
 SSRG International Journal of Computer Science and Engineering Volume 11 Issue 10, 54-61, October 2024

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V11I10P107 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

The Impact of Cloud Architecture and Design on the

Effectiveness of Rate-Based Distributed Denial of

Service Attacks

Manish Sinha

Facebook, California, USA.

1Corrosponding author : manishsinha27@gmail.com

Received: 25 August 2024 Revised: 30 September 2024 Accepted: 19 October 2024 Published: 31 October 2024

Abstract - A highly available service is now a cornerstone requirement of any cloud service. Amongst the threats faced by any

cloud service, Distributed Denial of Service (DDoS) Attacks are a significant concern when designing services with high

availability. Good design decisions help detect and mitigate attacks quickly, whereas poor decisions can introduce tech debt and

complicate the detection and mitigation of attacks. In this paper, we will focus primarily on rate-based DDoS attacks, a kind of

attack in which the malicious actor tries to exhaust the service's resources by sending fraudulent requests from zombie computers

worldwide, making it hard to detect and pinpoint the source of the attack. We will explore different architecture and design

decisions that can be used to mitigate DDoS attacks with minimum degradation of latency.

Keywords - Cloud architecture, Cloud computing, Cybersecurity, Performance analysis, Distributed denial of attacks.

1. Introduction
In the recent decade, cloud services have become an

integral part of our digital and web infrastructure, and they

have now relieved businesses from having to implement all

the low-level functionality and capability that power their web

service. With higher-order features available on cloud

providers, companies now have a reliable, scalable, cost-

effective solution where they can outsource much work that is

not part of their core competency [1]. With the growing reliance

on cloud services, the security risk grows significantly and

distributed denial-of-service attacks can compromise the

availability of these services. Primarily, DDoS attacks work

by flooding the target service with a vast amount of traffic,

which is higher than what the service was initially designed

for [2].

The distributed nature of such an attack makes it difficult

to distinguish it from legitimate customer traffic. Such attacks

can cause degradation of the quality of service, which

customers can experience as slow loading times, or it can lead

to complete unavailability of the service, which is usually

shown as “This site cannot be reached,” which is displayed by

the browser when the server returns 503. If the load balancing

cannot accept further requests, we get the “The request has

timed out” error on the browser. DDoS attacks are highly

effective and can achieve that level because they use a fleet of

compromised devices, known as a botnet [3]. A botnet is a

network of infected devices like laptops, desktops, and

Internet-of-Things devices like smart refrigerators and

intelligent weight scales. A malicious actor controls these

without the knowledge of the owner of the infected device.

Mirai Botnet [4] is one of the most infamous botnets. It arose

in 2016 and comprises thousands of infected IoT devices like

cameras and routers. One of the most notorious impacts of

Mirai has been on Dyn, a DNS provider. Mirai has evolved

since becoming the basis of many other botnet systems. The

two primary ways service availability can be affected are bad

design decisions that cause degradation under heavy loads

from legitimate users and Distributed Denial of Service

attacks that seek to overwhelm the compute, network, and data

capacity associated with the service.

Unlike regular Denial of Service attacks, which are much

more centralized, Distributed Denial of Service (DDoS)

attacks are distributed in design, making it difficult to find a

mitigation strategy [5]. Not all DDoS attacks are created equal

and can come in different flavors. A DDoS attack might send

low traffic per IP but from enough machines that the total

traffic exceeds the service's capacity. This is primarily an issue

with websites that must be designed or configured to handle

large amounts of traffic. Mitigating the effects of DDoS is a

complex problem that requires a combination of well-

designed cloud architecture, effective defense mechanisms

built into the system [6], and proper incident response planning.

Poor design behaves like a weak link in the chain, becoming a

single critical point of failure. A good design will mitigate the

http://www.internationaljournalssrg.org/

Manish Sinha / IJCSE, 11(10), 54-61, 2024

55

issue ahead of time rather than let the effects propagate

throughout the architecture. This paper primarily focuses on

the effects of cloud architecture designs in the event of a

DDoS, including design considerations that can help us

maintain the high availability and security of the service.

2. Related Work
Research has been conducted on the impact of DDoS on

cloud services. Such research has proposed different

mitigation techniques with varying levels of effectiveness.

