A Review & Studies on Design Parameter of Membrane Distillation Process for Water Treatment
International Journal of Chemical Engineering Research |
© 2022 by SSRG - IJCER Journal |
Volume 9 Issue 1 |
Year of Publication : 2022 |
Authors : Swapnil Anil Ugalmugale, Shaikh Mudassir Irshad, Bhagyashri Vijay Sonawane, Pratibha Gawande |
How to Cite?
Swapnil Anil Ugalmugale, Shaikh Mudassir Irshad, Bhagyashri Vijay Sonawane, Pratibha Gawande, "A Review & Studies on Design Parameter of Membrane Distillation Process for Water Treatment," SSRG International Journal of Chemical Engineering Research, vol. 9, no. 1, pp. 1-8, 2022. Crossref, https://doi.org/10.14445/23945370/IJCER-V9I1P101
Abstract:
Membrane Distillation is an Advance Separation Technique, where we exploit the attributes like the selective nature of the membrane. That provides an advantage over conventional technology. It also has low energy consumption and initial investment cost over conventional technology. This paper reviews Design Parameters of Membrane Distillation Process for Water Treatment (Desalination). As MD has four major types, this paper focuses on Direct Contact MD due to simple design and low operation energy requirement, general mitigation technique & different foulants and fouling mechanism. MD can concentrate feed solutions to their saturation point without negligible flux decline; MD Technique reduces capital and operation costs by using low-grade waste energy or solar energy.
The practical large-scale application of membrane distillation is mainly obstructed by a few issues like High energy requirement, membrane fouling & scaling causing wetting of pores of the membrane, and this paper gives a review on some of the solutions on optimizing MD system concerning thermal efficiency and membrane fouling and scaling for Desalination.
Keywords:
Desalination of water, Membrane Distillation Thermal Separation, Method, Parameters of MD, Water treatment process, Direct Contact Membrane Distillation.
References:
[1] D. R. L. Kevin W. Lawson, Review Membrane Distillation, Journal of Membrane Science, (1996) 25.
[2] V. Y. Sonawane, Analysis of Water Quality Using Physico-Chemical Parameters of Vishnupuri Dam in Nanded District Maharashtra, SSRG International Journal of Chemical Engineering Research, 7(3) (2020) 1-3, 1-2
[3] A. Alkhudhiri, N. Darwish and N. Hilal, Membrane Distillation: A Comprehensive Review. Desalination, 287 (2012 )2-18.
[4] M. Khayet, Membrane Distillation in Advance Membrane Technology and Application, Elsevier, (2008) 297-369.
[5] H. Alkhudhiri. A Membrane Distillation-Principles,Application, Configuration, Design and Implementation., in Emerging Technologies For Sustainable Desalination Handbook. Gude V.G. Ed Butterworth Heinemann, (2018) 55-106.
[6] S. Zare and Kargar. A, 4–Membrane Properties in Membrane Distillation, in Emerging Technologies for Sustainable Desalination Handbook; Gude, V.G., Ed.; Butterworth-Heinemann, (2018) 107-456.
[7] M. Essalhi and M. Khayet, Membrane Distillation (MD, in Progress in Filtration and Separation; Elsevier: Amsterdam, (2015) 61-99.
[8] N. T. A. M. A. M. A. M. R. R. Parisa Biniaz, Review Water and Wastewater Treatment Systems, Novel Integrated Membrane Distillation (MD), (2019) 7-36.
[9] H. Susanto, Towards Practical Implementations of Membrane Distillation., Chem. Eng. Process. Process Intensif., 50 (2011) 139-150.
[10] A. Hassan and H. Fath, Review and Assessment of the Newly Developed MD For Desalination Processes.Desalin., Water Treat, 51 (2013) 574-585.
[11] M. Su, M. Teoh, K. Wang, J. Su and T.-S. Chung, Effect of Inner-Layer Thermal Conductivity on Flux Enhancement of Dual-Layer Hollow Fiber Membranes in Direct Contact Membrane Distillation.,. J. Membr. Sci., 364 (2010) 278-289.
[12] Q. Chen, M. Ja, Y. Li and K. Chua, Thermodynamic Optimization of A Vacuum Multi-Effect Membrane Distillation System For Liquid Desiccant Regeneration., Appl. Energy, 230 (2018) 960-973.
[13] N. T. A. M. A. M. A. M. R. R. Parisa Biniaz, Water and Wastewater Treatment Systems By Novel, Novel Integrated Membrane Distillation (MD), (2019) 09.
[14] M. Khayet, Membranes and Theoretical Modeling of Membrane Distillation: A Review., Adv. Colloid Interface Sci., 164 (2011).56-88, 2011.
[15] E. Guillén-Burrieza, J. Blanco, G. Zaragoza, D.-C. Alarcón, P. Palenzuela, M. Ibarra and W. Gernjak, Experimental Analysis of An Air Gap Membrane Distillation Solar Desalination Pilot System, J. Membr. Sci., 379 (2011) 386-396.
[16] L. Li and K. Sirkar, Tudies in Vacuum Membrane Distillation With Flat Membranes, J. Membr. Sci. , 523 (2017) 225-234.
[17] C. Ivier, M. García-Payo, I. Marison and V. Stockar, Separation of Binary Mixtures By Thermostaticsweeping Gas Membrane Distillation: I. Theory and Simulations., J. Membr. Sci, 201 (2002) 1-16.
[18] V. Perfilov, V. Fila and Sanchez Marcano, A General Predictive Model for Sweeping Gas Membrane Distillation., Desalination, 443 (2018) 285-306.
