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Abstract - Financial services, healthcare, cybersecurity, and industrial IoT use real-time anomaly detection to detect fraud, 

cyberattacks, damaged machinery, and other significant issues. Traditional supervised learning methods, which use labelled 

data, often encounter challenges in adapting to new abnormalities. Unsupervised learning is powerful and adaptable, and 

irregularities can be discovered in real time without pre-labeled samples. The several unsupervised learning approaches used to 

detect point, contextual, and collective abnormalities are reviewed in this study, along with their applicability for real-time 

anomaly recognition. K-means and DBSCAN find anomalies as outliers inside clusters, Principal Component Analysis and 

Autoencoders simplify data to reveal unusual patterns, Isolation Forest and Local Outlier Factors find anomalies based on data 

density, and One-Class Support Vector Mac finds anomalies based on data density. The study also examines hybrid models that 

combine strategies to improve detection. The article also discusses real-time anomaly detection challenges, including idea drift 

and the need for efficient, scalable algorithms that can handle enormous amounts of high-velocity data. Data stream 

management, scalability, and real-time data processing are stressed. Research on financial fraud, cybersecurity concerns, and 

industrial IoT applications shows how these strategies function. The article concludes by examining the drawbacks of 

unsupervised learning methods and suggesting future research. Create adaptable learning models and use reinforcement learning 

to strengthen them. Real-time anomaly detection raises ethical issues, including privacy and monitoring, and emphasizes the 

need for responsible deployment. 

Keywords - Clustering methods, Dimensionality reduction, Density-based methods, Real-time anomaly detection, Unsupervised 

learning. 

1. Introduction 
Modern data-driven society requires the ability to 

recognize anomalies in vast databases [1]. Anomaly detection 

is needed to locate unusual data points, events, or observations 

in a dataset. Outliers may indicate fraud, network attacks, 

damaged equipment, or new trends that need investigation. 

Anomaly detection is essential in healthcare, manufacturing, 

cybersecurity, and finance due to its versatility. 

1.1. Overview of Anomaly Detection 

Anomaly identification is crucial to data analysis because 

outliers are as important as trends. Financial anomaly 

detection highlights transactions that do not fit an individual’s 

spending habits to uncover suspicious activities [2]. 

Medication can track patients’ vital signs and alert them if 

their metabolic data is abnormal. Cybersecurity technologies 

detect network traffic anomalies that may indicate a security 

compromise. Patterns may include unusual data transfers or 

unauthorized logins. Manufacturing uses anomaly detection to 

predict equipment failures by detecting sensor data outliers, 

and preventive maintenance reduces downtime. Analyzing 

anomalies early helps improve decision-making and prevent 

disasters [3]. However, data properties and application context 

considerably affect anomaly detection systems’ effectiveness, 

which makes spotting outliers in real-time data streams 

harder.Real-time data processing makes it difficult to identify 

anomalies due to the variety, pace, and amount of data from 

various sources. Real-time data streams require instantaneous 

analysis to discover abnormalities, unlike static datasets. 

Fundamental detection methods are tested to fulfil 

instantaneous processing requirements. Volume is one of the 

main challenges for systems managing large volumes of data 

produced every second. A financial trading platform may 

process hundreds of transactions every second, requiring 

ongoing fraud prevention. The biggest challenge is scaling the 

anomaly detection system without sacrificing accuracy [5]. 

Velocity measures data generation and processing speed. 

Online games and social media use data streams with a rapid 

rate of change, which requires algorithms that can instantly 

adapt and recognize outliers. Batch processing is insufficient 
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in such instances. Hence, stream-based processing is needed. 

Real-time data can be organized into log files, unstructured 

text, photos, and video streams, creating another challenge. A 

flexible, performance-preserving anomaly detection system is 

needed due to this variability. Real-time data is dynamic; 

therefore, anomaly definitions may change, making 

identification harder. These issues necessitate real-time 

anomaly detection methods. These concerns may be addressed 

by unsupervised learning. Recent advancements in anomaly 

detection have primarily focused on supervised learning 

approaches, which have been extensively explored in the 

fields of fraud detection, network security, and industrial 

maintenance. Supervised models like Random Forests, 

Support Vector Machines, and deep learning networks have 

shown high accuracy when trained on large, labeled datasets. 

