From Biomass to Bio-oil: Processes and Treatments to Convert Raw Material into Energy

International Journal of Chemical Engineering Research
© 2018 by SSRG - IJCER Journal
Volume 5 Issue 3
Year of Publication : 2018
Authors : Suzara R.C. Sena, Camila G. Pereira
pdf
How to Cite?

Suzara R.C. Sena, Camila G. Pereira, "From Biomass to Bio-oil: Processes and Treatments to Convert Raw Material into Energy," SSRG International Journal of Chemical Engineering Research, vol. 5,  no. 3, pp. 1-10, 2018. Crossref, https://doi.org/10.14445/23945370/IJCER-V5I3P101

Abstract:

Bio-oil is a potential fuel obtained from pyrolysis of biomass. This work provides a discussion about the different processes used to obtain this product, evidencing the factors that influence its properties and characteristics. A comparison of the properties of bio-oils with traditional fuels is presented. As well as this, the main treatments to upgrade biooil are also discussed.

Keywords:

biomass, pyrolysis, bio-oil

References:

[1] U. Schuchardt, M. L. Ribeiro, and A. R. Gonçalves, ―A indústria petroquímica no próximo século: como substituir opetróleo como matéria-prima?‖, Quím. Nova, vol. 24, pp. 247-251, 2001.
[2] F. Cherubini, N. D. Bird, A. Cowie, G. Jungmeier, B. Schlamadinger, and S. Woess-Gallasch, ―Energy and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations‖, Resour. Conserv. Recycl., vol. 53, pp. 434–447, 2009.
[3] A. Demirbas, ―Biomass resouce facilities and biomass conversion processing for fuels and chemicals‖, Energy Convers. Manag., vol. 42, pp. 1357–1378, 2001.
[4] H. B. Goyal, D. Seal, and R.C. Saxena, ―Bio-fuels from thermochemical conversion of renewable resources: a review‖, Renew. Sustain. Energy Rev., vol. 12, pp. 504–517, 2008.
[5] F. Cherubini, ―The biorefinery concept: Using biomass instead of oil for producing energy and chemicals‖, Energy Convers. Manag., vol. 51, pp. 1412–1421, 2010.
[6] J. M. M. Perez, ―Tests in a fast pyrolysis plant biomass fluidized: criteria for optimization‖ (Original title: Testes em uma planta de pirólise rápida de biomassa em leito fluidizado: critérios para sua otimização). Thesis. Faculty of Agricultural Engineering, State University of Campinas, Campinas, Brazil, 2004.
[7] A. V. Bridgwater, ―Biomass for energy‖, J. Sci. Food Agr., vol. 86, pp.1755-1768, 2006.
[8] A. V. Bridgwater, ―Review of fast pyrolysis of biomass and product upgrading‖, Biomass Bioenerg, vol. 38, pp. 68-94, 2012.
[9] C. V. Huynh, and S. Kong, ―Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam‖, Fuel, vol. 103, pp. 987–996, 2013.
[10] C. Hindsgaul, J. Schramm, L. Gratz, U. Henriksen, and J. Dall Bentzen, ―Physical and chemical characterization of particles in producer gas from wood chips‖, Bioresour. Technol., vol. 73, p. 147–155, 2000.
[11] N. S. Barman, and S. Ghosh, ―Gasification of biomass in a fixed bed downdraft gasifier: a realistic model including tar‖, Bioresour. Technol., vol. 107, pp. 505–511, 2012.
[12] R. C. Brown, ―Biorenewable resources: engineering new products from agriculture. Iowa State Press 2003.
[13] A. V. Bridgwater, ―Renewable fuels and chemicals by thermal processing of biomass‖, Chem. Eng. J., vol. 91, pp. 87–102, 2003.
[14] H. V. Ly, J. Kim, and S. S. Kim, ―Pyrolysis characteristics and kinetics of palm fiber in a closed reactor‖, Renew. Energy, vol. 54, pp. 91–95, 2013.
[15] G. W. Huber, S. Iborra, and A. Corma, ―Synthesis of Transportation Fuels From Biomass: Chemistry, Catalysts, and Engineering‖, Chem. Rev., vol.106, pp.4044-4098, 2006.
