. Crossref, http://doi.org/10.1177/0731684407084243
[33] G. S. Ramtekkar, Y. M. Desai, and A. H. Shah, “First Ply Failure of Laminated Composite Plates - A Mixed Finite Element Approach,” Journal of Reinforced Plastics and Composites, vol. 23, no. 3, pp. 291–315, 2004. Crossref, http://doi.org/10.1177/0731684404031464
[34] G. S. Ramtekkar, Y. M. Desai, and A. H. Shah, “Natural Vibrations of Laminated Composite Beams by Using Mixed Finite Element Modelling,” Journal of Sound and Vibration, vol. 257, no. 4, pp. 635–651, 2002. Crossref, http://doi.org/10.1006/jsvi.2002.5072