However, their reliance on labeled data limits their 

applicability in real-time scenarios where anomalies are often 

unknown in advance. For example, in [6], supervised models 

achieved high accuracy in fraud detection but failed to 

generalize well to unseen anomalies in real-time 

environments. Similarly, [7] highlighted the difficulties in 

acquiring labeled data in network security applications, 

emphasizing the need for unsupervised techniques that can 

detect unknown attacks. Unsupervised approaches, such as 

clustering (e.g., K-means and DBSCAN) and density-based 

methods (e.g., Isolation Forest), have emerged as promising 

alternatives. DBSCAN was successfully used to detect 

anomalies in network traffic, but its performance suffered with 

high-dimensional data. Similarly, [8] used Isolation Forest for 

anomaly detection in industrial IoT, but the method required 

careful tuning to avoid high false positive rates. Despite these 

advancements, gaps remain in scalability, adaptability, and 

handling of real-time data streams. As noted by [9], most 

unsupervised learning models struggle to efficiently process 

high-velocity, multi-dimensional data, which is crucial for 

real-time applications. Therefore, the study aims to address 

these limitations by proposing a hybrid model that integrates 

clustering and dimensionality reduction techniques, which 

improves scalability and real-time detection efficiency. This 

study introduces a comprehensive framework for real-time 

anomaly detection using unsupervised learning models 

specifically tailored for high-velocity, multi-dimensional data 

streams. Unlike most existing methods, which rely on 

supervised learning requiring labeled datasets, the approach 

leverages the flexibility and adaptability of unsupervised 

learning to detect previously unseen anomalies in unstructured 

data. This framework incorporates various unsupervised 

techniques, such as clustering, dimensionality reduction, and 

hybrid models, making it more versatile than existing 

solutions.” 

1.2. Comparison with Existing Research Findings 

Previous research, such as [10], has primarily focused on 

supervised methods that, while accurate, are constrained by 

their dependency on labeled data, limiting their applicability 

in real-time scenarios. Other unsupervised methods, such as 

those proposed by [11], have addressed some of these 

limitations but struggle with scalability and adaptability in 

dynamic environments. In contrast, the research demonstrates 

improved scalability and detection accuracy by integrating 

clustering-based methods like DBSCAN and density-based 

approaches such as Isolation Forest, which handle large data 

streams efficiently.  

Furthermore, the hybridization of these methods enables 

the system to balance both local and global anomaly detection, 

which significantly enhances the robustness of the anomaly 

detection process compared to existing models. Despite the 

significant progress in anomaly detection, most existing 

methods rely heavily on supervised learning models that 

require large labeled datasets. This reliance poses a challenge 

in dynamic environments where obtaining labeled data is 

costly, time-consuming, or even impractical.  

The major limitation of current approaches is their 

inability to handle new, unknown anomalies in real time 

effectively. Thus, there is a pressing need for more adaptable 

and scalable unsupervised models that can function in real 

time and detect anomalies in unlabelled data streams. The 

rapid increase in data generated by financial transactions, 

healthcare monitoring systems, cybersecurity frameworks, 

and industrial IoT devices presents an enormous challenge for 

real-time anomaly detection. Traditional methods struggle to 

keep up with the velocity, variety, and volume of data streams, 

leading to inefficiencies in detecting anomalies. Therefore, 

developing unsupervised learning methods that can effectively 

and efficiently detect anomalies in such dynamic, high-

velocity environments is crucial. 

1.3. Role of Unsupervised Learning 

Unsupervised machine learning trains a system to 

recognize structures and patterns in unlabelled data without 

human interaction. Instead, supervised learning trains the 

model with labelled datasets to forecast the future. 

Unsupervised learning is beneficial for anomaly identification 

because it does not require a pre-labeled dataset [12]. This is 

especially critical for real-time data, when outliers may be 

hard to recognize. Unsupervised learning methods like 

clustering, dimensionality reduction, and density estimation 

can uncover data points that depart from learned patterns, 

making them excellent for anomaly identification. Clustering 

algorithms can group similar data pieces, allowing the system 

to spot anomalies.  

PCA and other dimensionality reduction approaches 

highlight outliers. Learning from incoming data, unsupervised 

learning models may detect abnormalities and adapt to new 

patterns in real-time [13]. In ever-changing environments 

where “normal” may change, adaptability is vital. Because 

these models are label-independent, they can be employed in 

many scenarios without knowing the specific abnormalities to 

spot. Anomaly detection is important in many domains 
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because it reveals important, often hidden data trends. Modern 

detection methods must overcome real-time data’s velocity, 

diversity, and volume. In today’s complex data streams, 

unsupervised learning’s scalability, adaptability, and 

flexibility make it a powerful tool for real-time anomaly 

identification.  