[16] S. Xiu, and A. Shahbazi, ―Bio-oil production and upgrading research: A review‖ Renew. Sustain. Energy Rev, vol. 16, pp. 4406-4414, 2012.
[17] D. Meier, and O. Faix, ―State of the art of applied fast pyrolysis of lignocellulosic materials a review‖, Bioresour. Technol., vol. 68, pp. 71-77, 1999.
[18] H. B. Goyal, D. Seal, and R. C. Saxena, ―Bio-fuels from thermochemical conversion of renewable resources: A review‖, Renew. Sustain. Energy Rev., vol. 12, pp. 504–517, 2008.
[19] A. Oasmaa, and S. Czernik, ―Fuel Oil Quality of Biomass Pyrolysis Oils-State of the Art of The End Users‖, Energ. Fuels, vol.13, pp.914-921,1999.
[20] Z. Luo, S. Wang, Y. Liao, J. Zhou, Y. Gu, and K. Cen, ―Research on biomass fast pyrolysis for liquid fuel‖, Biomass Bioenerg., vol. 26, pp. 455 – 462, 2004.
[21] A. V. Bridgwater, and K. Maniatis, K, ―Chapter 10. The production of Biofuels by the Thermochemical Processing of Biomass‖, Archer MD, Barber J. Molecular to Global Photosynthesis. IC Press, p.521-612, 2004.
[22] A. V. Bridgwater, ―Biomass Fast Pyrolysis‖, Therm. Sci., vol. 8, pp.21-49, 2004.
[23] A. V. Bridgwater, and S. A. Bridge, ―A review of Biomass Pyrolysis and Pyrolysis Technologies‖, In: A. V. Bridgwater, G. Grassi (Eds.). Biomass pyrolysis liquids upgrading and utilization. London: Elsevier Applied Science, 1991.
[24] A. V. Bridgwater, S. Czenick, and J. Piskorz, ―An Overview of Fast Pyrolysis‖, In: (Ed.). Progress in Thermochemical Biomass Conversion. [S.l] IEA Bioenergy; Blackwell Sciences, 2001.
[25] A. V. Bridgwater, S. Czernik, and J. Piskorz, ―The Status of Biomass Fast Pyrolysis‖, Fast Pyrolysis of biomass: A Handbook. [S. l.:] A. Bridwater Editor, IEA Bioenergy, 2002.
[26] ANP (Agência Nacional do Petróleo, Gás Natural e Bio-combustíveis). (2007). Available:.
[27] CETESB (Companhia de Tecnologia de Saneamento Ambiental do Estado de São Paulo). (2006). Available: < http://www.cetesb.sp.gov.br/emergencia/acidentes/vazamento/oleo/a_fisicos.asp>.
[28] P. Penido Filho. ―Os motores de combustão interna‖, Ed. Lemi, 1983.
[29] D. Vlassov, ―Combustíveis, combustão e câmaras de combustão‖, Ed. UFPR, 2001.
[30] M. R. P. Samaniego, ―Use of biofuels from the rapid pyrolysis of sugarcane straw in an Otto cycle engine‖ (Original title: Uso de biocombustível da pirólise rápida da palha de cana em um motor de ciclo Otto). Master Diss., Faculty of Mecanical Engineering, State University of Campinas, Campinas, Brazil, 2007.
[31] E. O. Gómez. ―Study of the rapid pyrolysis of elephantgrass in bubbling fluidized bed by characterization of coal fines‖ (Original title: Estudo da pirólise rápida de capim elefante em leito fluidizado borbulhante mediante caracterização dos finos de carvão),Thesis, State University of Campinas, Campinas, Brazil, 2002.
[32] L. O. Santos. ―Study to obtain bio-oil of 2nd generation through the pyrolysis of aquatic plants‖ (Original Title: Estudo para obtenção de bio-óleo de 2ª geração através da pirólise de plantas aquáticas). Master Diss., Federal University of Sergipe, Aracaju, Brazil, 2013.
[33] J. M. M. Perez. ―Tests in a fast pyrolysis plant of fluidized bed biomass: criteria for its optimization‖ (Original title: Testes em uma planta de pirólise rápida de biomassa em leito fluidizado: critérios para sua otimização). Thesis, Faculty of Agricultural Engineering, State University of Campinas, Campinas, Brazil, 2004.