Somani et al. (2017) discuss four attack prevention

approaches: Challenge Response, Hidden Servers/ports,

Restrictive Access, and Resource Limit [7]. This research

describes how DDoS attacks happen, their types and flavors,

and their eventual impact on service availability.

Idhammad et al. (2018) explore a semi-supervised

machine learning approach for detecting DDoS attacks. It

distinguishes between Direct DDoS attacks and reflection-

based DDoS attacks. The approach uses a sliding time window

algorithm [8] to estimate the entropy of network header features

of the network traffic.

The proposed approach achieves a high accuracy rate of

over 98%. Bhardwaj et al. (2021) focus on the architectural

layer of DDoS mitigation efforts in cloud services. It

introduces a multi-layer defense that uses techniques like

traffic filtering, load balancing, and auto-scaling [9]. This is

with the singular focus on achieving high service availability

even when the service is experiencing DDoS attacks.

The architecture is evaluated using synthetic traffic and

shows its effectiveness against DDoS attacks compared to

traditional approaches. None of the above research covers the

actual architecture design, and none of them focuses on rate-

limiting capability as a cornerstone ability to mitigate DDoS

attacks.

3. Methodology
This section will explore multiple methods and

approaches to mitigate rate-based DDoS attacks. We will use

AWS WAF for reference, and all our materials, including

sample rate-limiting rules, will be based on AWS WAF

syntax.

These rules have pros and cons, and the effectiveness of

each approach is highly reliant on the architecture of the cloud

service. We will review multiple approaches and explain when

each would be a practical rule.

3.1. Rate Limiting per IP address

3.1.1. Overview

This rule allows specific traffic from an IP address in a

specified time window. In the case of AWS WAF, if not

specified, the default time window is 5 minutes, but it can be

overridden to be 1 minute, 2 minutes, or 10 minutes [10].

3.1.2. Pros and Cons

Pros Cons

Very effective in blocking

individual attackers or

single compromised

devices

If multiple users use the

same IP, they can be

negatively affected. For

example, users behind a

NAT

Simple and easy to write

and maintain in the long

run. Requires less time to

understand

If the attacker wants to

DDoS a service, they can

get around IP-based rate

limits by using multiple IPs

3.1.3. Example rule
{

 "Name": "RateLimitPerIP",

 "Priority": 1,

 "Action": {

 "Block": {}

 },

 "RateBasedStatement": {

 "Limit": 1000,

 "AggregateKeyType": "IP"

 },

 "VisibilityConfig": {

 "SampledRequestsEnabled": true,

 "CloudWatchMetricsEnabled": true,

 "MetricName": "RateLimitPerIP"

 }

}

3.1.4. Architecture Considerations

This approach is more useful if the service’s traffic is

served via a Content Delivery Network (CDN). It should be

implemented at the edge. If no CDN is used, this rule should

be used at the Load Balancer or API Gateway level.

Implementing IP-based rate limits at the edge rather than the

origin server is more computationally efficient. If the CDN

uses Anycast to route traffic to the closest PoP [11], then each

PoP serves traffic for a mostly exclusive set of IP addresses.

Rate limiting can be much more effective as the key space for

the rate-limiting dictionary would be smaller, using less

memory of the PoP infrastructure. If this rate limiting is

implemented at the Load Balancer inside one or more specific

regions of the cloud infrastructure, it would have to rate limit

a much larger subset of IP addresses. Considering this, rate

limiting per IP is most useful when deployed on edge servers.

3.2. Rate Limiting by Country or Region

3.2.1. Overview

This rule allows specific traffic from a country or a

geographical region in a specified time window [12]. This can

be useful for services whose primary business is in a particular

country and receives limited traffic from outside that region.

For example, a state’s unemployment portal can have a higher

rate limit for traffic originating in that state and a much tighter

limit for traffic from the country but out of that state. Lastly,

Manish Sinha / IJCSE, 11(10), 54-61, 2024

56

traffic outside that country can be significantly restricted but

not blocked.

3.2.2. Pros and Cons

Pros Cons

Possible to rate limit or

block traffic from unwanted

regions or sanctioned

countries.

Possible for legitimate

users to be blocked or rate-

limited if the threshold is

not set adequately.

Allows for much finer-

grained control over traffic

from specific regions for

effective allocation of

resources

Attackers can use VPNs or

proxies to bypass such

geographical restrictions.