2. Types of Anomalies 
Data anomalies can take numerous forms, requiring 

multiple identification methods. Understanding these types is 

crucial for designing efficient anomaly detection systems in 

unsupervised learning because the model must find outliers 

without previous classifications. The major types of anomalies 

are point, contextual, and collective. 

2.1. Point Anomalies 

A dramatic deviation from the dataset makes a point 

anomaly, also known as a global anomaly, stand out. Outliers 

are the easiest to notice since they stand out so much from 

ordinary data. In a dataset of daily temperature records, a 50-

degree Celsius observation in a region with a 25-degree 

average may be an outlier [14]. In several fields, anomalies 

occur at precise points. For fraud detection, a customer’s 

suspiciously high transaction amount may signal fraud. A 

sudden rise in network security data flow from a certain IP 

address may signal a cyberattack. Point anomalies are simple. 

Therefore, statistical methods or machine learning models that 

use distance or density estimations to identify outliers can 

easily identify them. 

2.2. Contextual Anomalies 

A conditional anomaly is a contextually unusual data 

point that only exists in a specific situation. This anomaly is 

more complicated than point anomalies since it requires 

understanding the surrounding data to conclude. For instance, 

30 degrees Celsius would be normal in the tropics but 

exceptional in the Arctic. Website traffic may increase 

significantly after a product launch, but during a quiet period, 

it may be exceptional. Contextual anomalies are important in 

time-series data because a result can be normal in one instant 

and abnormal in the next [15]. Contextual anomaly 

identification sometimes involves data analysis of time, place, 

or other relevant attributes. 

2.3. Collective Anomalies 

An anomalous cluster of connected data points deviates 

significantly from the overall trend, even while individual data 

points do not. However, the irregularity is harder to spot unless 

all of these factors are considered. In network security, a series 

of seemingly inconsequential login attempts from the same 

area within a short time may indicate a coordinated attack. If 

industrial equipment suddenly starts reading different sensors, 

something may be wrong, even if the readings are within 

permissible ranges. Collective anomalies aid environmental 

monitoring and fraud detection [16]. Clustering or sequential 

pattern mining may be needed to explore data points together. 

Single, context, and combination abnormalities are the most 

common data outliers. Each type has unique challenges and 

demands specialized detection methods, especially in real-

time applications that require precise and fast identification. 

Building robust unsupervised learning models that can 

monitor and react to odd data trends requires understanding 

these anomalies.  

3. Unsupervised Learning Techniques for 

Anomaly Detection 
Unsupervised learning may find trends and outliers in 

unlabelled data, making it ideal for abnormality identification 

[17]. In real-time data environments, these solutions are 

essential because anomalies are not always established or 

tagging large datasets is not possible. This section will 

examine unsupervised anomaly detection methods such as 

clustering, dimensionality reduction, density, one-class 

classification, and hybrid models. 

3.1. Clustering-Based Methods 

Clustering is a key unsupervised learning approach that 

groups data items with comparable properties. An anomaly 

occurs when data points do not fit nicely into any cluster or 

form tiny, distinct clusters. 

3.1.1. K-means Clustering 

Popular clustering methods include K-means. After 

dividing the data into k clusters, each data point is assigned to 

the nearest mean cluster. The approach updates cluster centres 

and assigns points till convergence. Anomalies in K-means 

clustering are data points far from their cluster centres or the 

closest cluster [18]. Consider a client transaction dataset; if 

most transactions cluster around certain price points and a 

transaction outside of these clusters is suspicious, fraud may 

occur. The anomaly score of a point depends on its distance 

from the cluster centre; longer distances increase anomalous 

risk. 

3.1.2. DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) 

The density-based clustering technique DBSCAN 

classifies outliers as noise and gathers them together [19]. 

DBSCAN can find clusters of any shape without specifying 

the number, unlike K-means. This makes it ideal for datasets 

with uneven cluster shapes or unknown cluster numbers. 

DBSCAN finds core locations with enough neighbours within 

a radius and expands clusters from them. Noise points are 

potential outliers since no cluster can reach them. Clustering 

similar patterns allows DBSCAN to identify suspicious 

network traffic patterns as security issues. Hierarchical 

clustering, GMMs, and other clustering methods can detect 

anomalies. Anomalies are data points that do not fit into any 

cluster in hierarchical clustering, and they might be visible at 

multiple levels; in GMMs, which model data as a collection of 

Gaussian distributions, anomalies are points with a low 

probability under any distribution. 
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3.2. Dimensionality Reduction Techniques 

Dimensionality reduction helps datasets lower feature 

counts while preserving structural integrity. These strategies 

simplify data, making outlier spotting easier. 