[34] M. B. B. Almeida. ―Bio-oil from rapid, thermal or catalytic pyrolysis of sugarcane and its co-processing with gas oil in catalytic cracking‖ (Original title: Bio-óleo a partir da pirólise rápida, térmica ou catalítica da cana-de-açúcar e seu co-processamento com gasóleo em craqueamento catalítico). Master Diss. Chemistry School, UFRJ, Brazil, 2008.
[35] D. A. Bulushev, and J. R. H. Ross, ―Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review‖, Catal. Today, vol. 171, pp. 1– 13, 2011.
[36] A. M. Dehkhoda, A. H. West, and N. Ellis, ―Biochar based solid acid catalyst for biodiesel production‖, Appl. Catal., A. vol. 382, pp. 197–204, 2010.
[37] J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, ―Biochar effects on soil biota - A review‖, Soil Biol. Biochem. vol. 43, pp. 1812-1836, 2011.
[38] M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, ―Biochar as a sorbent for contaminant management in soil and water: A review‖, Chemosphere, vol. 99, pp. 19–33, 2014.
[39] O. Ioannidou, and A. Zabaniotou, ―Agricultural residues as precursors for activated carbon production—A review. Renew‖, Sustain. Energy Rev. 11 (2007) 1966–2005.
[40] A. Shaaban, S. Se, M. F. Dimin, J. M. Juoi, M. H. M. Husin, and N. M. M. Mitan, ―Influence of heating temperature and holding time on biocharsderived from rubber wood sawdust via slow pyrolysis‖, J. Anal. Appl. Pyrolysis, vol. 107, pp. 31–39, 2014.
[41] D. Chen, J. Zhou, and Q. Zhang, ―Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo‖, Bioresour. Technol., vol. 169, pp. 313–319, 2014.
[42] Y. Lee, P. Eum, C. Ryu, Y. Park, J. Jung, and S. Hyun, ―Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1‖. Bioresour. Technol., vol. 130, pp. 345–350, 2013.
[43] K. Crombie, and O. Masek, ―Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions‖, Bioresour. Technol., vol. 162, pp. 148–156, 2014.
[44] C. Acıkgoz, O. Onay, and O.M. Kockar, ―Fast pyrolysis of linseed: product yields and compositions‖, J. Anal. Appl. Pyrolysis, vol. 71, pp. 417–429, 2004.
[45] H. Ben, and A. J. Ragauskas, ―Comparison for the compositions of fast and slow pyrolysis oils by NMR Characterization‖, Bioresour. Technol., vol. 147, pp. 577–584, 2013.
[46] S. Kim, and F. A. Agblevor, ―Thermogravimetric analysis and fast pyrolysis of Milkweed‖, Bioresour. Technol., vol. 169, pp. 367–373, 2014.
[47] S. Czernik, D. K. Johnson, and S. Black, ―Stability of wood fast pyrolysis oil‖, Biomass Bioenerg., vol. 7, pp. 187-192, 1994.
[48] X. Bai, K. H. Kim, R. C. Brown, E. Dalluge, C. Hutchinson, Y. J. Lee, and D. Dalluge, ―Formation of phenolic oligomers during fast pyrolysis of lignina‖, Fuel, vol. 128, pp. 170–179, 2014.
[49] M. Kiliç, E. Pütün, and A. E. Pütün, ―Optimization of Euphorbia rigida fast pyrolysis conditions by usingresponse surface methodology‖, J. Anal. Appl. Pyrolysis, vol.110, pp.162-171, 2014.
[50] J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, ―Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor‖, Fuel, vol. 128, pp. 162–169, 2014.
[51] E. Apaydin-Varol, B. B. Uzun, E. Önal, and A. E. Pütün, ―Synthetic fuel production from cottonseed: Fast pyrolysis and a TGA/FT-IR/MS study‖, J. Anal. Appl. Pyrolysis, vol. 105, pp. 83–90, 2014.
[52] M. Atienza-Martinez, I. Fonts, L. Lazaro, J. Ceamanos, and G. Gea, ―Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor‖, Chem. Eng. J., vol. 259, pp. 467–480, 2015.