3.2.3. Example rule
{

 "Name": "RateLimitByUSCA",

 "Priority": 2,

 "Action": {

 "Block": {}

 },

 "RateBasedStatement": {

 "Limit": 5000,

 "AggregateKeyType": "IP",

 "ScopeDownStatement": {

 "GeoMatchStatement": {

 "CountryCodes": ["US", "CA"]

 }

 }

 },

 "VisibilityConfig": {

 "SampledRequestsEnabled": true,

 "CloudWatchMetricsEnabled": true,

 "MetricName": "RateLimitByCountry"

 }

}

3.2.4. Architecture Considerations

This kind of rate-limiting rule can be implemented either

at the edge or at the load balancer level. The number of “keys”

would be limited to the number of countries or geographic

areas. It is still considerably fewer than IP addresses. The total
[13] IPv4 addresses is 1032, and the total IPv6 addresses is 10128.

Rate-limiting by country or region is much more

computationally efficient than by IP addresses. We can see

that this rate-limit rule is not dependent on the architecture of

the service since this rule can be enforced at any level of the

architecture stack.

3.3. Rate Limiting by Known Bad IP addresses

3.3.1. Overview

The approach ties in with rate-limiting IP addresses, with

a twist that the limits are significantly lower for a list of known

bad IP addresses [14]. Ideally, we should block these IP

addresses from accessing the service, but that is not feasible.

IP addresses are randomly assigned to end users,

indiscriminately blocking access can affect legitimate users.

Since these IP addresses have a known history of abuse, we

should allow them access to the service at a much lower rate.

3.3.2. Pros and Cons

Pros Cons

Manage traffic from

known bad IPs without

completely blocking them

It requires us to maintain a

list of known bad IP

addresses that can be

fraught with mistakes.

Allows for flexibility of IP

addresses to be added and

removed from the list at

regular intervals without

updating the rule

It is not always effective

since bad actors can learn

the known bad IP addresses

when they get throttled and

switch to a new IP address.

3.3.3. Example rule
{

 "Name": "RateLimitBadIPs",

 "Priority": 3,

 "Action": {

 "Block": {}

 },

 "RateBasedStatement": {

 "Limit": 100,

 "AggregateKeyType": "IP",

 "ScopeDownStatement": {

 "IPSetReferenceStatement": {

 "ARN": "arn:aws:wafv2:us-east-

1:123456789012:regional/ipset/BadIpSet/

1234a1b2-5678-90ab-1234-c56789defgh"

 }

 }

 },

 "VisibilityConfig": {

 "SampledRequestsEnabled": true,

 "CloudWatchMetricsEnabled": true,

 "MetricName": "RateLimitBadIPs"

 }

}

3.3.4. Architecture Considerations

When it comes to known bad IP addresses, it should be

implemented at multiple levels of the cloud architecture.

Depending on the CDN, it might require its origin server to be

publicly accessible [15]. This opens up a path for the malicious

actors to bypass CDN and attack the origin. Applying rate

limits to all the layers ensures that no matter the future changes

to the architecture, known bad IP cannot misuse the server

resources, provided the list of IP addresses is regularly

updated.

3.4. Rate Limiting by User Agents

3.4.1. Overview

This rule allows the service owner to limit the traffic from

specific types of user agents [16], like curl or Python-

Manish Sinha / IJCSE, 11(10), 54-61, 2024

57

requests/x.y.z, which is used by bots or web scrapers.

Additionally, we can use it to allow certain User-Agent

patterns with a much higher traffic rate.

3.4.2. Pros and Cons

Pros Cons

Low effort and high

reward to block specific

tools or scripts written by

low-effort

User agents are sent by the

clients themselves and can

easily be spoofed.

Useful for rate-limiting

blocking traffic from

outdated or suspicious user

agents

Legitimate users using

non-popular browsers can

be significantly affected.