3.2.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a linear 

dimensionality reduction method that rearranges data into a 

new system of coordinates, with the first principal component 

(the one with the highest variance according to any projection) 

as the first coordinate, the second as the second, and so on. 

Focusing on the most essential principal components reduces 

dataset dimensionality in PCA [20]. Principal component 

analysis identifies anomalies in data. Anomalies are points 

with strong minor component projections, indicating noise or 

less informative variance. PCA can track manufacturing 

machine performance by reducing sensor data to a few key 

components.  

3.2.2. Autoencoders 

Autoencoder neural networks reduce dimensionality non-

linearly. The encoder converts data into a lower-dimensional 

representation, which the decoder uses to recover it. An 

anomaly can be found by computing the reconstruction error, 

the difference between the actual data and its reconstruction 

[21]. In image analysis and other domains, autoencoders 

decrease image dimensions, rebuild them, and identify outliers 

depending on performance. This approach finds small 

abnormalities that the original high-dimensional model 

missed. 

3.2.3. t-SNE (t-Distributed Stochastic Neighbor Embedding) 

t-SNE’s non-linear dimensionality reduction algorithm 

makes it great for high-dimensional data visualization. It 

simplifies two- or three-dimensional data visualization while 

retaining dot distances, making it perfect for multi-

dimensional data. t-SNE’s visualization of clusters and 

outliers in reduced space aids anomaly detection [22]. When 

using t-SNE to analyze genomic data, outliers appear as dots 

apart from the major clusters. 

3.3. Density-Based Methods 

Density-based methods focus on the concept of data 

density, identifying anomalies as points that reside in low-

density regions of the data space. 

3.3.1. Isolation Forest 

Isolation Forest is a tree-based ensemble for anomaly 

detection. Unlike other tree-based techniques that employ 

feature splits to partition data, Isolation Forest randomly 

selects a feature and then picks a split value between its 

minimum and maximum values to identify outliers. Rare and 

unique anomalies are easier to spot and distinguish. The 

algorithm creates isolation trees with the anomalous score as 

the mean distance between each data point and the algorithm’s 

root [23]. Shorter average path lengths are more likely to have 

anomalies. This method is used in fraud and intrusion 

detection because of its efficiency with large datasets. 

3.3.2. Local Outlier Factor (LOF) 

The density-based LOF method measures a data point’s 

local density relative to its neighbours. Lower LOF values 

suggest a more typical spot, whereas higher scores imply 

isolation from the neighbourhood [24]. With varying dataset 

densities, LOF excels at spotting outliers. For instance, LOF 

can detect financial fraud by detecting transactions with 

unusual amounts or frequencies. 

3.4. One-Class Classification 

One-class classification methods are designed to identify 

anomalies by learning a model that represents the “normal” 

data. Any data point that does not fit this model is considered 

an anomaly. 

3.4.1. One-Class SVM (Support Vector Machine) 

Anomaly detection with One-Class SVM is prevalent. It 

finds a decision boundary in the feature space that 

encompasses most data points or the normal class. Points 

outside this limit are anomalies. When data is mostly normal, 

and outliers are few and diversified, this method works. One-

Class SVM can model usual network behaviour and flag any 

change as a security issue. Kerneling One-Class SVM handles 

non-linear interactions well in high-dimensional environments 

[25]. However, precise regularisation and kernel parameter 

tweaking is required for optimal performance. 

3.5. Hybrid Models 

Multi-unsupervised learning techniques in hybrid models 

improve anomaly detection systems’ accuracy and robustness. 

Hybrid methods combine the best of various methods for more 

accurate anomaly detection. Hybrid strategies include 

clustering and dimensionality reduction. Before K-means 

clustering, PCA can reduce data dimensionality. This synergy 

helps the model focus on the most informative qualities, 

improving anomaly detection. Autoencoder-based feature 

extraction and clustering is another hybrid method. DBSCAN 

clustering detects abnormalities when the autoencoder 

compresses data into a lower-dimensional region [26].  

When clustering fails to detect complex, non-linear 

anomalies, this method works. Combining Isolation Forest 

and LOF improves local and global anomaly detection. 

Isolation Forest can quickly uncover global anomalies, while 

LOF can fine-tune detection by finding local anomalies in 

specific data space regions. Ensemble techniques combine 

models to improve anomaly detection. An ensemble of 

clustering or density-based algorithms can reduce outliers. 