[53] X. Huang, J. Cao, P. Shi, X. Zhao, X. Feng, Y. Zhao, X. Fan, X. Wei, and T. Takarada, ―Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge‖, J. Anal. Appl. Pyrolysis, vol. 100, pp. 353-362, 2014.
[54] Y. W. Jeong, S. K. Choi, Y. S. Choi, and S. J. Kim, ―Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics‖, Renew. Energy, vol. 79, pp. 14-19, 2015.
[55] P. A. Horne, and P. T. Williams, ―Influence of temperature on the products from the flash pyrolysis of biomass‖, Fuel, vol. 75, pp. 1051-1059, 1996.
[56] A. E. Pütün, H. F. Gerçel, O. M. Koçkar, O. Ege, C. E. Snapet, and E. Pütün, ―Oil production from an arid-land plant: fixed-bed pyrolysis and hydropyrolysis of Euphorbia rígida‖, Fuel, vol. 75, pp. 1307-1312, 1996.
[57] H. Pakdel, C. Roy, and W. Kalkreuth, ―Oil production by vacuum pyrolysis of Canadian oil shales and fate of the biological markers‖, Fuel, vol. 78, pp. 365-375, 1999.
[58] K. Smets, S. Schreurs, R. Carleer, and J. Yperman, ―Valorization of raspberry seed cake by flash and slow pyrolysis: Product yield and characterization of the liquid and solid fraction‖, J. Anal. Appl. Pyrolysis, vol. 107, pp. 289–297, 2014.
[59] Y. Lee, J. Park, C. Ryu, K. S. Gang, W. Yang, Y. Park, J. Jung, and S. Hyun, ―Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C‖, Bioresour. Technol., vol. 148, pp. 196–201, 2013.
[60] J. Park, Y. Lee, C. Ryu, and Y. Park, ―Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields‖, Bioresour. Technol. vol. 155, pp. 63–70, 2014.
[61] M. C. Samolada, A. Papafotica, and I. A. Vasalos, ―Catalyst Evaluation for Catalytic Biomass Pyrolysis‖, Energ. Fuel., vol. 14, pp. 1161-1167, 2000.
[62] Y. Wang, T. He, K. Liu, J. Wu, and Y. Fang, ―From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis‖, Bioresour. Technol. vol. 108, pp. 280–284, 2012.
[63] Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, P. Chen, and R. Ruan, ―Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production‖, Bioresour. Technol. vol. 172, pp. 162–168, 2014.
[64] Q. Lu, Z. Zhang, X. Yang, C. Dong, and X. Zhu, ―Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: Analytical Py-GC/MS study‖, J. Anal. Appl. Pyrolysis, vol. 104, pp. 139–145, 2013.
[65] H. Hwang, S. Oh, I. Choi, and J. W. Choi, ―Catalytic effects of magnesium on the characteristics of fast pyrolysis products – Bio-oil, bio-char, and non-condensed pyrolytic gas fractions‖, J. Anal. Appl. Pyrolysis, vol. 113, pp. 27-34, 2015.
[66] J. Ancheyta, and J.G. Speight, ―Hydroprocessing of Heavy Oils and Residua‖. FI U.S.A., CRC press, 2007.
[67] S. R. C. Sena, and C. G. Pereira, ―Bio-Oil Upgrading by Supercritical Technology and Conventional Processes‖, IV Prosciba, Cartagena das Indias, Chile, 2016.
[68] C. G. Pereira, and M. A. A. Meireles, ―Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives‖, Food Bioprocess. Tech., vol.3, pp. 340-372, 2009.
[69] S. Cheng, L. Wei, J. Julson, K. Muthukumarappan, and P.R. Kharel, ―Upgrading pyrolysis bio-oil to hydrocarbon enriched biofuel over bifunctional Fe-Ni/HZSM-5 catalyst in supercritical methanol‖, Fuel Process. Technol., vol. 167, pp. 117-126, 2017.
[70] S. Cheng, L. Wei, J. Julson, K. Muthukumarappan, and P.R. Kharel, ―Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol‖, Energ. Convers. Manage., vol. 147, pp. 19-28, 2017.
[71] S. Brand, and J. Kim, ―Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol‖, Energy, vol. 80, pp. 64-74, 2015.
[72] H. Jo, D. Verma, J. Kim, ―Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol‖, Fuel, vol. 232, pp. 610-619, 2018.