3.4.3. Example rule
{

 "Name": "RateLimitUserAgents",

 "Priority": 4,

 "Action": {

 "Block": {}

 },

 "RateBasedStatement": {

 "Limit": 500,

 "AggregateKeyType": "IP",

 "ScopeDownStatement": {

 "ByteMatchStatement": {

 "SearchString": "curl",

 "FieldToMatch": {

 "SingleHeader": {

 "Name": "user-agent"

 }

 },

 "TextTransformations": [

 {

 "Priority": 0,

 "Type": "LOWERCASE"

 }

],

 "PositionalConstraint":

"CONTAINS"

 }

 }

 },

 "VisibilityConfig": {

 "SampledRequestsEnabled": true,

 "CloudWatchMetricsEnabled": true,

 "MetricName":

"RateLimitUserAgents"

 }

}

3.4.4. Architecture Considerations

This kind of rate limiting should not be implemented at

the edge. This is especially true if most of the service's traffic

is from valid browsers with valid user agents. Implementing

this rule on the edge at the PoP would result in a performance

penalty for most users just for restricting a smaller subset of

bots. The best place to implement this rate-limiting rule would

be the Load Balancer running on the service infrastructure.

3.5. Different Rate Limits for URL Paths

3.5.1. Overview

This approach considers different resource availability

and operational complexity of different operations and

features of a service. Some operations [17], like login and data

aggregation, are expensive and can become a bottleneck,

bringing down the service if the attacker figures out the

expensive operations. On the other hand, we can list down the

cached paths [18] and allow them much higher rate limits.

3.5.2. Pros and Cons

Pros Cons

Optimize resource

consumption based on the

requirements of each path

It requires careful

categorisation analysis and

understanding the resources

available for each path.

Allows for fine-tuned

control – higher rates for

static cached content and

lower for expensive

operations

It's not really a solution

since expensive

paths/routes can still be

DDoS-ed.

3.5.3. Example rule
{

 "Name": "RateLimitByPath",

 "Priority": 5,

 "Action": {

 "Block": {}

 },

 "RateBasedStatement": {

 "Limit": 1000,

 "AggregateKeyType": "IP",

 "ScopeDownStatement": {

 "ByteMatchStatement": {

 "SearchString": "/api/",

 "FieldToMatch": {

 "UriPath": {}

 },

 "TextTransformations": [

 {

 "Priority": 0,

 "Type": "URL_DECODE"

 }

],

 "PositionalConstraint":

"STARTS_WITH"

 }

 }

 },

 "VisibilityConfig": {

 "SampledRequestsEnabled": true,

 "CloudWatchMetricsEnabled": true,

 "MetricName": "RateLimitByPath"

 }

}

Manish Sinha / IJCSE, 11(10), 54-61, 2024

58

3.5.4. Architecture Considerations

An excellent place to implement such a rate-limiting rule

would be on the API itself. AWS allows us to associate API

Gateway with AWS WAF and enforce rate-limiting on paths

and routes of a RESTful service.

4. Discussion and Considerations
4.1. Design Diagram

Fig. 1 An outline of how the traffic flows from one component to

another

4.2. API Server behind CDN

Depending on the architecture and specific technology

used for the API Server, it can be behind the CDN or directly

accessible from the end-user. Based on the design

considerations at that point in time, this determination must be

made on a case-by-case basis. The criteria and decision should

be documented so that the decision can be revisited in the

future if the requirements have changed. In AWS, the API

Server is implemented by API Gateway, which can have a

WAF associated with it. API Gateway does not need to be put

behind a CDN. The CDN implementation for AWS –

CloudFront cannot selectively strip headers from the request

to sanitize the input [19]; the stripping of headers makes it

challenging to use with AWS API Gateway, which requires

proper usage of request headers. The other reason why API

Gateway should not reside behind CDN is that such API

endpoints are regional, and we do not need to use the global

capabilities of the CDN. If using the AWS Edge Optimized

API Gateway instance, we get the CDN's benefits without

setting them up explicitly [20]. Sometimes, it can be a good idea

to put AWS Cloudfront in front of API Gateway to inject

authorization headers that should not be exposed to users [21].

4.3. Monitoring and Alerting

The rate rules generate metrics and logs, which should be

analyzed appropriately. They play a critical role in detecting

and responding to DDoS attacks promptly. The key metrics to

monitor would be request rates, error rates, and resource

utilization at any time. These can indicate abnormal traffic

patterns or resource exhaustion, which can significantly

deteriorate the quality of the service.