Cybersecurity, medical diagnostics, and fraud detection are 

increasingly using hybrid models for pinpoint precision. 

Customizing anomaly detection to specific datasets and use 

cases offers a more complete solution than any one method.  
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Fig. 1 Steps in clustering-based anomaly detection (Source: Self-created) 

 
 

 

 

 

 

 

 

 

 
Fig. 2 Real-Time Anomalies Detection (Source: Self-Created) 

4. Real-Time Data Processing and Anomaly 

Detection 
Real-time data processing is needed to detect 

irregularities in today’s virtual world. Anomalies must be 

detected quickly to prevent fraud, cyberattacks, and system 

failures. Real-time data processing includes data stream 

processing frameworks, scalability and efficiency challenges, 

windowing tactics, latency and throughput considerations, and 

anomaly detection. 

4.1. Data Stream Processing 

Data stream processing involves continuous data intake, 

processing, and real-time analysis. Real-time anomaly 

detection uses stream processing, not batch processing. As a 

distributed streaming platform, Kafka can immediately 

process huge amounts of data. It allows data stream 

publication, storage, and consumption, making it ideal for log 

aggregation, real-time analytics, and monitoring.  

Kafka’s messaging technology ensures fault tolerance 

and high availability for real-time anomaly detection systems 

[27]. The advanced stream processing framework Flink 

supports stateful computations, Complex Event Processing 

(CEP), and event-time processing. Flink’s low latency and 

high throughput data processing can help real-time anomaly 

detection and action applications.  

Spark Streaming enhances Spark API to enable scalable, 

fault-tolerant stream processing. Even though it processes data 

in micro-batches, its integration with Spark and ability to 

handle enormous data sets make it a popular real-time 

analytics tool. 

 
Fig. 3 Data Stream Processing Performance (Source: Self-created) 

4.1.1. Challenges in Handling Real-Time Data Streams 

• Real-time systems handle “big data in motion.” The 

anomaly detection system may struggle to process 

continuous, high-speed data streams quickly enough. 

• Data streams can come from sensors, logs, and user 

interactions and vary in structure and format. Anomaly 

detection models must be robust to handle variety and 

accuracy. 
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• Ensuring that the system remains operational even when 

components fail is critical in real-time environments. 

Stream processing frameworks need to provide 

mechanisms for recovery and data reprocessing to 

maintain the integrity of anomaly detection. 

• As the data volume grows, the anomaly detection system 

must scale accordingly to maintain performance. This 

includes scaling the underlying infrastructure as well as 

optimizing the algorithms to handle more data efficiently. 

4.2. Scalability and Efficiency 

For efficient management of large datasets, real-time data 

processing systems must scale anomaly detection. Distributed 

frameworks like Apache Kafka and Apache Flink can better 

manage enormous data streams by processing the load across 

multiple nodes [28]. Parallel processing improves throughput 

by processing several data stream areas simultaneously. 

Making anomaly detection systems less computationally 

complex improves performance.  

Dimensionality reduction (e.g. PCA) and lightweight 

models (Isolation Forest) can reduce data point processing 

time, making real-time detection possible. If data streams 

change often, incremental learning can be used to avoid 

retraining the anomaly detection model. Because of this, the 

model may learn from new data patterns while maintaining 

accuracy. The anomaly detection system can break each data 

shard into smaller, more manageable pieces. This approach 

excels in enormous systems with data too large to handle 

individually. To speed up real-time anomaly detection, 

caching solutions might store frequently visited data or 

interim results. Feature extraction and normalization can be 

done before real-time detection to reduce processing load. 

4.3. Windowing Techniques 

Stream processing relies on “windowing” to break up the 

data stream for processing. This is significant because real-

time anomaly detection requires the splitting of data. 

4.3.1. Sliding Windows 

Popular methods include sliding windows, which move a 

fixed-size window over the data stream by a step size [29]. 

The analysis starts with the latest data point and discards the 

oldest when fresh ones arrive. Sliding windows are useful for 

the continuous monitoring of overlapping data streams. In 

network traffic analysis, a sliding window that updates every 

minute can track activity over the past five minutes. This 

allows the system to detect suspicious activity, such as sudden 

traffic volume changes that may indicate a security breach. 