[73] W. Chen, Z. Luo, C. Yu, G. Li, and H. Zhang, ―Upgrading of bio-oil in supercritical ethanol: Catalysts screening, solvent recovery and catalyst stability study‖, J Supercrit. Fluid., vol. 95, pp. 387-393, 2014.
[74] A. Oasmaa, E. Kuoppala, J.F. Selin, S. Gust, and Y. Solantausta, ―Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition‖, Energ. Fuel., vol. 18, pp. 1578–1583, 2004.
[75] F. Mahfud, I. Meli_An-Cabrera, R. Manurung, and H. Heeres, ―Biomass to fuels: Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts‖, Process. Saf. Environ., vol. 85, pp.466–472, 2007.
[76] J. Xu, J. Jiang, Y. Sun, and Y. Lu. ―Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics‖, Biomass Bioenerg., vol., 32, pp. 1056–1061, 2008.
[77] Y. Tang, W. Yu, L. Mo, H. Lou, and X. Zheng. ―One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional pt catalysts: A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil‖, Energ Fuel., vol. 22, pp. 3484–3488, 2008.
[78] W. M. Xiong, M. Z. Zhu, L. Deng, Y. Fu, and Q.X. Guo, ―Esterification of organic acid in bio-oil using acidic ionic liquid catalysts‖, Energ Fuel., vol. 23, pp. 2278–2283, 2009.
[79] J. Wang, J. Chang, and J. Fan, ―Upgrading of bio-oil by catalytic esterification and determination of acid number for evaluating esterification degree‖, Energ. Fuel., vol. 24, pp. 3251–3255, 2010.
[80] R. N. Hilten, B. P. Bibens, J. R. Kastner, and K. C. Das, ―In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality‖, Energ. Fuel., vol. 24, pp. 673–682, 2010.
[81] W. Yu, L. Mo, H. Lou, and X. Zheng, ―One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional pt catalysts: A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil‖, Energ. Fuel., vol. 22, pp. 3484–3488, 2009.
[82] Q. Zhang, J. Chang, and T.J. Wang, ―Upgrading bio-oil over different solid catalysts‖, Energ. Fuel., vol.20, pp. 2717–2720, 2006.
[83] J. Peng, P. Chen, H. Lou, and X. Zheng, ―Upgrading of bio-oil over aluminum silicate in supercritical ethanol‖, Energ. Fuel., vol. 22, pp. 3489–3492, 2008.
[84] J. Peng, P. Chen, H. Lou, and X. Zheng, ―Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol‖, Bioresource Technol., vol.100, pp. 3415–3418, 2009.
[85] D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi, K. Gartner, A.V. Bridgwater, H.P. Grimm, I. Soldaini, A. Webster, and P. Baglioni, ―Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines — Part 1: Emulsion production‖, Biomass Bioenerg., vol. 25, pp. 85–99, 2003.
[86] D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi, K. Gartner, A.V. Bridgwater, H.P. Grimm, I. Soldaini, A. Webster, and P. Baglioni, ―Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines — Part 2: Tests in diesel engines‖, Biomass Bioenerg., vol. 25, pp. 101–11, 2003.
[87] M. Ikura, M. Stanciulescu, and E. Hogan, ―Emulsification of pyrolysis derived bio-oil in diesel fuel‖, Biomass Bioenerg., vol. 3, 221–232, 2003.
[88] X. Jiang, and N. Ellis, ―Upgrading bio-oil through emulsification with biodesel: Mixture production‖, Energ. Fuel., vol. 24, pp. 1358–1364, 2010.
[89] M. Garcia-Perez, J. Shen, X. Wang, and C. Li, ―Production and fuel properties of fast pyrolysis oil/bio-diesel blends‖, Fuel Process. Technol., vol. 91, pp. 296–305, 2010.
[90] A. B. Ross, P. Biller, M. L. Kubacki, H. Li, A. Lea-langton, and J. M Jones, ―Hydrothermal processing of microalgae using alkali and organic acids‖, Fuel vol. 89, pp. 2234–2243, 2010.
[91] R. M. Gallivan, and P. K. Matschei, ―Fraction of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenolic fraction for use in making phenol-formaldehyde resins‖, US Patent No. 42009647; 1980.