Fig. 2 An example of how to design the monitoring and alerting

subsystem when using rate-limiting rules

User

CDN Edge WAF Rules

LB WAF Rules Load Balancer

Servers

API WAF Rules API Server

Logs Metrics

Log Analysis

Alarm Action Queue
Alarms

Action Handler

Notify SRE

Manish Sinha / IJCSE, 11(10), 54-61, 2024

59

Setting up alerts is crucial so appropriate individuals can

be notified when manual intervention is needed to mitigate an

incident or situation. Such incidents can be misconfigured bots

sending too much traffic or an attacker trying to bring down

the service. Alerts do not always have to involve individuals.

Automated failovers and healing actions can be taken based

on pre-determined conditions [22]. This reduces the cognitive

load on the individuals responsible for the operation of the

service and, at the same time, provides an audit log of the

actions taken by the system.

4.4. Rules Ordering

In all the WAF implementations, the rules are kept

together in a single logical container, and when a request

arrives, the request is matched one by one from the first rule

to the last. AWS WAF container for rules is WebACL,

whereas, for Akamai WAF, it is called Security Configuration
[23]. These implementations have actions like Allow, Block,

Captcha, or Monitor. Allow and block are short-circuit

evaluations, which means no further rules will be processed.

The existence of such short-circuit rule action can be

beneficial if used wisely. If we have Block rules, we must sort

them by most likely to least likely. We can explicitly Allow

certain kinds of traffic, for example, if we find a specific

header with a particular string, which acts as a pre-authorized

token. Such Allow rules should be cheap to evaluate and kept

on top of the rules list if they can effectively allow a bulk of

legitimate traffic.

4.5. Deployment with limited side effects

Adding, removing, or updating a rate-limiting rule on

production traffic can be risky. Engineers are much more

likely to test the new rules on a testing copy first and use

synthetic traffic to validate their effects. This is a valid

approach if we are trying to reduce the risk of unintended

outages. Unfortunately, it is not always possible to reproduce

the actual traffic using a synthetic traffic generator. In such

cases, we would have to deploy the updated collection of rules

to production WAF. Adding a new rule with the Block action

by testing it on staging is not enough. The block action denies

traffic to requests and can significantly affect legitimate users

if such a rule is not crafted properly. Thankfully, all WAF

solutions allow a Monitor action, which does not block or

negatively affect the request. It generates metrics and collects

logs specifically, which can help us identify how well such a

new rule is performing. If the metrics generated show much

higher traffic matched with this rule, we need to look at the

corresponding traffic log and understand if such traffic is

malicious or legitimate. Then, we can use a deploy-validate-

repeat loop to identify the adequate rate-limiting rule we wish

to use. Once we are confident of the quality of the new rate-

limiting rule, we can change the action from Monitor to Block.

4.6. Incident Response and Mitigation

These rate-limiting rules aim to secure the service and

achieve operational excellence. If an incident happens and

there is no defined path to restoring the system to its expected

state, it provides adequate time and opportunity for the bad

actors to cause damage. A well-defined incident response plan

is crucial to handle DDoS attacks effectively [24]. The plan

should outline the roles and responsibilities of individuals

participating in the response. Additionally, a communication

method should be established, and criteria for escalation

should be established. One single individual leads the incident

response and is responsible for making it efficient and smooth.

This individual can delegate another individual to take up the

role of the journalist, who is responsible for documenting the

actions taken step-by-step, including the determination and

results of the investigation. This journal is a goldmine of

information for the retrospective that should be conducted

when the incident is mitigated. When an incident is detected,

the first step is to identify the type and source of attacks,

followed by placing the affected components and subsystems

to prevent further damage. Blackholing is another technique

that can be utilized to temporarily mitigate the issue by

dumping the traffic on a null interface before it reaches the

critical systems. Looking at the logs and metrics, the engineers

should update the rate-limiting rules to handle the specific

format of the attack for the time being before a more

permanent solution can be found. Once the issue has been

mitigated, retrospectives should be conducted, and proper

action items should be created to ensure such an incident does

not repeat.

4.6. Regulations and Laws

The 116th Congress introduced and passed H.R.1668—

IoT Cybersecurity Improvement Act of 2020 [25], which

focuses on improving the security of Internet devices. It

requires the National Institute of Standards and Technology

(NIST) and the Office of Management and Budget (OMB) to

create standards and guidelines for appropriate use and

minimum information security requirements for the agency

that controls the device. This law does not compel companies

to act specifically but would try to direct the industry to be

self-regulated through consensus and guidelines. California’s

SB-327 Information Privacy: Connected Devices [26] focuses

primarily on securing the data on connected devices. The law

compels the businesses controlling the connected devices to

implement and maintain reasonable security procedures and

practices appropriate to the nature of the information. It will

take time to determine if this law will reduce the number of

devices that can be easily compromised and used as part of

large-scale DDoS attacks.