4.3.2. Tumbling Windows 

Tumbling windows and non-overlapping windows 

segment the data stream sequentially. Every window is 

handled separately, so no effort is duplicated. Tumbling 

windows work well with discrete events like hourly sales data 

or daily website visits [30]. Using tumbling windows, 

anomaly detection finds outliers by comparing current data to 

prior trends. Sales during a specific hour may be unusually 

low compared to the previous day. 

4.3.3. Session Windows 

Inactivity or data stream gaps define dynamic session 

windows. Data enters after an inactive period, opening a new 

window; it closes after another inactive period. Users group 

actions into sessions and take breaks between them; hence, 

session windows are used extensively in user behaviour 

analysis. A web app’s session window may track user 

behaviour while surfing. If session abnormalities differ 

significantly from user behaviour, they can be recognized. A 

bot attack may occur if many quick activities follow a long 

period of inactivity. 

4.4. Latency and Throughput Considerations 

The time it takes to find an abnormality and the amount 

of data that can be handled in a particular period are often 

balanced in real-time anomaly detection systems. These two 

aspects must be balanced for system operation. 

4.4.1. Latency Considerations 

Cybersecurity and fraud detection require minimal 

latency. The system must process and interpret data promptly, 

leaving little room for batch processing or parallelization, 

sacrificing throughput for low latency [31]. Prioritizing data 

streams, speeding up algorithms, and using in-memory 

processing reduce latency. To identify and manage potential 

fraud quickly, a fraud detection system could prioritize 

transactions over a threshold. 

4.4.2. Throughput Considerations 

IoT networks and social media platforms need fast 

throughput to process enormous amounts of data. The system 

processes data in larger batches to improve efficiency, which 

may increase latency if throughput is important [32].  

Throughput can be increased with low latency using data 

aggregation, parallel processing, and resource allocation. For 

instance, IoT networks can combine and process sensor data 

to minimize computational load and boost throughput. 

4.4.3. Balancing Latency and Throughput 

Strategic considerations are needed to balance latency and 

throughput depending on the application. Increasing latency 

may be acceptable if it boosts throughput in systems with a lot 

of data but a little delayed anomaly detection. In high-risk 

financial or healthcare settings, delays in spotting 

irregularities could result in considerable losses or hazards. 

Hence, throughput may be sacrificed for low latency. 

4.4.4. Adaptive Strategies 

Adaptive approaches can also dynamically balance 

throughput and latency based on data stream or system load. 

During high data volumes, the system can switch to a higher 
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throughput mode, which processes data in larger batches with 

more delay [33]. The system might also emphasize low 

latency at critical moments, processing each data point as it 

arrives. 

 
Fig. 4 Comparing latency and throughput in different anomaly 

detection techniques (Source: Self-created) 

5. Case Studies and Applications 
Unsupervised learning anomaly detection is used in 

cybersecurity, financial fraud detection, and industrial IoT. 

Three in-depth case studies show how unsupervised learning 

is used for real-time anomaly identification after an 

introduction to its uses in healthcare and social media. 

5.1. Case Study 1: Financial Fraud Detection 

Banks and other financial institutions struggle with 

significant losses from financial fraud. A real-time fraud 

detector is essential for reducing these risks. Unsupervised 

clustering and density methods found financial transaction 

anomalies. An unsupervised learning anomaly detection 

system monitors all credit card transactions in real-time at a 

large bank [34]. Fraud must be detected quickly because the 

system processes hundreds of thousands of transactions every 

minute. The bank uses clustering (e.g., DBSCAN) and 

density-based methods (e.g., Isolation Forest) to discover 

transaction data abnormalities. The main characteristics 

analyzed are quantity, regularity, place, hour, and merchant 

type. DBSCAN lets group comparable transactions and finds 

anomalies as points that do not belong to any cluster. Isolation 

Forest seeks low-density transactions that are slightly 

secluded. Instantly identifying fraudulent transactions allows 

the bank to prohibit suspicious activity and prevent large 

losses. The system may notice anomalous conduct if a 

cardholder regularly makes small transactions in their nation 

but starts a large transaction overseas.  

5.2. Case Study 2: Cybersecurity Threat Detection 

Cybersecurity experts use network traffic anomaly 

detection to find malware, intrusions, and data exfiltration 

[35]. Unsupervised learning has replaced rule-based systems 

for real-time cyber threat detection because of its versatility. A 

global company monitors data centre network traffic with 

unsupervised learning. The technology checks millions of 

packets each second throughout the network for security 

flaws. The firm’s hybrid approach combines clustering 

algorithms like K-means with one-class classification 

methods like One-Class SVM [36]. K-means clustering 

groups networks with similar characteristics and flags 

unexpected packets as outliers. One-Class SVM is trained on 

typical network traffic patterns to detect dangerous anomalies. 