[19] P. Wang and T.-S. Chung, S. Recent Advances in Membrane Distillation Processes: Membrane Development, Configuration Design and Application Exploring., Membr. Sci., 474 (2015) 39-56.
[20] M. Rahimpour, N. Kazerooni and M. Parhoudeh, Water Treatment By Renewable Energy-Driven Membrane Distillation, in Current Trends and Future Developments on (Bio-) Membranes, (2019) 179-211.
[21] D. L. K.W. Lawson, Membrane Distillation. II.Direct Contact MD,, J. Membr. Sci. 120(1) (1996) 123-133.
[22] C. F. R. W. R. J. D. L. S. Atchariyawut, Effect of Membranestructure on Mass-Transfer in the Membrane Gas-Liquid Contacting Process Using Microporous PVDF Hollow Fibers, Journal of Membrane Science, 285 (2006) 272-281.
[23] R. J. A. S. S. P. Termpiyakul, Heat and Mass Transfer Characteristics of A Direct Contact Membrane Distillation Process For Desalination, Desalination, 177 (2015) 133-141.
[24] R. J. A. A. F. J. Phattaranawik, Heat Transport and Membrane Distillation Coefficients in Direct Contact Membrane Distillation, Journal of Membrane Science, 212 (2003) 177-193.
[25] R. J. A. A. F. J. Phattaranawik, Effects of Net-Type Spacers on Heat and Mass Transfer in Direct Contact Membrane Distillation and Comparison with Ultrafiltration Studies, Journal of Membrane Science 217 (2003)193-206.
[26] R. J. A. F. A. C. H. J. Phattaranawik, Mass Flux Enhancement Using Spacer Filled Channels in Direct Contact Membrane Distillation, Journal of Membrane Science 187 (2001) 193-201.
[27] J. W. D. H. Z. Y. A. Z. L. Z. Ji, Effect of Microwave Irradiation Onacuum Membrane Distillation, Journal of Membrane Science, 429 (2013) 473-479.
[28] J. W. R. M. A. A. F. Y. Yun, Effects of Channel Spacers on Direct Contact Membrane Distillation, Desalination and Water Treatment, 34 (2011) 63-69.
[29] S. M. H. L. Y. Y. A. V. C. H. Julian, Effect of Operation Parameters on the Mass Transfer and Fouling in Submerged Vacuum Membrane Distillation Crystallization (VMDC) For Inland Brine Water Treatment, Journal of Membrane Science,520 (2016) 679-692.
[30] Y.-C. H. Y. Y. A. V. C. S. Meng, Submerged Membrane Distillation for Inland Desalination Applications, Desalination, 361 (2015) 72-80.
[31] N. D. A. N. H. A. Alkhudhiri, Membrane Distillation: A Comprehensivereview, Desalination, 287 (2012) 2-18.
[32] L. L. M. E.-B. R. M. Z. Ding, Analysis of A Solar-Powered Membrane Distillation System,, Desalination , 172 (2005) 27-40.
[33] M. Izquierdo-Gil, M. Garcia-Payo and C. Fernandez-Pineda, Air Gap Membrane Distillation of Sucrose Aqueous Solutions, Journal of Membrane Science 155 (1999) 291–307.
[34] M. Chernyshov, A. De-Haan and G. Meindersma, Modelling Temperature and Salt Concentration Distribution in Membrane Distillation Feed Channel, Desalination 157 (2003) 315–324,.
[35] S. Kimura and S. S. SI. Nakao, Transport Phenomena in Membrane Distillation, Journal of Membrane Science 33 (1987) 285–298.
[36] K. Schneider, W. Holz, R.Wollbeck and S. Ripperger, Membranes and Modules For Transmembrane Distillation, Journal of Membrane Science 39 (1988) 25–42.
[37] S. Gray, J. Zhang, N. Dow, M. Duke, E. Ostarcevic and J. Li, Identification of Material and Physical Features of Membrane Distillation Membranes For High Performance Desalination, Journal of Membrane Science 349, (2010) 295-303.
[38] F. Banat and J. Simandl, Theoretical and Experimental Study in Membrane Distillation, Desalination, 95 (1994) 39–52.
[39] A. Alklaibi and N. Lior, Membrane-Distillation Desalination: Status and Potential, Desalination 171 (2004) 111-131.
[40] J. Walton, H. Lu, C. Tumer, S. Solis and H. Hein, Solar and Waste Heat Desalination By Membrane Distillation, Desalination and Water Purification Research and Development Program Report, 81 (2004) .
[41] M. Sudoh, K. Takuwa, H. Iizuka and K. Nagamatsuya, Effects of Thermal and Concentration Boundary Layers on Vapor Permeation in Membrane Distillation of Aqueous Lithium Bromide Solution, Journal of Membrane Science.131 (1997)1-7.
[42] M. Dhahbi, S. Bouguech and R. Chouik, Numerical Study of the Coupled Heat and Mass Transfer in Membrane Distillation, Desalination 152 (2002) 245-252.
[43] C. H. H. Y. T.C. Chen, Theoretical Modeling and Experimental Analysis of Direct Contact Membrane Distillation, J. Membr. Sci. 330(1–2) (2009) 279–287.
[44] A. R.-A. A. E. G.-B. G. Zaragoza, Efficiency in the Use of Solar Thermal Energy of Small Membrane Desalination Systems for Decentralized Water Production, Applied Energy, 130 (2014) 491-499.
[45] A. C. B. N. M. D. S. G. T. C. A. L. H.C. Duong, Treatment of RO Brine from CSG Produced Water By Spiral-Wound Air Gap Membrane Distillation, A Pilot Study, Desalination 366 (2015) 121-129.