5. Conclusion
This paper presents a collection of methodologies and

how they relate to the service's cloud architecture. We explore

five critical rate-limiting criteria and discuss whether they

should be implemented on the Edge, Load Balancer, or API

server. The order in which these rules exist is essential and can

significantly affect each web request’s round-trip time

latency.

Manish Sinha / IJCSE, 11(10), 54-61, 2024

60

Care should be taken to judiciously choose the relevant

rate-limiting methodology based on the service's specific

architecture, which itself should be based on the business use

case. The architect needs to ensure that the design is flexible

enough to incorporate evolving business needs. This change

in service design might necessitate changes to the rate-limiting

methodologies being used. Minor design changes can have an

outsized impact on the performance of a specific rate-limiting

methodology. Static content that is no longer cached can

become expensive in terms of network resources and costs.

We have not provided any concrete implementation as no

single implementation would do justice to different

methodologies. Architects should explore the proper method

for their use cases and use trial and error to determine the

correct applications. Finally, we provided a sample WAF rule

for each methodology, and such a sample was based on AWS

WAF technology. AWS WAF’s implementation can be ported

to any known technology, such as Azure WAF [27], Google’s

Cloud Armor WAF [28], or Oracle WAF [29]. There is ample

scope for further research to be based on this paper. This paper

focuses primarily on AWS as the cloud provider and AWS

WAF as the firewall technology. The two biggest competitors

to AWS are Azure, with Azure WAF, and Oracle Cloud

Infrastructure (OCI), with OCI WAF. Further research

References
[1] Abdulaziz Aljabre, "Cloud Computing for Increased Business Value," International Journal of Business and Social Science, vol. 3, no. 1,

pp. 234-239, 2012. [Google Scholar] [Publisher Link]

[2] What is a DDoS Attack?, Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

[3] What is a Botnet?, Palo Alto Networks. [Online]. Available: https://www.paloaltonetworks.com/cyberpedia/what-is-botnet

[4] Manos Antonakakis et al., "Understanding the Mirai Botnet," 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC,

Canada, pp. 1093-1110, 2017. [Google Scholar] [Publisher Link]

[5] DoS Attack vs. DDoS Attack, Fortinet. [Online]. Available: https://www.fortinet.com/resources/cyberglossary/dos-vs-ddos

[6] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo, "Distributed Denial of Service (DDoS) Resilience in Cloud: Review

and Conceptual Cloud DDoS Mitigation Framework," Journal of Network and Computer Applications, vol. 67, pp. 147-165, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Gaurav Somani et al., "DDoS Attacks in Cloud Computing: Issues, Taxonomy, and Future Directions," Computer Communications, vol.

107, pp. 30-48, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Mohamed Idhammad, Karim Afdel, and Mustapha Belouch, “Semi-Supervised Machine Learning Approach for DDoS Detection,”

Applied Intelligence, vol. 48, pp. 3193-3208, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[9] Aanshi Bhardwaj et al., "Distributed Denial of Service Attacks in Cloud: State-of-the-Art of Scientific and Commercial Solutions,"

Computer Science Review, vol. 39, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] What are AWS WAF, AWS Shield Advanced, and AWS Firewall Manager?, AWS. [Online]. Available:

https://docs.aws.amazon.com/waf/latest/developerguide/what-is-aws-waf.html

[11] Matt Calder et al., "Analyzing the Performance of an Anycast CDN," Proceedings of the 2015 Internet Measurement Conference, Tokyo,

Japan, pp. 531-537, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[12] Geographic Match Rule Statement, AWS. [Online]. Available: https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-

statement-type-geo-match.html

[13] Understanding IP Addressing and CIDR Charts, RIPE NCC. [Online]. Available: https://www.ripe.net/about-us/press-

centre/understanding-ip-addressing/

[14] IP Reputation Rule Groups, AWS. [Online]. Available: https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-

groups-ip-rep.html

[15] Origin Server, Akamai Techdocs. [Online]. Available: https://techdocs.akamai.com/property-mgr/docs/origin-server