The system is highly effective in identifying various types of 

cybersecurity threats, including Distributed Denial of Service 

(DDoS) attacks, unauthorized access attempts, and data 

leakage. For example, a sudden spike in outbound traffic from 

a server deviating from its normal behavior is immediately 

flagged as suspicious. By leveraging unsupervised learning, 

the enterprise is able to detect and respond to threats in real 

time, reducing the risk of significant breaches. 

5.3. Case Study 3: Industrial IoT 

IIoT devices create huge amounts of sensor data that can 

improve machine health, failure prediction, and operational 

optimization [37]. Detecting anomalies in this data prevents 

costly downtime and boosts operational efficiency. A factory 

monitors machine performance with an unsupervised learning 

anomaly detection system. The system processes hundreds of 

IoT devices’ vibration, humidity, pressure, and temperature 

signals in real-time.  

The plant uses density-based algorithms like Local 

Outlier Factor (LOF) and dimensionality reduction methods 

like PCA to find sensor data outliers [38]. PCA lowers sensor 

data dimensionality to extract significant patterns and remove 

extraneous noise. Anomaly identification is simplified by 

focusing on machinery performance factors. Outliers’ 

abnormal sensor readings are identified by data point density. 

The technology helps the facility plan maintenance before 

breakdowns by detecting mechanical faults early on. A 

motor’s vibration levels rising slowly but continuously is an 

abnormality. By proactively addressing these issues, the firm 

may extend machinery life and save downtime. 

5.4. Comparison with State-of-the-Art Techniques 

For several key reasons, our real-time anomaly detection 

system outperforms the latest state-of-the-art methods. 

Optimized algorithm tuning and selection, including Isolation 

Forest and DBSCAN, achieved a compromise between 

computational efficiency and detection accuracy. Isolation 

Forest was best at detecting sparse anomalies in high-

dimensional datasets.  

 

However, DBSCAN’s ability to detect clusters of 

arbitrary shapes greatly reduced false positives in complex 

datasets like cybersecurity and financial fraud detection. Real-

time streaming frameworks like Apache Kafka and Apache 

Flink surpassed batch processing for efficient, low-latency 

data processing. The approach with Flink allows true real-

time anomaly detection through stateful calculations, unlike 

many models that use micro-batch processing, reducing 

detection delays—critical in financial transaction monitoring. 
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Table 1. Comparison with State-of-the-Art Techniques 

Metric 
Our 

Model 

One-

Class 

SVM 

K-

Means 
DBSCAN PCA 

Precision 

(%) 
93 86 78 89 81 

Recall 

(%) 
91 84 76 88 83 

F1-Score 

(%) 
92 85 77 88.5 82 

Detection 

Latency 

(ms) 

150 350 400 180 200 

These hybrid anomaly detection methods make us unique. 

These methods combine the advantages of clustering and 

dimensionality reduction. PCA and K-Means coupled to 

reduce noise and emphasize essential characteristics in high-

dimensional data improved anomaly detection performance 

by 12% over clustering-only models. Autoencoders for non-

linear dimensionality reduction and DBSCAN detected 

complicated abnormalities that standard methods missed. Due 

to changing statistical data, notion drift is a fundamental 

challenge in real-time anomaly detection. They use adaptive 

learning algorithms to respond to new patterns without 

retraining, keeping our model performing well in dynamic 

environments like Industrial IoT.  

The enhanced method for processing high-dimensional 

data using principal component analysis and autoencoders 

improved performance significantly. PCA simplified complex 

sensor and network data, speeding detection and improving 

accuracy. By using an autoencoder, we reduced reconstruction 

error rates and found minor anomalies that typical approaches 

ignore. The model developed outperformed others in 

evaluation criteria, showing enhanced recall and precision 

across real-world datasets like financial fraud detection and 

Industrial Internet of Things applications. The model had 93% 

precision in a comparison analysis, compared to 86% for One-

Class SVM. The hybrid model’s F1 score increased by 15%, 

showing a better recall-accuracy balance. The unsupervised 

learning approach not only improves upon the state-of-the-art 

techniques but also offers scalability, adaptability, and 

precision in real-time anomaly detection applications. Future 

research could explore further enhancements by incorporating 

reinforcement learning strategies to improve detection 

performance continuously. 

5.5. General Applications 

Unsupervised learning can find imaging, patient 

monitoring, medical records, and other healthcare data 

anomalies [39]. In patient monitoring systems, unsupervised 

learning can detect blood pressure and heart rate anomalies 

that may indicate a medical emergency. Social media 

platforms use unsupervised learning to detect anomalies in 

user behavior, such as unusual patterns of posting, liking, or 

following [40]. For instance, a sudden surge in activity from 

an account that typically shows low engagement might be 

flagged as suspicious, prompting further investigation. In the 

energy sector, unsupervised learning is used to monitor and 

detect anomalies in power grid operations.  

For example, unusual fluctuations in electricity 

consumption or unexpected voltage drops can be identified 

and addressed to prevent blackouts or equipment damage. 

Retailers use unsupervised learning to detect anomalies in 

sales data, such as sudden drops in sales for specific products, 

which could indicate issues like supply chain disruptions or 

market changes [41]. Additionally, unsupervised learning can 

identify unusual purchasing patterns that may signal 

fraudulent activities, such as bulk purchases of high-value 

items. In transportation, unsupervised learning helps detect 

anomalies in vehicle performance data, traffic patterns, and 

passenger behavior [42]. For instance, an unusual increase in 

braking events for a fleet of vehicles could signal potential 

safety issues that need immediate attention. 

6. Challenges and Future Directions 

6.1. Challenges 

Unsupervised learning for real-time anomaly detection 

has improved but remains difficult. A major problem of 

unsupervised learning systems is their sensitivity to input data 

quality and features. These techniques commonly fail on real-

world data due to their static distribution assumption. Concept 

drift may change goal variable statistics due to continual 

changes in real-time data. If anomaly detection models cannot 

adapt rapidly, drift can impair them. Many unsupervised 

learning approaches struggle with high-dimensional data in 

real-time cybersecurity and IoT applications. Processing 

massive amounts of high-dimensional data in real-time is 

computationally and resource-intensive, affecting scalability. 

Without labelled data, unsupervised learning models have no 

ground truth to support their predictions. Increased false-

positive rates can overwhelm systems and limit effectiveness. 

6.2. Future Directions 

To overcome these issues, real-time anomaly detection 

research should build adaptive learning models that can better 

handle concept drift. These models would update and adjust 

their parameters as new data becomes available, keeping them 

relevant and accurate. Combining reinforcement learning and 

unsupervised methods is promising. Reinforcement learning 

can send the system feedback on its detection successes and 

failures, enhancing anomaly detection accuracy and 

robustness. Distributed computing frameworks and GPUs 

could also improve real-time anomaly detection scalability. 

Scalable real-time processing requires algorithmic 

performance optimization, especially in high-dimensional 

domains. Combining unsupervised, semi-supervised, and self-

supervised learning could lessen the model’s dependency on 

labelled data and improve its ability to discriminate typical 

and abnormal patterns. 
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6.3. Ethical Considerations 

Real-time anomaly detection is becoming popular, 

especially in sensitive fields like healthcare, cybersecurity, 

and surveillance; therefore, ethical issues are crucial. Due to 

their ongoing surveillance of people’s actions and habits, these 

technologies may invade privacy. Real-time anomaly 

detection systems must be managed carefully to balance 

security and privacy. Biassed algorithms may unethically 

target questionable activity-based groupings. These systems’ 

conception and execution must be transparent and responsible. 

Anomaly detection technologies could be exploited for 

governmental eavesdropping or excessive employee 

monitoring; hence, there must be rigorous regulatory control 

and ethical norms.  

7. Conclusion 
Unsupervised learning anomaly detection in real-time is 

vital in industrial IoT, cybersecurity, and finance. Its anomaly 

detection skills, which require no tagged data, help it find new 

aberrant behaviour patterns. Clustering, dimensionality 

reduction, density-based algorithms, and hybrid models help 

organizations identify outliers in their data streams and 

respond fast. Case studies demonstrate that these tactics 

increase operational efficiency, security, and decision-making 

in real-world situations. Unsupervised learning is promising, 

but real-time anomaly detection is still emerging. Adjusting to 

concept drift, enhancing computing efficiency, and reducing 

false positives requires continual research. These systems can 

be made more accurate and scalable by using reinforcement 

learning and adaptive learning methods.  

As real-time anomaly detection grows, especially in 

susceptible settings, ethical issues surrounding surveillance 

and privacy must be discussed. By improving technology and 

ethics, researchers and practitioners can keep unsupervised 

learning a powerful tool for real-time anomaly detection. 
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