[16] Yang Zhang et al., "Detecting Malicious Activities With User‐Agent‐Based Profiles," International Journal of Network Management,

pp. 306-319, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[17] FieldToMatch, AWS. [Online]. Available: https://docs.aws.amazon.com/waf/latest/APIReference/API_FieldToMatch.html

[18] Matt Auerbach, Zachary Goldberg, and Jay Raval, CDN Caching Improvements for Better App Performance with AWS Amplify

Hosting, 2024. [Online]. Available: https://aws.amazon.com/blogs/mobile/cdn-caching-improvements-for-better-app-performance-

with-aws-amplify-hosting/

[19] Deliver Custom Content with CloudFront, AWS, 2014. [Online]. Available: https://aws.amazon.com/blogs/aws/enhanced-cloudfront-

customization/

[20] Amazon API Gateway Concepts, AWS. [Online]. Available: https://docs.aws.amazon.com/apigateway/latest/developerguide/api-

gateway-basic-concept.html#apigateway-definition-edge-optimized-api-endpoint

[21] Chris Munns, AWS. Protecting your API Using Amazon API Gateway and AWS WAF — Part 2, 2018. [Online]. Available:

https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-2/

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+computing+for+increased+business+value&btnG=
https://ijbssnet.com/view.php?u=http://ijbssnet.com/journals/Vol_3_No_1_January_2012/26.pdf
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+Antonakakis%2C+Understanding+The+Mirai+Botnet&btnG=
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1016/j.jnca.2016.01.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+denial+of+service+%28DDoS%29+resilience+in+cloud%3A+Review+and+conceptual+cloud+DDoS+mitigation+framework&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804516000023
https://doi.org/10.1016/j.comcom.2017.03.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DDoS+attacks+in+cloud+computing%3A+Issues%2C+taxonomy%2C+and+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366417303791
https://doi.org/10.1007/s10489-018-1141-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+Idhammad%2C+Semi-Supervised+Machine+Learning+Approach+for+DDoS+Detection&btnG=
https://link.springer.com/article/10.1007/s10489-018-1141-2
https://doi.org/10.1016/j.cosrev.2020.100332
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+Denial+of+Service+Attacks+in+Cloud%3A+State-of-the-art+of+Scientific+and+Commercial+Solutions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574013720304329
https://doi.org/10.1145/2815675.2815717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+the+Performance+of+an+Anycast+CDN&btnG=
https://dl.acm.org/doi/abs/10.1145/2815675.2815717
https://doi.org/10.1002/nem.1900
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+malicious+activities+with+user%E2%80%90agent%E2%80%90based+profiles&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1900

Manish Sinha / IJCSE, 11(10), 54-61, 2024

61

[22] Configure ALARM Actions for CloudWatch Alarms, Trend Micro. [Online]. Available:

https://www.trendmicro.com/cloudoneconformity-staging/knowledge-base/aws/CloudWatch/cloudwatch-alarm-action.html

[23] API Concepts, Akamai Techdocs. [Online]. Available: https://techdocs.akamai.com/application-security/reference/api-concepts

[24] Nivedita Shinde, and Priti Kulkarni, "Cyber Incident Response and Planning: A Flexible Approach," Computer Fraud & Security, vol.

2021, no. 1, pp. 14-19, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[25] H.R.1668 - IoT Cybersecurity Improvement Act of 2020, Congress.Gov, 2020. [Online]. Available:

https://www.congress.gov/bill/116th-congress/house-bill/1668

[26] Jackson, California Legislative Information, SB-327 Information Privacy: Connected Devices, 2018. [Online]. Available:

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180SB327

[27] Custom Rules for Web Application Firewall v2 on Azure Application Gateway, Microsoft Lgnite, 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/web-application-firewall/ag/custom-waf-rules-overview

[28] Google Cloud Armor documentation, Google Cloud. [Online]. Available: https://cloud.google.com/armor/docs/security-policy-overview

[29] Overview of Web Application Firewall, Oracle Cloud Infrastructure Documentation. [Online]. Available: https://docs.oracle.com/en-

us/iaas/Content/WAF/Concepts/overview.htm

https://doi.org/10.1016/S1361-3723(21)00009-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+incident+response+and+planning%3A+a+flexible+approach&btnG=
https://www.magonlinelibrary.com/doi/abs/10.1016/S1361-3723%2821%2900009-9

